[1] RÖTHLISBERGER A, PRINS R. Intermediates in the hydrodesulfurization of 4,6-dimethyl-dibenzothiophene over Pd/γ-Al2O3[J]. Journal of Catalysis, 2005, 235: 229-240.
[2] 李季坤. [D]. 北京: 北京理工大学化学系, 2015.
[3] 李季坤, 胡长文. 多钒氧簇化学研究进展[J]. 无机化学学报, 2015, 31: 1705-1725.
[4] MA P T, HU F, WANG J P, et al. Carboxylate covalently modified polyoxometalates: From synthesis, structural diversity to applications[J]. Coordination Chemistry Reviews, 2019, 378: 281-309.
[5] ANYUSHIN A V, KONDINSKI A, PARAC-VOGT T N. Hybrid polyoxometalates as post-functionalization platforms: from fundamentals to emerging applications[J]. Chemical Society Reviews, 2020, 49: 382-432.
[6] SAMANIYAN M, MIRZAEI M, KHAJAVIAN R, et al. Heterogeneous catalysis by polyoxometalates in metal-organic frameworks[J]. ACS Catalysis, 2019, 9: 10174-10191.
[7] AURELIANO M, GUMEROVA N I, SCIORTINO G, et al. Polyoxovanadates with emerging biomedical activities[J]. Coordination Chemistry Reviews, 2021, 446: 214143.
[8] LO'PEZ X, CARBO’ J J, BO C, et al. Structure, properties and reactivity of polyoxometalates: a theoretical perspective[J]. Chemical Society Reviews, 2012, 41: 7537-7571.
[9] WANG S S, YANG G Y. Recent advances in polyoxometalate-catalyzed reactions[J]. Chemical Reviews, 2015, 115: 4893-4962.
[10] WANG J L, LIU X M, DU Z Y, et al. Organo-functionalized polyoxovanadates: crystal architecture and property aspects[J]. Dalton Transactions, 2021, 50: 7871-7886.
[11] DANG T Y, LI R H, TIAN H R, et al. Highly efficient multi-site synergistic catalysis of a polyoxovanadate-based metal-organic framework for benzylic C-H bond oxidation[J]. Journal of Materials Chemistry A, 2022, 10: 16514-16523.
[12] KIKUKAWA Y, SAKAMOTO Y, HIRASAWA H, et al. Synthesis and oxidation catalysis of a difluoride-incorporated polyoxovanadate and isolation of active vanadium alkylperoxo species[J]. Catalysis Science & Technology, 2022, 12: 2438-2445.
[13] GU Y Q, LI Q, ZANG D J, et al. Light-induced efficient hydroxylation of benzene to phenol by quinolinium and polyoxovanadate-based supramolecular catalysts[J]. Angewdte Chemie International Edition, 2021, 60: 13310-13316.
[14] CAO J P, XUE Y S, LI N F, et al. Lewis acid dominant windmill-shaped V8 clusters: a bifunctional heterogeneous catalyst for CO2 cycloaddition and oxidation of sulfides[J]. Journal of the American Chemical Society, 2019, 141: 19487-19497.
[15] WANG K, XU Q F, MA P T, et al. Polyoxovanadate catalysts for oxidation of 1-phenyl ethanol: from the discrete [V4O12]4- and [V10O28]6- anions to the anionic [V6O17]n4n- coordination polymer[J]. CrystEngComm, 2018, 20: 6273-6279.
[16] KLEMPERER W G, MARQUART T A, YAGHI O M. New directions in polyoxovanadate chemistry: from cages and clusters to basket, belts, bowls, and barrels[J]. Angewdte Chemie International Edition, 1992, 31: 49-51.
[17] MONAKHOV K Y, BENSCH W, Kögerler P. Semimetal-functionalised polyoxovanadates[J]. Chemical Society Reviews, 2015, 44: 8443-8483.
[18] WANG Y, LIU C Y, WANG Y, et al. Efficient photo-thermo-electric conversion using polyoxovanadate in ionic liquid for low-grade heat utilization[J]. ChemSusChem, 2021, 14: 5434-5441.
[19] AMINI M, SHEKARI Z, AKBARI A, et al. Novel thin film nanocomposite membranes incorporated with polyoxovanadate nanocluster for high water flux and antibacterial properties[J]. Applied Organometal Chemistry, 2020, 34: e5494.
[20] WANG G G, MA P T, ZHANG D D, et al. NiIII-embedded polyoxovanadate: Synthesis, structure and magnetic properties[J]. Journal of Alloys and compounds, 2016, 686: 1032-1036.
[21] TIAN H R, LIU S M, ZHANG Z, et al. Highly stable polyoxovanadate-based Zn-MOF with dual active sites as a solvent-free catalyst for C-C bond formation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9: 4660-4667.
[22] HAYASHI Y. Hetero and lacunary polyoxovanadate chemistry: synthesis, reactivity and structural aspects[J]. Coordination Chemistry Reviews, 2011, 255: 2270-2280.
[23] LIU S X, LI D H, XIE L H, et al. Two-dimensional lanthanide heteropolyvanadates of manganese (IV) and nickel (IV) containing two types of heteropoly anions with 1:13 and 1:12 stoichiometry[J]. Inorganic Chemistry, 45: 8036-8040.
[24] LI J K, WEI C P, HAN Y F, et al. Recent advances in oxidative catalytic applications of polyoxovanadate-based inorganic–organic hybrids[J]. Dalton Transactions, 2023, 52: 12582-12596.
[25] WANG J L, XU H, WANG Q, et al. Self-assembly of mixed valence polyoxovanadate-based metal-organic frameworks for enhanced CO2 photoreduction[J]. Chemical Engineering Journal, 2023, 474, 145662.
[26] KHAN M I, AYDEMIR K, SIDDIQUI M R H, et al. Oxidative dehydrogenation properties of novel nanostructured polyoxovanadate based materials[J]. Catalysis Letter, 2010, 141: 538-543.
[27] LI J K, HUANG X Q, YANG S, et al. Four alkoxohexavanadate-based Pd-polyoxovanadates as robust heterogeneous catalysts for oxidation of benzyl-alkanes[J]. Inorganic Chemistry, 2015, 54: 1454-1461.
[28] HUANG X Q, LI J K, SHEN G D, et al. Three Pd-decavanadates with a controllable molar ratio of Pd to decavanadate and their heterogeneous aerobic oxidation of benzylic C-H bonds[J]. Dalton Transactions, 2018, 47, 726-733.
[29] LECHNER M, KASTNER K, CHAN CJ, et al. Aerobic oxidation catalysis by a molecular barium vanadium oxide[J]. Chemistry-A European Journal, 2018, 24: 4952-4956.
[30] CHEN H, DENG Y Q, YU Z B, et al. 3D open-framework vanadoborate as a highly effective heterogeneous pre-catalyst for the oxidation of alkylbenzenes[J]. Chemistry of Materials, 2013, 25: 5031-5036.
[31] SHARMA M, SAIKIA G, AHMED K, et al. Vanadium-based polyoxometalate complex as a new and efficient catalyst for phenol hydroxylation under mild conditions[J]. New Journal of Chemistry, 2018, 42: 5142-5152.
[32] WANG S, SUN Z X, ZOU X Y, et al. Enhancing catalytic aerobic oxidation performance of cyclohexane via size regulation of mixed -valence {V16} cluster-based metal-organic frameworks[J]. New Journal of Chemistry, 2019, 43: 14527-14535.
[33] ZHOU T, ZHANG J, MA Y Y, et al. A bicadmium-substituted polyoxometalate network based on a vanadosilicate cluster for the selective oxidation of styrene to benzaldehyde[J]. Inorganic Chemistry, 2020, 59: 5803-5807.
[34] SHI Y, ZHOU T, DI J Q, et al. Three Si-substituted polyoxovanadates as efficient catalysts for Knoevenagel condensation and selective oxidation of styrene to benzaldehyde[J]. Dalton Transactions, 2022, 51: 3304-3313.
[35] CHEN B K, HUANG X Q, WANG B, et al. Three new imidazole-functionalized hexanuclear oxidovanadium clusters with exceptional catalytic oxidation properties for alcohols[J]. Chemistry-A European Journal, 2013, 19: 4408-4413.
[36] CAMPBELL M L, SULEJMANOVIC D, SCHILLER J B, et al. Alcohol oxidations using reduced polyoxovanadates[J]. Helvetica, 2017, 100: e1600338.
[37] WANG K, XU Q F, ZHANG C, et al. Polyoxovanadate catalysts for oxidation of 1-phenyl ethanol: from the discrete [V4O12]4− and [V10O28]6− anions to the anionic [V6O17]n4n− coordination polymer[J]. CrystEngComm, 2018, 20: 6273-6279.
[38] LIU X X, GUO B, SUN X J, et al. A new 3-D open-framework zinc borovanadate with catalytic potentials in α-phenethyl alcohol oxidation[J]. Molecules, 2019, 24: 531.
[39] LIU K, MENG J L, JIANG X F. Gram-scale synthesis of sulfoxides via oxygen enabled by Fe(NO3)3·9H2O[J]. Organic Process Research & Development, 2023, 27: 1198-1202.
[40] WANG N Z, SAIDHAREDDY P, JIANG X F. Construction of sulfur-containing moieties in the total synthesis of natural products[J]. Natural Product Reports, 2020, 37: 246-275.
[41] IBRAHIM M H, HAYYAN M, HASHIM M A, et al. The role of ionic liquids in desulfurization of fuels: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 1534-1549.
[42] LI J K, DONG J, WEI C P, et al. Controllable synthesis of Lindqvist alkoxopolyoxovanadate clusters as heterogeneous catalysts for sulfoxidation of sulfides[J]. Inorganic Chemistry, 2017, 56: 5748-5756.
[43] RAJENDRAN A, CUI T Y, FAN H X, et al. A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment[J]. Journal of Materials Chemistry A, 2020, 8: 2246-2285.
[44] LI J, JIANG X L, ZHU M Y, et al. Cu(I) anchoring in MOF-808 as a stable catalyst in ultra-deep oxidation desulfurization[J]. Fuel, 2023, 341: 127674.
[45] WANG C, WANG Y, KIRLIKOVALI K O, et al. Ultrafine silver nanoparticle encapsulated porous molecular traps for discriminative photoelectrochemical detection of mustard gas Simulants by synergistic size-exclusion and site-specific recognition[J]. Advanced Materials, 2022, 34: 2202287.
[46] LIU Y Y, HOWARTH A J, VERMEULEN N A, et al. Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks[J]. Coordination Chemistry Review, 2017, 346: 101-111.
[47] SEO J Y, CHO K Y, LEE J H, et al. Continuous flow composite membrane catalysts for efficient decomposition of chemical warfare agent simulants[J]. ACS Applied Materials & Interfaces, 2020, 12: 32778-32787.
[48] GANESAN T K, RAJAGOPAL S, BHARATHY J B, et al. Comparative study of chromium (V) and chromium (VI) oxidation of dialkyl sulfides[J]. Tetrahedron, 2000, 56: 5885-5892.
[49] CHEN Y H, AN H Y, CHANG S Z, et al. Visible-light-responsive 2D photocatalysts assembled by Evans–Showell-type POMs and metalloviologen frameworks for sulfide–sulfoxide transformation[J]. Inorganic Chemistry, 2023, 62: 10120-10130.
[50] MU W L, WU L L, YU W D, et al. Atomically accurate structural tailoring of thiacalix
[4] Arene-protected copper (II)-based metallamacrocycles[J]. Dalton Transactions, 2023, 52: 5438-5442.
[51] DÖREN R, HARTMANN J, LEIBAUER B, et al. Magneli-type tungsten oxide nanorods as catalysts for the selective oxidation of organic sulfides[J]. Dalton Transactions, 2021, 50: 14027-14037.
[52] MA X M, HAO H M, SHENG W L, et al. Bridging green light photocatalysis over hierarchical Nb2O5 for the selective aerobic oxidation of sulfides[J]. Journal of Materials Chemistry A, 2021, 9: 2214-2222.
[53] ZHANG H, XU X B, LIN H F, et al. Silver nanocrystal-decorated polyoxometalate single-walled nanotubes as nanoreactors for desulfurization catalysis at room temperature[J]. Nanoscale, 2017, 9: 13334-13340.
[54] ZHU Y F, QIU X Y, ZHAO S L, et al. Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites[J]. Nano Research, 2020, 13: 1928-1932.
[55] VINU M, LIN W C, SENTHIL RAJA D, et al. Microwave-assisted synthesis of nanoporous aluminum-based coordination polymers as catalysts for selective sulfoxidation reaction[J]. Polymers (Basel), 2017, 9: 498.
[56] DAS S P, BORUAH J J, SHARMA N, et al. New polymer-immobilized peroxotungsten compound as an efficient catalyst for selective and mild oxidation of sulfides by hydrogen peroxide[J]. Journal of Molecular Catalysis A: Chemical, 2012, 356: 36-45.
[57] LIVINGSTON S R, LANDRY C C. Oxidation of a mustard gas analogue using an aldehyde/O2 system catalyzed by V-doped mesoporous silica[J]. Journal of the American Chemical Society, 2008, 130: 13214-13215.
[58] CARNIATO F, BISIO C, EVANGELISTI C, et al. Iron-montmorillonite clays as active sorbents for the decontamination of hazardous chemical warfare agents[J]. Dalton Transactions, 2018, 47: 2939-2948.
[59] CARNIATO F, BISIO C, PSARO R, et al. Niobium (V) saponite clay for the catalytic oxidative abatement of chemical warfare agents[J]. Angewandte Chemie International Edition, 2014, 53: 10095-10098.
[60] DONG J, HU J F, CHI Y N, et al. A polyoxoniobate-polyoxovanadate double-anion catalyst for simultaneous oxidative and hydrolytic decontamination of chemical warfare agent simulants[J]. Angewandte Chemie International Edition, 2017, 56: 4473-4477.
[61] KHOLDEEVA O A, MAKSIMOV G M, MAKSIMOVSKAYA R I, et al. Role of protons in methyl phenyl sulfide oxidation with hydrogen peroxide catalyzed by Ti(IV)-monosubstituted heteropolytungstates[J]. Reaction Kinetics and Catalysis Letters, 1999, 66: 311-317.
[62] GOMES D M, SILVA A F, GOMES A C, et al. Pyrazine-bridged molybdenum (0) carbonyl and molybdenum (VI) oxide network solids as catalysts for epoxidation and sulfoxidation[J]. Catalysis Today, 2023, 418: 114050.
[63] YANG Z W, ZHU C F, LI Z J, et al. Engineering chiral Fe(Salen)-based metal-organic frameworks for asymmetric sulfide oxidation[J]. Chemical Communications, 2014, 50: 8775-8778.
[64] HAO Y J, PAPAZYAN E K, BA Y, et al. Mechanism-guided design of metal–organic framework composites for selective photooxidation of a mustard gas simulant under solvent-free conditions[J]. ACS Catalysis, 2021, 12: 363-371.
[65] RINGENBACH C R, LIVINGSTON S R, KUMAR D, et al. Vanadium-doped acid-prepared mesoporous silica: synthesis, characterization, and catalytical studies on the oxidation of a mustard gas analogue[J]. Chemistry of Materials, 2005, 17: 5580-5586.
[66] HU Y L, LIU X B, FANG D. Efficient and convenient oxidation of sulfides to sulfones using H2O2 catalyzed by V2O5 in ionic liquid [C12mim][HSO4][J]. Catalysis Science & Technology, 2014, 4: 38-42.
[67] WANG Y Z, ZHANG G L, GUAN T T, et al. Ultra-deep oxidative desulfurization of model oil catalyzed by in situ carbon-supported vanadium oxides using cumene hydroperoxide as oxidant[J]. ChemistrySelect, 2020, 5: 2148-2156.
[68] WANG C, QIU Y, WU H Y, et al. Construction of 2D-2D V2O5/BNNS nanocomposites for improved aerobic oxidative desulfurization performance[J]. Fuel, 2020, 270: 117498.
[69] LI J, ZHANG D, CHI Y N, et al. Catalytic application of polyoxovanadates in the selective oxidation of organic molecules[J]. Polyoxometalates, 2022, 1: 9140012.
[70] LAN Q, JIN S J, WANG Z, et al. Design and synthesis of polyoxovanadate-based framework for efficient dye degradation[J]. Tungsten, 2023, DOI: 10.1007/s42864-023-00233-1.
[71] CONTE V, COLETTI A, FLORIS B, et al. Mechanistic aspects of vanadium catalysed oxidations with peroxides[J]. Coordination Chemistry Reviews, 2011, 255: 2165-2177.
[72] HILL C L, GALL R D. The first combinatorially prepared and evaluated inorganic catalysts. Polyoxometalates for the aerobic oxidation of the mustard analog tetrahydrothiophene (THT)[J]. Journal of Molecular Catalysis A: Chemical, 1996, 114: 103-111.
[73] YIN P C, WANG J, XIAO Z C, et al. Polyoxometalate–organic hybrid molecules as amphiphilic emulsion catalysts for deep desulfurization[J]. Chemistry-A European Journal, 2012, 18: 9174-9178.
[74] DOU M Y, ZHAO W L, LIN J, et al. One functionalized polyoxovanadates hybrid material based on arson acid with highly effective catalytic property of sulfides[J]. Science of Advanced Materials, 2021, 13: 550-555.
[75] LIU D, LU Y, TAN H Q, et al. Polyoxometalate-based purely inorganic porous frameworks with selective adsorption and oxidative catalysis functionalities[J]. Chemical Communications, 2013, 49: 3673-3675.
[76] TANG J, YAO P F, XU X L, et al. Asymmetric catalytic sulfoxidation by a novel VIV8 cluster catalyst in the presence of serum albumin: a simple and green oxidation system[J]. RSC Advances, 2016, 6: 44154-44162.
[77] WANG K, NIU Y J, ZHAO D Y, et al. The polyoxovanadate-based carboxylate derivative K6H[VV17VIV12(OH)4O60(OOC(CH2)4COO)8]·nH2O: Synthesis, Crystal Structure, and Catalysis for Oxidation of Sulfides[J]. Inorganic Chemistry, 2017, 56: 14053-14059.
[78] SULLIVAN K P, NEIWERT W A, ZENG H D, et al. Polyoxometalate-based gelating networks for entrapment and catalytic decontamination[J]. Chemical Communications, 2017, 53: 11480-11483.
[79] LI J K, HUANG X Q, YANG S, et al. Controllable synthesis, characterization, and catalytic properties of three inorganic–organic hybrid copper vanadates in the highly selective oxidation of sulfides and alcohols[J]. Crystal Growth & Design, 2015, 15: 1907-1914.
[80] LI J K, WEI C P, WANG Y Y, et al. Conversion of V6 to V10 cluster: Decavanadate-based Mn-polyoxovanadate as robust heterogeneous catalyst for sulfoxidation of sulfides[J]. Inorganic Chemistry Communications, 2018, 87: 5-7.
[81] PING Q D, CAO J P, HAN Y M, et al. Eight-membered ring petal-shaped V8 cluster: an efficient heterogeneous catalyst for selective sulfur oxidation[J]. Inorganica Chimica Acta, 2021, 517: 120198.
[82] FENG Y Q, ZHONG Z G, MENG Z H, et al. A highly efficient heterogeneous catalyst for selective oxidation of sulfides derived from an open-framework copper borovanadate containing a unique crown-shaped anion[J]. Dalton Transactions, 2022, 51: 14413-14419.
[83] 田洪瑞. [D]. 吉林: 东北师范大学化学系, 2021.
[84] GAN H M, QIN C, Zhao L, et al. Self-assembled polyoxometalate-based metal-organic polyhedra as an effective heterogeneous catalyst for oxidation of sulfide[J]. Crystal Growth & Design, 2021, 21: 1028–1034.
[85] WANG J L, CAO J P, DU Z Y, et al. Four novel Z-shaped hexanuclear vanadium oxide clusters as Efficient heterogeneous catalysts for cycloaddition of CO2 and oxidative desulfurization reactions[J]. Chinese Chemical Letters, 2023, 34: 106917.
[86] TIAN H R, LIU Y W, ZHANG Z, et al. A multicentre synergistic polyoxometalate-based metal-organic framework for one-step selective oxidative cleavage of β-O-4 lignin model compounds[J]. Green Chemistry, 2020, 22: 248-255.
[87] HUANG X Q, GU X Y, QI Y Q, et al. Decavanadate-based transition metal hybrids as bifunctional catalysts for sulfide oxidation and C-C bond construction[J]. Chinese Journal of Chemistry, 2021, 39: 2495-2503.
[88] LI J K, WEI C P, GUO D G J, et al. Inorganic-organic hybrid polyoxovanadates based on [V4O12]4− or [VO3]22− clusters: controllable synthesis, crystal structures and catalytic properties in selective oxidation of sulfides[J]. Dalton Transactions, 2020, 49: 14148-14157.
[89] LU B B, YANG J, LIU Y Y, et al. A polyoxovanadate-resorcin
[4] arene-based porous metal-organic framework as an efficient multifunctional catalyst for the cycloaddition of CO2 with epoxides and the selective oxidation of sulfides[J]. Inorganic Chemistry, 2017, 56: 11710-11720.
[90] KASAI J, NAKAGAWA Y, UCHIDA S, et al. [γ-1,2-H2SiV2W10O40] Immobilized on Surface-Modified SiO2 as a Heterogeneous Catalyst for Liquid-Phase Oxidation with H2O2[J]. Chemistry-A European Journal, 2006, 12: 4176-4184.
[91] JUNG D, SU S Y, SYED Z H, et al. A catalytically accessible polyoxometalate in a porous fiber for degradation of a mustard gas simulant[J]. ACS Applied Materials & Interfaces, 2022, 14: 16687-16693.
[92] LU M, ZHANG M, LIU J, et al. Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction[J]. Journal of American Chemical Society, 2022, 144: 1861-1871.
[93] Wang S, LIU Y W, ZHANG Z, et al. One-step template-free fabrication of ultrathin mixed-valence polyoxovanadate-incorporated metal−organic framework nanosheets for highly efficient selective oxidation catalysis in air[J]. ACS Applied Materials & Interfaces, 2019, 11: 12786-12796.
[94] TIAN H R, ZHANG Z, DANG T Y, et al. Hollow Lindqvist-like-shaped {V6} cluster-based metal−organic framework for the highly efficient detoxification of mustard gas simulant[J]. Inorganic Chemistry, 2021, 60: 840-845.
[95] TIAN H R, ZHANG Z, LIU S M, et al. A novel polyoxovanadate-based Co-MOF: highly efficient and selective oxidation of a mustard gas simulant by two-site synergetic catalysis[J]. Journal of Materials Chemistry A, 2020, 8: 12398-12405.
[96] ZHANG J L, ZHAO Q X, CHENG M Y, et al. Polyoxovanadate-based metal-organic frameworks consisted of open vanadium sites for selective catalytic oxidation of sulfides[J]. Tungsten, 2023, 5: 261-269.
[97] TIAN H R, LI R H, MIAO J, et al. Additive-free selective oxidation of aromatic alcohols with molecular oxygen catalyzed by a mixed-valence polyoxovanadate-based metal-organic framework[J]. Dalton Transactions, 2023, 52: 9121-9130.
[98] DANIEL C, HARTL H. A mixed-valence VIV-VV Alkoxo-Polyoxovanadium Cluster Series [V6O8(OCH3)11]n+/−: exploring the influence of a μ-oxo ligand in a spin frustrated structure[J]. Journal of the American Chemical Society, 2009, 131: 5101-5114.
[99] WU X R, SHI H Y, WEI R J, et al. Coligand and solvent effects on the architectures and spin-Crossover properties of (4,4)-connected iron (II) coordination polymers[J]. Inorganic Chemistry, 2015, 54: 3773-3780.
[100] BROWN I D. VALENCE: a program for calculating bond valences[J]. Journal of Applied Crystallography, 1996, 29: 479-480.
[101] WANG H, ISOBE J, SHIMIZU T, et al. Preparation of γ-LiV2O5 from polyoxovanadate cluster Li7[V15O36(CO3)] as a high-performance cathode material and its reaction mechanism revealed by operando XAFS[J]. Journal of Power Sources, 2017, 360: 150-156.
[102]ZHANG Z, ZHANG M, Li X P, et al. Irreversible solvatochromic Zn-nanopaper based on Zn (II) terpyridine assembly and oxidized nanofibrillated cellulose[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 11614-11623.
[103]CHENG J Y, CHEN S M, CHEN D, et al. Editable asymmetric all-solid-state supercapacitors based on high-strength, flexible, and programmable 2D-metal–organic framework/reduced graphene oxide self-assembled papers[J]. Journal of Materials Chemistry A, 2018, 6: 20254-20266.
[104]XU Q F, LIANG X M, XU B J, et al. 36-Nuclearity organophosphonate-functionalized polyoxomolybdates: synthesis, characterization and selective catalytic oxidation of sulfides[J]. Chemistry-A European Journal, 2020, 26: 14896-14902.
[105]AN H Y, HOU Y J, WANG L, et al. Evans-showel-type polyoxometalates constructing high-dimensional inorganic-organic hybrid compounds with copper-organic coordination complexes: synthesis and oxidation catalysis[J]. Inorganic Chemistry, 2017, 56: 11619-11632.
[106]WANG X L, ZHANG J Y, CHANG Z H, et al. α–γ-Type [Mo8O26]4–-containing metal–organic complex possessing efficient catalytic activity toward the oxidation of thioether derivatives[J]. Inorganic Chemistry, 2021, 60: 3331-3337.
[107]AMINI M, NASLHAJIAN H, FARNIA S M F, et al. Selective oxidation of sulfides catalyzed by the nanocluster polyoxomolybdate (NH4)12[Mo36(NO)4O108(H2O)16][J]. European Journal of Inorganic Chemistry, 2015, 23: 3873-3878.
[108]HAN M D, NIU Y J, WAN R, et al. A crown-shaped Ru-substituted arsenotungstate for selective oxidation of sulfides with hydrogen peroxide[J]. Chemistry-A European Journal, 2018, 24: 11059-11066.
[109]YADOLLAHI B. Catalytic conversion of sulfides to sulfoxides by the [PZnMo2W9O39]5- polyoxometalate[J]. Chemistry Letters, 2003, 32: 1066-1067.
[110]DONOEVA B G, TRUBITSINA T A, MAKSIMOV G M, et al. Catalytic properties and stability of the heteropolytungstate [P2W21O71(H2O)3]6- in H2O2-based oxidations[J]. European Journal of Inorganic Chemistry, 2009, 34: 5142-5147.
[111]HUANG L, WANG S S, ZHAO J W, et al. Synergistic combination of multi-ZrIV cations and lacunary Keggin germanotungstates leading to a gigantic Zr24-cluster-substituted polyoxometalate[J]. Journal of the American Chemical Society, 2014, 136: 7637-7642.
[112]AN H Y, HOU Y J, CHANG S Z, et al. Highly efficient oxidation of various thioethers catalyzed by organic ligand-modified polyoxomolybdates[J]. Inorganic Chemistry Frontiers, 2020, 7: 169-176.
[113]FENG W, LI H, XUE M J, et al. Quinoline-2-thione-based fluorescent probes for selective and sensitive detections of mustard gas and its analogues[J]. Analytica Chimica Acta, 2021, 1159: 338440.
[114]LI Y Q, GAO Q, ZHANG L J, et al. H5PV2Mo10O40 Encapsulated in MIL-101(Cr): facile synthesis and characterization of rationally designed composite materials for efficient decontamination of sulfur mustard[J]. Dalton Transactions, 2018, 47: 6394-6403.
[115]BURU C T, LI P, LAYLA MEHDI B, et al. Adsorption of a catalytically accessible polyoxometalate in a mesoporous channel-type metal-organic framework[J]. Chemistry of Materials, 2017, 29: 5174-5181.
[116]BURU C T, PLATERO-PRATS A E, CHICA D G, et al. Thermally induced migration of a polyoxometalate within a metal-organic framework and its catalytic effects[J]. Journal of Materials Chemistry A, 2018, 6: 7389-7394.
[117]BURU C T, WASSON M C, FARHA O K. H5PV2Mo10O40 polyoxometalate encapsulated in NU-1000 metal-organic framework for aerobic oxidation of a mustard gas simulant[J]. ACS Applied Nano Materials, 2020, 3: 658-664.
[118]CHEN Y H, CHANG S Z, An H Y, et al. Two polymorphic polyoxometalate-based metal-organic frameworks for the efficient synthesis of functionalized sulfoxides and detoxification of mustard gas simulant[J]. ACS Sustainable Chemistry & Engineering, 2021, 9: 15683-15693.
[119] HU Y H, HUANG D P, YAN J, et al. Polyoxovanadate-based cyclomatrix polyphosphazene microspheres as efficient heterogeneous catalysts for the selective oxidation and desulfurization of sulfides[J]. Molecules, 2022, 27: 8560.
[120]YU M Y, LIU J H, LIU F W, et al. Polyoxometalate-incorporated CuI-resorcin
[4] arene metal-organic complexes as heterogeneous catalysts for catalytic oxidation of mustard gas simulant[J]. European Journal of Inorganic Chemistry, 2023, 26: e202300221.
[121]WANG Y L, SUN J J, QIN D, et al. A new hexa-TiIV-substituted sandwich-type polyoxotungstate: hydrothermal synthesis, structure, and oxidative decontamination of chemical warfare agent simulant[J]. European Journal of Inorganic Chemistry, 2020, 5: 475-479.
[122]DONG J, LV H J, SUN X R, et al. A versatile self-detoxifying material based on immobilized polyoxoniobate for decontamination of chemical warfare agent simulants[J]. Chemistry-A European Journal, 2018, 24: 19208-19215.
[123]ZHANG X Y, LI Y M, LI Y, et al. Polyoxometalate immobilized on graphene via click reaction for simultaneous dismutation of H2O2 and oxidation of sulfur mustard simulant[J]. ACS Applied Nano Materials, 2019, 2: 6971-6981.
[124]WU Y Y, DONG J, LIU C P, et al. Reduced polyoxomolybdate immobilized on reduced graphene oxide for rapid catalytic decontamination of a sulfur mustard simulant[J]. Dalton Transactions, 2021, 50: 9796-9803.
[125]BAO J T, CHENG M L, LIU Q, et al. Cobalt and nickel supramolecular complexes with hexagonal channels constructed from 5-Methyl-1H-Pyrazole-3-carboxylic acid: synthesis, crystal structures and properties[J]. Chinese Journal of Inorganic Chemistry, 2013, 29: 1504-1512.
[126]WINTER S, SEICHTER W, WEBER E. Syntheses and crystal structures of cobalt and nickel complexes of 2,6-bis(hydroxymethyl)pyridine[J]. Journal of Coordination Chemistry, 2004, 57: 997-1014.
[127]LANGESLAY R R, KAPHAN D M, MAESHALL C L, et al. Catalytic applications of vanadium: a mechanistic perspective[J]. Chemical Reviews, 2019, 119: 2128-2191.
[128]GRYCA I, CZERWIŃSKA K, MACHURA B, et al. High catalytic activity of vanadium complexes in alkane oxidations with hydrogen peroxide: an effect of 8-hydroxyquinoline derivatives as noninnocent ligands[J]. Inorganic Chemistry, 2018, 57: 1824-1839.
[129]WALLEN C M, BACSA J, SCARBOROUGH C C. Hydrogen peroxide complex of zinc[J]. Journal of the American Chemical Society, 2015, 137: 14606-14609.
[130]NUZHDIN A L, DYBTSEV D N, FEDIN V P, et al. Homogeneous and heterogeneous catalytic oxidation of sulfides by H2O2 zinc(II) compounds[J]. Dalton Transactions, 2009, 47: 10481-10485.
[131]HE Q T, LI X P, CHEN L F, et al. Nanosized coordination cages incorporating multiple Cu (I) reactive sites: host–guest modulated catalytic activity[J]. ACS Catalysis, 2013, 3: 1-9.
[132]GU J, YANG L, JIANG J, et al. Insights into the effects of alcohols on hydrated electron (eaq−) generation from the p-benzoquinone/UV process[J]. Applied Catalysis B: Environmental, 2018, 220: 477-487.
[133]VITAKU E, SMITH D T, NJARDARSON J T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals[J]. Journal of Medicinal Chemistry, 2014, 57: 10257-10274.
[134]TARNOW P, ZORDICK C, BOTTKE A, et al. Characterization of quinoline yellow dyes as transient aryl hydrocarbon receptor agonists[J]. Chemical Research Toxicology, 2020, 33: 742-750.
[135]BERA A, BERA S, BANERJEE D. Recent advances in the synthesis of N-heteroarenes via catalytic dehydrogenation of N-heterocycles[J]. Chemical Communications, 2021, 57: 13042-13058.
[136]ZHANG Y, SONG T, ZHOU X, et al. Oxygen-vacancy-boosted visible light driven photocatalytic oxidative dehydrogenation of saturated N-heterocycles over Nb2O5 nanorods[J]. Applied Catalysis B: Environmental, 2022, 316: 121622.
[137]HAN Y, WANG Z, XU R, et al. Ordered porous nitrogen-doped carbon matrix with atomically dispersed cobalt sites as an efficient catalyst for dehydrogenation and transfer hydrogenation of N-heterocycles[J]. Angewandte Chemie International Edition, 2018, 57: 11262-11266.
[138]BALAYEVA N. O, ZHENG N, DILLERT R, et al. Visible-light-mediated photocatalytic aerobic dehydrogenation of N-heterocycles by surface-grafted TiO2 and 4-amino-TEMPO[J]. ACS Catalysis, 2019, 9: 10694-10704.
[139]LIAO C, LI X, YAO K, et al. Efficient oxidative dehydrogenation of N-heterocycles over nitrogen-doped carbon-supported cobalt nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2019, 7: 13646-13654.
[140]SRINATH S, ABINAYA R, PRASANTH A, et al. Reusable, homogeneous water soluble photoredox catalyzed oxidative dehydrogenation of N-heterocycles in a biphasic system: application to the synthesis of biologically active natural products[J]. Green Chemistry. 2020, 22: 2575-2587.
[141]FU P P, HARVEY R G. Dehydrogenation of polycyclic hydroaromatic compounds[J]. Chemical Reviews, 1978, 78: 317-361.
[142]LI F, CHEN J, ZHANG Q, et al. Hydrous ruthenium oxide supported on Co3O4 as efficient catalyst for aerobic oxidation of amines[J]. Green Chemistry, 2008, 10: 553-562.
[143]WENDLANDT A E, STAHL S S. Quinone-catalyzed selective oxidation of organic molecules[J]. Angewandte Chemie International Edition, 2015, 54: 14638-14658.
[144]HUANG Y Q, SONG H J, LIU Y X, et al. Dehydrogenation of N-heterocycles by superoxide ion generated through single-electron transfer[J]. Chemistry-A European Journal, 2018, 24: 2065-2069.
[145]WENDLANDT A E, STAHL S S. Bioinspired aerobic oxidation of secondary amines and nitrogen heterocycles with a bifunctional quinone catalyst[J]. Journal of the American Chemical Society, 2014, 136: 506-512.
[146]JUNG D, KIM M H, KIM J. Cu-catalyzed aerobic oxidation of di-tert-butyl hydrazodicarboxylate to di-tert-butyl azodicarboxylate and its application on dehydrogenation of 1,2,3,4-tetrahydroquinolines under mild conditions[J]. Organic Letters, 2016, 18: 6300-6303.
[147]BERA S, BERA A, BANERJEE D. Nickel-catalyzed dehydrogenation of N-heterocycles using molecular oxygen[J]. Organic Letters, 2020, 22: 6458-6463.
[148]CHAKRABORTY S, BRENNESSEL W W, JONES W D. A molecular iron catalyst for the acceptorless dehydrogenation and hydrogenation of N-heterocycles[J]. Journal of the American Chemical Society, 2014, 136: 8564-8567.
[149]WENDLANDT A E, STAHL S S. Modular o-quinone catalyst system for dehydrogenation of tetrahydroquinolines under ambient conditions[J]. Journal of the American Chemical Society, 2014, 136: 11910-11913.
[150]XU R, CHAKRABORTY S, YUAN H, et al. Acceptorless, reversible dehydrogenation and hydrogenation of N-heterocycles with a cobalt pincer catalyst[J]. ACS Catalysis, 2015, 5: 6350-6354.
[151]WANG Y, LI C, HUANG J. External-ligand-free aerobic oxidation of N- and C-containing cyclic systems under Pd-catalyzed conditions[J]. Asian Journal of Organic Chemistry, 2017, 6: 44-46.
[152]ZUMBRÄGEL N, SAKO M, TAKIZAWA S, et al. Vanadium-catalyzed dehydrogenation of N-heterocycles in water[J]. Organic Letters, 2018, 20: 4723-4727.
[153]ZUBAR V, BORGHS J C, RUEPING M. Hydrogenation or dehydrogenation of N-containing heterocycles catalyzed by a single manganese complex[J]. Organic Letters, 2020, 22: 3974-3978.
[154]MEJUTO C, IBÁÑEZ-IBÁÑEZ L, GUISADO-BARRIOS G, et al. Visible-light-promoted Iridium (III)-catalyzed acceptorless dehydrogenation of N-heterocycles at room temperature[J]. ACS Catalysis, 2022, 12: 6238-6245.
[155]DERAEDT C, YE R, RALSTON W T, et al. Dendrimer-stabilized metal nanoparticles as efficient catalysts for reversible dehydrogenation/hydrogenation of N-heterocycles[J]. Journal of the American Chemical Society, 2017, 139: 18084-18092.
[156]JAISWAL G, LANDGE V G, JAGADEESAN D, et al. Iron-based nanocatalyst for the acceptorless dehydrogenation reactions[J]. Nature Communications, 2017, 8: 2147.
[157]KATO S, SAGA Y, KOJIMA M, et al. Hybrid catalysis enabling room-temperature hydrogen gas release from N-heterocycles and tetrahydronaphthalenes[J]. Journal of the American Chemical Society, 2017, 139: 2204-2207.
[158]LI J, LIU G, LONG X, et al. Different active sites in a bifunctional Co@N-doped graphene shells based catalyst for the oxidative dehydrogenation and hydrogenation reactions[J]. Journal of Catalysis, 2017, 355: 53-62.
[159]SUN X T, ZHU J, XIA Y T, et al. Palladium nanoparticles stabilized by metal-carbon covalent bonds as an expeditious catalyst for the oxidative dehydrogenation of nitrogen heterocycles[J]. ChemCatChem, 2017, 9: 2463-2466.
[160]CUI X, HUANG Z, VAN MUYDEN A P, et al. Acceptorless dehydrogenation and hydrogenation of N- and O-containing compounds on Pd3Au1(111) facets[J]. Science Advances, 2020, 6: eabb3831.
[161]MOLLAR-CUNI A, VENTURA-ESPINOSA D, MARTÍN S, et al. Reduced graphene oxides as carbocatalysts in acceptorless dehydrogenation of N-heterocycles[J]. ACS Catalysis, 2021, 11: 14688-14693.
[162]ECHEVARRÍA I, VAQUERO M, MANZANO B R, et al. Photocatalytic aerobic dehydrogenation of N-heterocycles with Ir (III) photosensitizers bearing the 2(2′-Pyridyl)benzimidazole scaffold[J]. Inorganic Chemistry, 2022, 61: 6193-6208.
[163]LU Y L, SONG J Q, QIN Y H, et al. A redox-active supramolecular Fe4L6 cage based on organic vertices with acid–base-dependent charge tunability for dehydrogenation catalysis[J]. Journal of the American Chemical Society, 2022, 144: 8778-8788.
[164]SUN K, SHAN H, MA R, et al. Catalytic oxidative dehydrogenation of N-heterocycles with nitrogen/phosphorus co-doped porous carbon materials[J]. Chemical Science, 2022, 13: 6865-6872.
[165]WANG J, LIU X, DU Z, et al. Organo-functionalized polyoxovanadates: crystal architecture and property aspects[J]. Dalton Transactions, 2021, 50: 7871-7886.
[166]SONG J, LUO Z, BRITT D K, et al. A multiunit catalyst with synergistic stability and reactivity: A polyoxometalate-metal organic framework for aerobic decontamination[J]. Journal of the American Chemical Society, 2011, 133: 16839-16846.
[167]QIN J S, DU D Y, GUAN W, et al. Ultrastable polymolybdate-based metal–organic frameworks as highly active electrocatalysts for hydrogen generation from water[J]. Journal of the American Chemical Society, 2015, 137: 7169-7177.
[168]TIAN H R, ZHANG Z, LIU S M, et al. A highly stable polyoxovanadate-based Cu(I)-MOF for the carboxylative cyclization of CO2 with propargylic alcohols at room temperature[J]. Green Chemistry, 2020, 22: 7513-7520.
[169]AN H Y, ZHANG J, CHANG S, et al. 2D hybrid architectures constructed from two kinds of polyoxovanadates as efficient heterogeneous catalysts for cyanosilylation and knoevenagel condensation[J]. Inorganic Chemistry, 2020, 59: 10578-10590.
[170]DANG T Y, LI R H, TIAN H R, et al. Tandem-like vanadium cluster chains in a polyoxovanadate-based metal-organic framework for efficient catalytic oxidation of sulfides[J]. Inorganic Chemistry Frontiers, 2021, 8: 4367-4375.
[171]ZHOU K, JIANG F L, CHEN L, et al. Unprecedented three-level hierarchical entanglement in a coordination polymer[J]. Chemical Communications, 2012, 48: 12168-12170.
[172]MEI H, MEI Y, ZHANG S, et al. Bimetallic-MOF derived accordion-like ternary composite for high-performance supercapacitors[J]. Inorganic Chemistry, 2018, 57: 10953-10960.
[173]IOSUB A V, STAHL S S. Catalytic aerobic dehydrogenation of nitrogen heterocycles using heterogeneous cobalt oxide supported on nitrogen-doped carbon[J]. Organic Letters, 2015, 17: 4404-4407.
[174]BI X, TANG T, MENG X, et al. Aerobic oxidative dehydrogenation of N-heterocycles over OMS-2-based nanocomposite catalysts: preparation, characterization and kinetic study[J]. Catalysis Science & Technology, 2020, 10: 360-371.
[175]ZHOU W, TAO Q, SUN F A, et al. Additive-free aerobic oxidative dehydrogenation of N-heterocycles under catalysis by NiMn layered hydroxide compounds[J]. Journal of Catalysis, 2018, 361: 1-11.
[176]XU D, ZHAO H, DONG Z, et al. Cobalt nanoparticles apically encapsulated by nitrogen-doped carbon nanotubes for oxidative dehydrogenation and transfer hydrogenation of N-heterocycles[J]. ChemCatChem, 2019, 11: 5475-5486.
[177]XU D, ZHAO H, DONG Z, et al. Catalytically active Co−Nx species stabilized on nitrogen-doped porous carbon for efficient hydrogenation and dehydrogenation of N-heteroarenes[J]. ChemCatChem, 2020, 12: 4406-4415.
[178]SAHU N, DAS J K, BEHERA J N. NiSe2 nanoparticles encapsulated in N-doped carbon matrix derived from a one-dimensional Ni-MOF: An efficient and sustained electrocatalyst for hydrogen evolution reaction[J]. Inorganic Chemistry, 2022, 61: 2835-2845.
[179]NIU Q, HUANG Q, YU T Y, et al. Achieving high photo/thermocatalytic product selectivity and conversion via thorium clusters with switchable functional ligands[J]. Journal of the American Chemical Society, 2022, 144: 18586-18594.
[180]LI H, QIN F, YANG Z, et al. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies[J]. Journal of the American Chemical Society, 2017, 139: 3513-3521.
[181]ZHOU W Y, CHEN D W, SUN F A, et al. Aerobic oxidative dehydrogenation of N-heterocycles catalyzed by cobalt porphyrin[J]. Tetrahedron Letters, 2018, 59: 949-953.
修改评论