[1] FLAXMAN S R, BOURNE R R A, RESNIKOFF S, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis[J]. The Lancet Global Health, 2017, 5(12): e1221-e1234.
[2] 张悦, 初春燕, 余双, 等. 人工智能应用于青光眼临床筛查及卫生效益分析[J]. 现代生物医学进展, 2020, 20(10): 1868-1872.
[3] National Eye Institute Media Library. Eye disease[EB/OL].
[2024-03-19]. https://nei.nih.gov/health/examples.
[4] BOURNE R R A, FLAXMAN S R, BRAITHWAITE T, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis[J]. The Lancet Global Health, 2017, 5(9): e888-e897.
[5] 任恺贤, 杨卫华, 颜智鹏. 人工智能在眼底病诊疗中的应用和研究新进展[J]. 中国研究型医院, 2022, 9(05): 43-48.
[6] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]//International conference on machine learning. PMLR, 2021: 8748-8763.
[7] 魏丹丹, 宋宇涵, 王淇, 等. 年龄相关性黄斑变性的研究进展[J]. 基础医学与临床, 2024, 44(4): 553-5573.
[8] BALYEN L, PETO T. Promising artificial intelligence-machine learning-deep learning algorithms in ophthalmology[J]. The Asia-Pacific Journal of Ophthalmology,2019, 8(3): 264-272.
[9] BELLEMO V, LIM Z W, LIM G, et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study[J]. The Lancet Digital Health, 2019, 1(1): e35-e44.
[10] CHANDRASEKARAN R, LOGANATHAN B. Retinopathy grading with deep learning and wavelet hyper-analytic activations[J]. The Visual Computer, 2023, 39(7): 2741-2756.
[11] LIU R H, WANG X N, WU Q, et al. Deepdrid: Diabetic retinopathy-grading and image quality estimation challenge[J]. Patterns, 2022, 3(6): 100512.
[12] IMRAN A, LI J Q, PEI Y, et al. Fundus image-based cataract classification using a hybrid convolutional and recurrent neural network[J]. The Visual Computer, 2021, 37(8): 2407-2417.
[13] LIU R H, WANG T Q, LI H T, et al. TMM-Nets: transferred multi-to mono-modal generation for lupus retinopathy diagnosis[J]. IEEE Transactions on Medical Imaging, 参考文献582022, 42(4): 1083-1094.
[14] JIN K, HUANG X R, ZHOU J X, et al. Fives: A fundus image dataset for artificial Intelligence based vessel segmentation[J]. Scientific Data, 2022, 9(1): 475.
[15] SALAM A A, MAHADEVAPPA M, DAS A, et al. RDD-Net: retinal disease diagnosis network: a computer-aided diagnosis technique using graph learning and feature descriptors[J]. The Visual Computer, 2023, 39(10): 4657-4670.
[16] RAGHU M, ZHANG C Y, KLEINBERG J, et al. Transfusion: Understanding transfer learning for medical imaging[J]. Advances in neural information processing systems, 2019, 32: 3347-3357.
[17] AZIZPOUR H, RAZAVIAN A S, SULLIVAN J, et al. Factors of transferability for a generic convnet representation[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 38(9): 1790-1802.
[18] SRINIVASAM V, STRODTHOFF N, MA J, et al. To pretrain or not? A systematic analysis of the benefits of pretraining in diabetic retinopathy[J]. Plos one, 2022, 17(10): e0274291.
[19] SILVA-RODRIGUEZ J, CHAKOR H, KOBBI R, et al. A Foundation LAnguage-Image model of the Retina (FLAIR): Encoding expert knowledge in text supervision[J]. arXiv preprint arXiv:2308.07898, 2023.
[20] WANG Z F, WU Z B, AGARWAL D, et al. Medclip: Contrastive learning from unpaired medical images and text[J]. arXiv preprint arXiv:2210.10163, 2022.
[21] LU M Y, CHEN B W, ZHANG A, et al. Visual language pretrained multiple instance zero-shot transfer for histopathology images[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 19764-19775.
[22] ZHANG Y H, JIANG H, MIURA Y, et al. Contrastive learning of medical visual representations from paired images and text[C]//Machine Learning for Healthcare Conference. PMLR, 2022: 2-25.
[23] ZHOU H Y, CHEN X Y, ZHANG Y H, et al. Generalized radiograph representation learning via cross-supervision between images and free-text radiology reports[J]. Nature Machine Intelligence, 2022, 4(1): 32-40.
[24] HUANG S C, SHEN L Y, LUNGREN M P, et al. Gloria: A multimodal global-local representation learning framework for label-efficient medical image recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 3942-3951.
[25] MULLER P, KAISSIS G, ZOU C Y, et al. Joint learning of localized representations from medical images and reports[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 685-701.
[26] CHENG P J, LIN L, LYU J Y, et al. Prior: Prototype representation joint learning from medical images and reports[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 21361-21371.参考文献59
[27] BUSTOS A, PERTUSA A, SALINAS J M, et al. Padchest: A large chest x-ray image dataset with multi-label annotated reports[J]. Medical image analysis, 2020, 66: 101797.
[28] PENG Y F, WANG X S, LU L, et al. NegBio: a high-performance tool for negation and uncertainty detection in radiology reports[J]. AMIA Summits on Translational Science Proceedings, 2018, 2018: 188.
[29] WANG Y H. Unified medical image-text-label contrastive learning with continuous prompt[J]. arXiv preprint arXiv:2307.05920, 2023.
[30] LI Y C, JIA S F, SONG G B, et al. SDA-CLIP: surgical visual domain adaptation using video and text labels[J]. Quantitative Imaging in Medicine and Surgery, 2023, 13(10): 6989.
[31] LIU B, LU D H, WEI D, et al. Improving medical vision-language contrastive pretraining with semantics-aware triage[J]. IEEE Transactions on Medical Imaging, 2023, 42(12): 3579-3589.
[32] WANG F Y, ZHOU Y Y, WANG S J, et al. Multi-granularity cross-modal alignment for generalized medical visual representation learning[J]. Advances in Neural Information Processing Systems, 2022, 35: 33536-33549.
[33] LEI J Y, DAI L S, JIANG H Y, et al. Unibrain: Universal brain mri diagnosis with hierarchical knowledge-enhanced pre-training[J]. arXiv preprint arXiv:2309.06828, 2023.
[34] PACHADE S, PORWAL P, THULKAR D, et al. Retinal fundus multi-disease image dataset (rfmid): A dataset for multi-disease detection research[J]. Data, 2021, 6(2): 14.
[35] PANCHAL S, NAIK A, KOKARE M, et al. Retinal Fundus Multi-Disease Image Dataset (RFMiD) 2.0: a dataset of frequently and rarely identified diseases[J]. Data, 2023, 8(2): 29.
[36] BENDARY N E, HASSANIEN A E, CORCHADO E, et al. ARIAS: Automated retinal image analysis system[C]//Soft Computing Models in Industrial and Environmental Applications, 6th International Conference SOCO 2011. Springer Berlin Heidelberg, 2011: 67-76.
[37] Grand Challenge. 智 慧 之 眼 预 见 未 来 [EB/OL].
[2024-03-28]. https://odir2019.grand-challenge.org.
[38] ABRAMOFF M D, GARVIN M K, SONKA M. Retinal imaging and image analysis[J]. IEEE reviews in biomedical engineering, 2010, 3: 169-208.
[39] MOKHASHI N, GRACHEVSKAYA J, CHENG L, et al. A comparison of artificial intelligence and human diabetic retinal image interpretation in an urban health system[J]. Journal of Diabetes Science and Technology, 2022, 16(4): 1003-1007.
[40] OMAR M A, TAHIR M A, KHELIFI F. Multi-label learning model for improving retinal image classification in diabetic retinopathy[C]//2017 4th International 参考文献60Conference on Control, Decision and Information Technologies (CoDIT). IEEE, 2017: 0202-0207.
[41] CARRERA E V, GONZALEZ A, CARRERA R. Automated detection of diabetic retinopathy using SVM[C]//2017 IEEE XXIV international conference on electronics, electrical engineering and computing (INTERCON). IEEE, 2017: 1-4.
[42] ACHARYA U R, KANNATHAL N, NG E Y K, et al. Computer-based classification of eye diseases[C]//2006 International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006: 6121-6124.
[43] CEN L P, JI J, LIN J W, et al. Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks[J]. Nature communications, 2021, 12(1): 4828.
[44] JU L, WANG X, YU Z, et al. Long-tailed multi-label retinal diseases recognition using hierarchical information and hybrid knowledge distillation[J]. arXiv preprint arXiv:2111.08913, 2021.
[45] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2016: 770-778.
[46] PRAWIRA R, BUSTAMAM A, ANKI P. Multi label classification of retinal disease on fundus images using AlexNet and VGG16 architectures[C]//2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI). IEEE, 2021: 464-468.
[47] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25: 1097-1105.
[48] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large -scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[49] SAHLSTEN J, JASKARI J, KIVINEN J, et al. Deep learning fundus image analysis for diabetic retinopathy and macular edema grading[J]. Scientific reports, 2019, 9(1): 10750.
[50] SENGAR N, JOSHI R C, DUTTA M K, et al. EyeDeep-Net: A multi-class diagnosis of retinal diseases using deep neural network[J]. Neural Computing and Applications, 2023, 35(14): 10551-10571.
[51] NAWAZ A, ALI T, MUSTAFA G, et al. Multi-Class Retinal Diseases Detection Using Deep CNN With Minimal Memory Consumption[J]. IEEE Access, 2023, 11, 56170-56180.
[52] HISHAM I, KHALIL M I, ABBAS H. Multi-label Ophthalmological Disease Classification Using Vision Transformers[C]//2023 5th Novel Intelligent and Leading Emerging Sciences Conference (NILES). IEEE, 2023: 279-284.
[53] WANG X L, LU Y J, WANG Y J, et al. Diabetic retinopathy stage classification using 参考文献61convolutional neural networks[C]//2018 IEEE International Conference on Information Reuse and Integration (IRI). IEEE, 2018: 465-471.
[54] DOSOVITSKIV A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv preprint arXiv:2010.11929, 2020.
[55] LIU Z, HU H, LIN Y T, et al. Swin Transformer V2: Scaling Up Capacity and Resolution[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 12009-12019.
[56] TOUVRON H, CORD M, JEGOU H. Deit iii: Revenge of the vit[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 516-533.
[57] LEE J, YOON W, KIM S, et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining[J]. Bioinformatics, 2020, 36(4): 1234-1240.
[58] SILVA-RODRIGUEZ J, CHELBI J, KABIR W, et al. Exploring the Transferability of a Foundation Model for Fundus Images: Application to Hypertensive Retinopathy[C]//Computer Graphics International Conference. Cham: Springer Nature Switzerland, 2023: 427-437.
[59] HE J J, LI C, YE J, et al. Self-speculation of clinical features based on knowledge distillation for accurate ocular disease classification[J]. Biomedical Signal Processing and Control, 2021, 67: 102491.
[60] CHELARAMANI S, GUPTA M, AGARWAL V, et al. Multi-task knowledge distillation for eye disease prediction[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2021: 3983-3993.
[61] ALAPARTHI S, MISHRA M. Bidirectional Encoder Representations from Transformers (BERT): A sentiment analysis odyssey[J]. arXiv preprint arXiv:2007.01127, 2020.
[62] NAZIR A, WANG Z. A comprehensive survey of ChatGPT: Advancements, applications, prospects, and challenges[J]. Meta-radiology, 2023, 1(2): 100022.
[63] GARNER A, ASHTON N. Pathogenesis of hypertensive retinopathy: a review[J]. Journal of the Royal Society of Medicine, 1979, 72(5): 362-365.
[64] WILKINSON C P, FERRIS III F L, KLEIN R E, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales[J]. Ophthalmology, 2003, 110(9): 1677-1682.
[65] HOULSBY N, GIURGIU A, JASTRZEBSKI S, et al. Parameter-efficient transfer learning for NLP[C]//International conference on machine learning. PMLR, 2019: 2790-2799.参考文献62
[66] LI X L, LIANG P. Prefix-tuning: Optimizing continuous prompts for generation[J]. arXiv preprint arXiv:2101.00190, 2021.
[67] HU E J, SHEN Y, WALLIS P, et al. Lora: Low-rank adaptation of large language models[J]. arXiv preprint arXiv:2106.09685, 2021.
[68] LI C Y, FARKHOOR H, LIU R, et al. Measuring the intrinsic dimension of objective landscapes[J]. arXiv preprint arXiv:1804.08838, 2018.
[69] AGHAJANYAN A, ZETTLEMOYER L, GUPTA S. Intrinsic dimensionality explains the effectiveness of language model fine-tuning[J]. arXiv preprint arXiv:2012.13255, 2020.
[70] Grand Challenge. Retinal image analysis for multi-disease detection[EB/OL].
[2024-03-38]. https://riadd.grand-challenge.org/Home.
[71] LIN J K, CAI Q L, LIN M Y. Multi-label classification of fundus images with graph convolutional network and self-supervised learning[J]. IEEE Signal Processing Letters, 2021, 28: 454-458.
[72] RODRIGUEZ M A, ALMARZOUQI H, LIATSIS P. Multi-label retinal disease classification using transformers[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(6): 2739-2750.
[73] WU K, PENG H W, ZHOU Z H, et al. Tinyclip: Clip distillation via affinity mimicking and weight inheritance[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 21970-21980.
修改评论