中文版 | English
题名

树脂基固态胺吸附剂直接空气碳捕集材料的制备及性能研究

其他题名
PREPARATION AND PERFORMANCE STUDY OF RESIN-BASED SOLID AMINE ADSORBENTS FOR DIRECT AIR CAPTURE
姓名
姓名拼音
HUA Jiali
学号
12232274
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
张作泰
导师单位
环境科学与工程学院
论文答辩日期
2024-05-14
论文提交日期
2024-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
  面对温室气体大量排放引发的环境问题,固态胺吸附剂直接空气碳捕集(DAC)可以有效遏制大气中不断增长的 CO2 浓度。然而固态胺吸附剂仍然存在一系列问题,如制备复杂、成本昂贵以及在超低 CO2 浓度下吸附性能不够突出。本论文以商业树脂为研究对象,制备了一系列 PEI 改性的树脂基固态胺吸附剂,系统地研究了吸附剂的孔隙结构、CO2 吸附容量、吸附速率以及循环稳定性,得出了以下结论:
  通过研究各种商业树脂的孔结构,发现大孔树脂 X5 拥有 1.90 cm3 /g 的发达孔体积,并具有分级双峰的网络孔结构,表现出可用作固体胺吸附剂载体的潜力。制备的固态胺吸附剂(PEI@X5)尽管在负载量高达 50%PEI 的情况下,也具有相当好的分散性,并在模拟环境空气条件下表现出优异的吸附性能,在 TGA 和固定床测试中其 CO2 吸附量分别为 118 108 mg/g。此外,吸附剂在五次吸附-再生循环过程中表现出优秀的循环稳定性,没有观察到衰减。
  针对树脂基固态胺吸附剂吸附速率较慢的问题,达到饱和吸附的时间长达 24 h,本研究采用了添加表面活性剂的解决方法。研究了添加 TEP 后对吸附剂速率的影响,同时系统分析了 TEP PEI 不同的搭配比例以及吸 附温度对于固态胺吸附剂性能的影响。制备的 40%PEI+5%TEP 吸附剂在10 h 的吸附容量能够达到饱和吸附的 95.9%,极大地加快了吸附速率。进一步研究水蒸气浓度对吸附剂的影响,发现引入 25%相对湿度(RH)的水蒸气可以显著提高 X5 基固态胺吸附剂的 CO2 吸附量,但是继续增加混合气体中的相对湿度会造成 CO2 吸附量降低,而且从孔中溶出部分PEI
  考虑到原材料的商业生产成熟、合成方法简便及其优越的 CO2 捕集效率,X5 基固态胺吸附剂有大规模工业生产应用的潜力,这些发现能为 DAC 技术的发展提供了新的思路。
关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] CIAVARELLA A, COTTERILL D, STOTT P, et al. Prolonged Siberian heat of 2020 almost impossible without human influence[J]. Climatic Change, 2021, 166:9.
[2] DOU L R, SUN L D, LYU W, et al. Trend of global carbon dioxide capture, utilization and storage industry and challenges and countermeasures in China[J]. Petroleum Exploration and Development, 2023, 50(5): 1246 -1260.
[3] OKONKWO E C, ALNOUSS A, SHAHBAZ M, et al. Developing integrated direct air capture and bioenergy with carbon capture and storage systems: progress towards 2 °C and 1.5 °C climate goals[J]. Energy Conversion and Management, 2023, 296: 117687.
[4] ZHAO M, XIAO J W, GAO W L, et al. Defect-rich Mg-Al MMOs supported TEPA with enhanced charge transfer for highly efficient and stable direct air capture[J]. Journal of Energy Chemistry, 2022, 68: 401 -410.
[5] MASSON-DELMOTTE V Z P, PöRTNER H-O. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty[R]. Geneva, Switzerland: World Meteorological Organization, 2018.
[6] Global energy review: CO2 emissions in 2021. International Energy Agency [R].Paris, 2022.
[7] JIANG K, ASHWORTH P, ZHANG S Y, et al. China's carbon capture, utilization and storage (CCUS) policy: A critical review[J]. Renewable & Sustainable Energy Reviews, 2020, 119: 109601.
[8] MU Q Z, ZHAO M S, RUNNING S W, et al. Contribution of increasing CO2and climate change to the carbon cycle in China's ecosystems[J]. Journal of Geophysical Research-Biogeosciences, 2008, 113: G01018.
[9] MIDGLEY G F, THUILLER W. Global environmental change and the uncertain fate of biodiversity[J]. New Phytologist, 2005, 167(3): 638 -641.
[10]TIAN S C, YAN F, ZHANG Z T, et al. Calcium-looping reforming of methane realizes in-situ CO2 utilization with improved energy efficiency[J]. Science Advances, 2019, 5(4): eaav5077.
[11] CHE X X, YI X Y, DAI Z H, et al. Application and development countermeasures of CCUS technology in China's petroleum industry[J]. Atmosphere, 2022, 13(11): 1757.
[12]SREENATH S, SAM A A. Hybrid membrane -cryogenic CO2 capture technologies: A mini-review[J]. Frontiers in Energy Research, 2023, 11 : 1167024.
[13] AN H, FENG B, SU S. CO2 capture by electrothermal swing adsorption with activated carbon fibre materials[J]. International Journal of Greenhouse Gas Control, 2011, 5(1): 16 -25.
[14] GARIP M, GIZLI N. Ionic liquid containing amine -based silica aerogels for CO2 capture by fixed bed adsorption[J]. Journal of Molecular Liquids, 2020, 310: 113237.
[15] STORRS K, LYHNE I, DRUSTRUP R. A comprehensive framework for feasibility of CCUS deployment: a meta-review of literature on factors impacting CCUS deployment[J]. International Journal of Greenhouse Gas Control, 2023, 125: 1063042.
[16] MOURITS F, KULICHENKO-LOTZ N, GONZáLEZ G H, et al. Overview of World Bank CCUS Program Activities in Mexico; proceedings of the 13th International Conference on Greenhouse Gas Control Technologies (GHGT), Lausanne, [C] SWITZERLAND, 2017.
[17] YAN L Z, HU J J, FANG Q Y, et al. Eco -development of oil and gas industry: CCUS-EOR technology[J]. Frontiers in Earth Science, 2023, 10 : 1063042
[18] 蔡 博 峰 , 李 琦 , 张 贤 等. 中 国 二 氧 化 碳 捕 集 利 用 与 封 存(CCUS)年度报告(2021)――中国 CCUS 路径研究[R]. 生态环境部环境规划院:中国 21 世纪议程管理中心, 2021.
[19] E.A.I. CO2 emissions from fuel combustion, highlights[R]. Paris, 2015.
[20] WANG C, CHEN S Q, REN J X, et al. Comparison and analysis of CO2 capture technology of coal-fired power plant; proceedings of the 3rd international conference on mechanics, Dynamic Systems and Materials Engineering (MDSME) [R]. Wuhan, 2015: 25-26.
[21] PORTER R T J, FAIRWEATHER M, KOLSTER C, et al. Cost and performance of some carbon capture technology options for producing different quality CO2 product streams[J]. International Journal of Greenhouse Gas Control, 2017, 57: 185-195.
[22] LACKNER K S. A guide to CO2 sequestration[J]. Science, 2003, 300(5626): 1677-1678.
[23] COOKE C. Direct air capture and negative emissions[J]. Filtration & Separation, 2021, 58(3): 22 -24.
[24] MCQUEEN N, GOMES K V, MCCORMICK C, et al. A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future[J]. Progress in Energy, 2021, 3(3): 032001.
[25] HANSEN J, SATO M, KHARECHA P, et al. Young people's burden:requirement of negative CO2 emissions[J]. Earth System Dynamics, 2017, 8(3): 577-616.
[26] KARIMI M, SHIRZAD M, SILVA J A C, et al. Carbon dioxide separation and capture by adsorption: a review[J]. Environmental Chemistry Letters, 2023, 21(4): 2041-2084.
[27] TIAN Y X, WANG R H, DENG S M, et al. Coupling direct atmospheric CO2 capture with photocatalytic CO2 reduction for highly efficient C2H6 production[J]. Nano Letters, 2023, 23(23): 10914 -10921.
[28] SUTHERLAND B R. Pricing CO2 direct air capture[J]. Joule, 2019, 3(7): 1571-1573.
[29] LIU R S, XU S, HAO G P, et al. Recent advances of porous solids for ultradilute CO2 capture[J]. Chemical Research in Chinese Universities, 2022, 38(1): 18-30.
[30] PANDA D, KULKARNI V, SINGH S K. Evaluation of amine -based solid adsorbents for direct air capture: a critical review[J]. Reaction Chemistry & Engineering, 2022, 8(1): 10-40.
[31] SHI X Y, LIN Y C Y, CHEN X. Development of sorbent materials for direct air capture of CO2 [J]. Mrs Bulletin, 2022, 47(4): 405 -415.
[32] SHEKHAH O, BELMABKHOUT Y, CHEN Z J, et al. Made -to-order metal-organic frameworks for trace carbon dioxide removal and air capture[J]. Nature Communications, 2014, 5: 4228.
[33] PRESSER V, MCDONOUGH J, YEON S H, et al. Effect of pore size on carbon dioxide sorption by carbide derived carbon[J]. Energy & Environmental Science, 2011, 4(8): 3059-3066.
[34] OSCHATZ M, ANTONIETTI M. A search for selectivity to enable CO 2 capture with porous adsorbents[J]. Energy & Environmental Science, 2018, 11(1): 57-70.
[35] SEVILLA M, FUERTES A B. Sustainable porous carbons with a superior performance for CO2 capture[J]. Energy & Environmental Science, 2011, 4(5): 1765-1771.
[36] LEE T S, CHO J H, CHI S H. Carbon dioxide removal using carbon monolith as electric swing adsorption to improve indoor air quality[J]. Building and Environment, 2015, 92: 209-221.
[37] CHEN S J, ZHU M, TANG Y C, et al. Molecular simulation and experimental investigation of CO2 capture in a polymetallic cation-exchanged 13X zeolite[J]. Journal of Materials Chemistry A, 2018, 6(40): 19570 -19583.
[38] BHATT P M, BELMABKHOUT Y, CADIAU A, et al. A Fine -tuned fluorinated mof addresses the needs for trace CO2 removal and air capture using physisorption[J]. Journal of the American Chemical Society, 2016, 138(29)9301-9307.
[39] KUMAR A, MADDEN D G, LUSI M, et al. Direct air capture of CO 2 by physisorbent materials[J]. Angewandte Chemie -International Edition, 2015, 54(48): 14372-14377.
[40] SUN J, XU P, GONG D W, et al. Study on robust absorption performance of hydrophilic membrane contactor for direct air capture[J]. Separation and Purification Technology, 2023, 309 : 122978.
[41] HE H K, LI W W, LAMSON M, et al. Porous polymers prepared via high internal phase emulsion polymerization for reversible CO 2 capture[J]. Polymer, 2014, 55(1): 385-394.
[42] HE H K, ZHONG M J, KONKOLEWICZ D, et al. Three -dimensionally ordered macroporous polymeric materials by colloidal crystal templating for reversible CO2 capture[J]. Advanced Functional Materials, 2013, 23(37): 4720 -4728.
[43] VOSKIAN S, HATTON T A. Faradaic electro -swing reactive adsorption for CO2 capture[J]. Energy & Environmental Science, 2019, 12(12): 3530 -3547.
[44] KEITH D W, HOLMES G, ANGELO D S, et al. A process for capturing CO2from the atmosphere[J]. Joule, 2018, 2(8): 1573 -1594.
[45] CUSTELCEAN R. Direct air capture of CO2 using solvents[J]. Annual Review of Chemical and Biomolecular Engineering, 2022, 13: 217 -234.
[46] CHOI S, DRESE J H, EISENBERGER P M, et al. Application of amine -tethered solid sorbents for direct CO2 capture from the ambient air[J]. Environmental Science & Technology, 2011, 45(6): 2420 -2427.
[47] SUN J L, ZHAO M, HUANG L, et al. Recent progress on direct air capture of carbon dioxide[J]. Current Opinion in Green and Sustainable Chemistry, 2023, 40: 100752.
[48] LI C Y, YAN F, SHEN X H, et al. Highly efficient and stable PEI@Al 2O3 adsorbents derived from coal fly ash for biogas upgrading[J]. Chemical Engineering Journal, 2021, 409 : 128117.
[49] LASHAKI M J, SAYARI A. CO2 capture using triamine - grafted SBA-15: the impact of the support pore structure[J]. Chemical Engineering Journal, 2018, 334: 1260-1269.
[50] CHAIKITTISILP W, LUNN J D, SHANTZ D F, et al. Poly(L -lysine) brushmesoporous silica hybrid material as a biomolecule -based adsorbent for CO2 capture from simulated flue gas and air[J]. Chemistry -a European Journal, 2011, 17(38): 10556-10561.
[51] LI W, CHOI S, DRESE J H, et al. Steam-stripping for regeneration of supported amine-based CO2 adsorbents[J]. Chemsuschem, 2010, 3(8): 899 -903.
[52] CARNEIRO J S A, INNOCENTI G, MOON H J, et al. Insights into the oxidative degradation mechanism of solid amine sorbents for CO2 capture from air: roles of atmospheric water[J]. Angewandte Chemie -International Edition, 2023, 62(24): e202302887.
[53] WANG J T, WANG M, LI W C, et al. Application of polyethylenimine-impregnated solid adsorbents for direct capture of low -concentration CO2 [J]. Aiche Journal, 2015, 61(3): 972 -980.
[54] 李凯敏. 固废源 SiO2 基固态胺材料用于 CO2 捕集技术及机理研究[D]. 清华大学, 2017.
[55] CHEN C Y, LEE K C, CHOU C T. Concentration and recovery of carbon dioxide from flue gas by vacuum swing adsorption[J]. Journal of the Chinese Institute of Chemical Engineers, 2003, 34(1): 135 -142.
[56] LACKNER K S. Capture of carbon dioxide from ambient air[J]. European Physical Journal-Special Topics, 2009, 176: 93-106.
[57] MA J J, LIU Q M, CHEN D D, et al. CO2 adsorption on amine -modified mesoporous silicas[J]. Journal of Porous Materials, 2014, 21(5): 859 -867.
[58] LIN L, JU T Y, HAN S Y, et al. Comparison of characteristics and performance between PEI and DETA impregnated on SBA-15 for CO2 capture[J]. Separation and Purification Technology, 2023, 322 : 124346.
[59] ZHANG J P, ZUO J, AI W D, et al. Preparation of mesoporous coal-gasification fine slag adsorbent via amine modification and applications in CO2 capture[J]. Applied Surface Science, 2021, 537 : 147938.
[60] ARULDOSS D, SAIGOANKER R, DAS SAVARIMUTHU J, et al. Amine-grafted zeolites-mesoporous ceramics: synthesis and adsorption characteristics[J]. Ceramics International, 2014, 40(5): 7583 -7587.
[61] KULKARNI V, PANDA D, SINGH S K. Direct air capture of CO2 over amine-modified hierarchical silica[J]. Industrial & Engineering Chemistry Research, 2023, 62(8): 3800-3811.
[62] KUMAR R, OHTANI S, TSUNOJI N. Direct air capture on amine -impregnated FAU zeolites: exploring for high adsorption capacity and low -temperature regeneration[J]. Microporous and Mesoporous Materials, 2023, 360 : 112714.
[63] HOSSEINI A A, LASHAKI M J. A comprehensive evaluation of amine-impregnated silica materials for direct air capture of carbon dioxide[J]. Separation and Purification Technology, 2023, 325 : 124580.
[64] RIM G, PRIYADARSHINI P, SONG M Y, et al. Support pore structure and composition strongly influence the direct air capture of CO2 on supported amines[J]. Journal of the American Chemical Society, 2023, 145(13): 7190 -7204.
[65] PARK S J, LEE J J, HOYT C B, et al. Silica supported poly(propylene guanidine) as a CO2 sorbent in simulated flue gas and direct air capture[J]. Adsorption-Journal of the International Adsorption Society, 2020, 26(1): 89 -101.
[66] WANG J T, HUANG H H, WANG M, et al. Direct capture of low -concentration CO2 on mesoporous carbon-supported solid amine adsorbents at ambient temperature[J]. Industrial & Engineering Chemistry Research, 2015, 54(19): 5319-5327.
[67] KUMAR R, BANDYOPADHYAY M, PANDEY M, et al. Amine -impregnated nanoarchitectonics of mesoporous silica for capturing dry and humid 400 ppm carbon dioxide: a comparative study[J]. Microporous and Mesoporous Materials, 2022, 338: 111956.
[68] KWON H T, SAKWA-NOVAK M A, PANG S H, et al. Aminopolymer-impregnated hierarchical silica structures: unexpected equivalent CO2 uptake under simulated air capture and flue gas capture conditions[J]. Chemistry of Materials, 2019, 31(14): 5229 -5237.
[69] CHEN Z H, DENG S B, WEI H R, et al. Polyethylenimine -impregnated resin for high CO2 adsorption: an efficient adsorbent for CO2 capture from simulated flue gas and ambient air[J]. Acs Applied Materials & Interfaces, 2013, 5(15): 6937-6945.
[70] CHOI S, GRAY M L, JONES C W. Amine -tethered solid adsorbents coupling high adsorption capacity and regenerability for CO 2 capture from ambient air[J]. Chemsuschem, 2011, 4(5): 628 -635.
[71] CHENG D D, LIU Y, WANG H Q, et al. Enhanced CO 2 adsorptive performance of PEI/SBA-15 adsorbent using phosphate ester based surfactants as additives[J]. Journal of Environmental Sciences, 2015, 38: 1 -7.
[72] SAMADDOOST L, SOLTANI M, FATEHIFAR E, et al. Design of amine -functionalized resin via a facial method with efficient CO2 capture from air[J]. Process Safety and Environmental Protection, 2023, 171: 18 -27.
[73] SAKWA-NOVAK M A, TAN S, JONES C W. Role of additives in composite PEI/oxide CO2 adsorbents: enhancement in the amine efficiency of supported PEI by PEG in CO2 capture from simulated ambient air[J]. Acs Applied Materials & Interfaces, 2015, 7(44): 24748 -24759.
[74] BAI G Z, HAN Y, DU P P, et al. Polyethylenimine (PEI)-impregnated resin adsorbent with high efficiency and capacity for CO 2 capture from flue gas[J]. New Journal of Chemistry, 2019, 43(46): 18345 -18354.
[75] LIU F L, WANG S Y, LIN G R, et al. Development and characterization of amine-functionalized hyper-cross-linked resin for CO2 capture[J]. New Journal of Chemistry, 2018, 42(1): 420 -428.
[76] WITOON T. Polyethyleneimine -loaded bimodal porous silica as low-cost and high-capacity sorbent for CO2 capture[J]. Materials Chemistry and Physics, 2012, 137(1): 235-245.
[77] MENG Y, JIANG J G, GAO Y C, et al. Biogas upgrading to methane: application of a regenerable polyethyleneimine -impregnated polymeric resin (NKA-9) via CO2 sorption[J]. Chemical Engineering Journal, 2019, 361: 294 -303.
[78] ZHANG J X, ZHENG X, CAO Y P, et al. Tetraethylenepentamine -grafted polyacrylonitrile-poly(methyl methacrylate) hollow fibers for low concentration CO2 capture at ambient temperature[J]. Process Safety and Environmental Protection, 2022, 157: 390 -396.
[79] ZHU X C, XIE W W, WU J Y, et al. Recent advances in direct air capture by adsorption[J]. Chemical Society Reviews, 2022, 51(15): 6574 -6651.
[80] PRIYADARSHINI P, RIM G, ROSU C, et al. Direct air capture of CO 2 using amine/alumina sorbents at cold temperature[J]. Acs Environmental Au, 2023, 3(5): 295-307.
[81] MIAO Y H, HE Z J, ZHU X C, et al. Operating temperatures affect direct air capture of CO2 in polyamine -loaded mesoporous silica[J]. Chemical Engineering Journal, 2021, 426 : 131875.
[82] LI H, WANG K C, FENG D W, et al. Incorporation of alkylamine into metal -organic frameworks through a bronsted acid -base reaction for CO2 capture[J]. Chemsuschem, 2016, 9(19): 2832-2840.
[83] WIJESIRI R P, KNOWLES G P, YEASMIN H, et al. CO 2 capture from air using pelletized polyethylenimine impregnated MCF silica[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 3293 -3303.
[84] MENG Y, JIANG J G, GAO Y C, et al. Comprehensive study of CO 2 capture performance under a wide temperature range using polyethyleneimine -modified adsorbents[J]. Journal of CO2 Utilization, 2018, 27: 89-98.
[85] ELFVING J, BAJAMUNDI C, KAUPPINEN J. Characterization and performance of direct air capture sorbent; proceedings of the 13th International Conference on Greenhouse Gas Control Technologies (GHGT)[ R]. 2017: 14-18.
[86] WANG T, LIU J, HUANG H, et al. Preparation and kinetics of a heterogeneous sorbent for CO2 capture from the atmosphere[J]. Chemical Engineering Journal, 2016, 284: 679-686.
[87] FAYAZ M, SAYARI A. Long-term effect of steam exposure on CO2 capture performance of amine -grafted silica[J]. Acs Applied Materials & Interfaces, 2017, 9(50): 43747-43754.
[88] LI W, BOLLINI P, DIDAS S A, et al. Structural changes of silica mesocellular foam supported amine -functionalized CO2 adsorbents upon exposure to steam[J]. Acs Applied Materials & Interfaces, 2010, 2(11): 3363 -3372.

所在学位评定分委会
材料与化工
国内图书分类号
X701
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778770
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
华佳利. 树脂基固态胺吸附剂直接空气碳捕集材料的制备及性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232274-华佳利-环境科学与工程(5036KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[华佳利]的文章
百度学术
百度学术中相似的文章
[华佳利]的文章
必应学术
必应学术中相似的文章
[华佳利]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。