中文版 | English
题名

虚假评论的识别及其对中国电子商务市场的影响

其他题名
The Identification of Fake Reviews and its Impact on China's E-Commerce Market
姓名
姓名拼音
LI Ruikun
学号
12233004
学位类型
硕士
学位专业
0701Z1 商务智能与大数据
学科门类/专业学位类别
07 理学
导师
顾理一
导师单位
商学院
论文答辩日期
2024-05-01
论文提交日期
2024-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

评论信息在我国电子商务市场已成为消费者决策的重要依据。因此商家为了利益有动机为自己制造虚假好评,为竞争对手制造虚假差评,从而危害市场经济秩序。然而针对我国虚假评论市场的研究仍较为缺乏。对虚假评论的成本分析显示,中国电子商务市场中虚假评论的成本结构区别于以Amazon为主的欧美电商市场,具体表现为购买虚假评论的成本处于较低的水平,成本结构的不同必然导致市场主体的决策不同。本文以中国某电商平台上关于宠物食品的评论数据为切入口,用数据驱动的方法识别并研究虚假评论对中国电子商务市场中的消费者和卖家造成的影响。

本文通过挖掘评论者行为和评论内容的异常,对部分虚假评论进行标记,将传统的识别问题转化为正样本无标签学习(Positive and Unlabeled Learning)问题。此外,还基于Bagging算法和XGBoost模型构建了一套自动识别虚假评论的系统。识别结果表明市场上存在大量虚假好评和相对较少的虚假差评。对识别结果进行实证分析,发现虚假好评通常是小规模店铺解决冷启动问题的营销手段,虚假差评是中大型店铺攻击竞争对手的策略。在虚假评论对销量的影响上看,短期内虚假好评确实能给商品销量带来一定的积极作用,虚假差评则会给销量带来程度更深的损害。但从长期来看,虚假好评反而会给店铺销量带来负面的影响。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1]Yelp Inc.-Investor Relations[EB/OL].
[2023-12]. https://www.yelp-ir.com.
[2]Online Consumer Reviews Impact Offline Purchasing Behavior[EB/OL].
[2007-11]. https://www.comscore.com/Insights/Press-Releases/2007/11/Online-Consumer-Reviews-Impact-Offline-Purchasing-Behavior.
[3]阿里巴巴投资者关系-阿里巴巴集团CEB/OLJ.
[2023-121. https://www.alibabagroup.com/ir-financial-reports-financial-results.
[4]QIAN Y. Brand management and strategies against counterfeits[J]. Journal of Economics &Management Strategy, 2014, 23(2): 317-343.
[5]PUN H, SWAMINATHAN J M, HOU P. Blockchain adoption for combating deceptive co-unterfeits[J]. Production and Operations Management, 2021, 30(4): 864-882.
[6]LIZ, XU X, BAI Q, et al. The interplay between blockchain adoption and citannel selectionin combating counterfeits{J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 155: 102451.
[7]SHEN B, DONG C, MINNER S. Combating copycats in the supply chain with permissioned blockchain technology{J]. Production and Operations Management, 2022, 31(1): 138-154.
[8]LI K J, ZHANG J, SCHAEFER R. Parallel imports of status goods: A strategic analysis of aesthetic design[J]. Production and Operations Management, 2022, 31(5): 2268-2288.
[9]LI H, SHAO J, ZHU S X. Parallel importation in a supply Chain: The impact of gray market structure{J]. Transportation Research Part E: Logistics and Transportation Review, 2018, 114:220-241.
[10]ANTIA K D, BERGEN M E, DUTTA S, et al. How does enforcement deter gray market incidence?[J]. Journal of Marketing, 2006, 70(1): 92-106.
[11] FEI G, MUKHERJEE A, LIU B, et al. Exploiting burstiness in reviews for review spammer detection[C//Proceedings of the international AAAI conference on web and social media: Vol. 7.2013: 175-184.
[12] 2100 万条好评点赞,竟然都是假的![EB/OLJ.
[2023-12-15J. https://mp.weixin.qg.com/s/CLT4gVPLDOUuHaZzgOmc4w.
[13] HES, HOLLENBECK B, PROSERPIO D. The market for fake reviews1 Marketing Science,2022, 41(5): 896-921.
[14] 刷好评己成灰色生产链,虚假好评到底怎么来的?人民日报调查(EB/OL].
[2021-10-25].https://www.thepaper.cn/newsDetail forward 15054916.
[15] JAIN V. Word of mouth as a new element of the marketing communication mix: Online consumer review[J]. South Asian Journal of Marketing & Management Research, 2021, 11(11):108-114
[16] CHEVALIER J A, MAYZLIN D. The effect of word of mouth on sales: Online book reviews[J]. Journal of marketing rescarch, 2006, 43(3): 345-354.
[17] DUAN W, GU B, WHINSTON A B. Do online reviews matter? --An empirical investigation of panel data(3). Decision support systems, 2008, 45(4): 1007-1016.
[18] LUCA M. Reviews, reputation, and revenue: The case of Yelp. com{J1. Com (March 15, 2016).Harvard Business School NOM Unit Working Paper, 2016(12-016).
[19] OG0T H, ONUR TAS B K. The influence of internet customer reviews on the online sales andprices in hotel industry(1]. The Service Industries Journal, 2012, 32(2): 197-214.
[20] LEWIS G, ZERVAS G. The supply and demand effects of review platforms(J). Available at SSRN 3468278, 2019.
[21] MUDAMBI S M, SCHUFF D. Rescarch note: What makes a helpful online review? A study of customer reviews on Amazon. com(J]. MIS quarterly, 2010: 185-200.
[22] YANG M. ZHENG 2, MOOKERJEE V. Prescribing response strategies to manage customer opinions: A stochastic differential equation approach(1]. Information Systems Rescarch, 2019,30(2): 351-374.
[23] DELLAROCAS C. Stratcgic manipulation of internet opinion forums:Implications for COsumers and firms(J). Management science, 2006, $2(10): 1577-1593.
[24] JINDAL N, LIU B. Analyzing and detecting review spam[CI/Seventh IEEE international conference on data mining (ICDM 2007). IEEE, 2007: $47-552.
[25] JINDAL N, LIU B. Opinion spam and analysis(C)//Proccedings of the 2008 international conference on web scarch and data mining. 2008: 219-230
[26] MUKHERJEE A, VENKATARAMAN V. LIU B, ct al. What yelp fake review filter might be doing7(C)//Proceedings of the international AAAl conference on web and social media: Vol. 72013: 409-418.
[27]DENG R, RUAN N, JIN R, et al. SpamTracer: manual fake review detection for 020 co-mmercial platforms by using geolocation features CV/Information Securty and Cryptology: 14th International Conference. Inscrypt 2018, Fuzhou, Chins, Dcember 1-17 ZU18, Revised Selected Papers 14. Springer, 2019: 384-403.
[28]BARBADO R, ARAQUE O, IGLESIAS C A.framework for fake review detection in online consumer electronics retailers J. Information Processing & Management, 2019, 56(4):1234-1244
[29]
[29]ALSUBARIS N, DESTINVUKI N, ALQARNI A A, et al. Data analytics for the identification of fake reviews using supervised learning{]]. Computers, Materials & Continua, 2022, 70(2):3189-3204.
[30] KAUFFMANN E, PERAL J, GIL D, et al. A framework for big data analytics in commercial social networks: A case study on sentiment analysis and fake review detection for marketing decision-making(J]. Industrial Marketing Management, 2020, 90: 523-537.
[31] CRAWFORD M, KHOSHGOFTAAR T M, PRUSA JD, et al. Survey of review spam detection using machine learning techniques[J]. Journal of Big Data, 2015, 2(1): 1-24.45
[32] PLOTKINA D, MUNZEL A, PALLUD J. Illusions of truth--Experimental insights into human and algorithmic detections of fake online reviews[J]. Journal of Business Research, 2020, 109:511-523.
[33] HUN, BOSE I, GAO Y, et al. Manipulation in digital word-of-mouth: A reality check for book reviews[J]. Decision Support Systems, 2011, 50(3): 627-635.
[34] HUN, LIU L, SAMBAMURTHY V. Fraud detection in online consumer reviews[J]. Decision Support Systems, 2011, 50(3): 614-626.
[35] CAO H. Online review manipulation by asymmetrical firms: Is a firm's manipulation of online reviews always detrimental to its competitor?[J]. Information & Management, 2020, 57 (6): 103244.
[36] ANDERSON M, MAGRUDER J. Learning from the crowd: Regression discontinuity estimates of the effects of an online review database[J]. The Economic Journal, 2012, 122(563): 957-989.
[37] ANANTHAKRISHNAN U M, LI B, SMITH M D. A tangled web: Should online reviewportals display fraudulent reviews?[J]. Information Systems Research, 2020, 31(3): 950-971.
[38] LIL, ZHENG H, CHEN D, et al. Whose reviews are most valuable for predicting the default risk of peer-to-peer lending platforms? Evidence from China[J]. Electronic Commerce Research,2022: 1-40.
[39] MAYZLIN D, DOVER Y, CHEVALIER J. Promotional reviews: An empirical investigation of online review manipulation[J]. American Economic Review, 2014, 104(8): 2421-2455.
[40] LAPPAS T, SABNIS G, VALKANAS G. The impact of fake reviews on online visibility: A vulnerability assessment of the hotel industry[J]. Information Systems Research, 2016, 27(4):940-961.
[41] HOLLENBECK B, MOORTHY S, PROSERPIO D. Advertising strategy in the presence of reviews: An empirical analysis. Marketing Science 2019 38/5)- 793-811
[42] PROSERPIO D, ZERVAS G. Online reputation management: Estimating the impact of management responses on consumer reviews[J]. Marketing Science, 2017, 36(5): 645-665.
[43] LUCA M, ZERVAS G. Fake it till you make it: Reputation, competition, and Yelp review fraud [J]. Management Science, 2016, 62(12): 3412-3427.
[44] CHEN J, GUO Z, HUANG J. An economic analysis of rebates conditional on positive reviews [J]. Information Systems Research, 2022, 33(1): 224-243.
[45] MORDELET F, VERT J P. A bagging SVM to learn from positive and unlabeled examples[J]. Pattern Recognition Letters, 2014, 37: 201-209.
[46] CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C]/Proceedings of the 22nd am sigkdd international conference on knowledge discovery and data mining. 2016:785-794.
[47] HUN, BOSE I, KOH N S, et al. Manipulation of online reviews: An analysis of ratings,readability, and sentiments[J]. Decision support systems, 2012, 52(3): 674-684.
[48] HUANG J H, CHEN Y F. Herding in online product choice[J. Psychology & Marketing, 2006, 23(5): 413-428.

所在学位评定分委会
数学
国内图书分类号
C931.6
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778760
专题商学院_信息系统与管理工程系
推荐引用方式
GB/T 7714
李瑞坤. 虚假评论的识别及其对中国电子商务市场的影响[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233004-李瑞坤-信息系统与管理(2357KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李瑞坤]的文章
百度学术
百度学术中相似的文章
[李瑞坤]的文章
必应学术
必应学术中相似的文章
[李瑞坤]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。