[1] TARHAN L, BISTLINE J, CHANG J, et al. Single Cell Portal: an interactive home for single-cell genomics data [J]. BioRxiv, 2023, 10.1101/2023.07.13.548886.
[2] ROZENBLATT-ROSEN O, SHIN J W, ROOD J E, et al. Building a high-quality Human Cell Atlas [J]. Nature Biotechnology, 2021, 39(2): 149-53.
[3] KASHIMA Y, SAKAMOTO Y, KANEKO K, et al. Single-cell sequencing techniques from individual to multiomics analyses [J]. Experimental & Molecular Medicine, 2020, 52(9): 1419-27.
[4] MARX V. Method of the Year: spatially resolved transcriptomics [J]. Nature Methods, 2021, 18(1): 9-14.
[5] Method of the Year 2023: methods for modeling development [J]. Nature Methods, 2023, 20(12): 1831-2.
[6] STUART T, SATIJA R. Integrative single-cell analysis [J]. Nature Reviews Genetics, 2019, 20(5): 257-72.
[7] STOECKIUS M, HAFEMEISTER C, STEPHENSON W, et al. Simultaneous epitope and transcriptome measurement in single cells [J]. Nature Methods, 2017, 14(9): 865-8.
[8] GAYOSO A, STEIER Z, LOPEZ R, et al. Joint probabilistic modeling of single-cell multi-omic data with totalVI [J]. Nature Methods, 2021, 18(3): 272-82.
[9] KLEIN F, ROUX J, CVIJETIC G, et al. Dntt expression reveals developmental hierarchy and lineage specification of hematopoietic progenitors [J]. Nature Immunology, 2022, 23(4): 505-17.
[10] STEIER Z, AYLARD D A, MCINTYRE L L, et al. Single-cell multiomic analysis of thymocyte development reveals drivers of CD4+ T cell and CD8+ T cell lineage commitment [J]. Nature Immunology, 2023, 24(9): 1579-90.
[11] ASP M, BERGENSTRåHLE J, LUNDEBERG J. Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration [J]. BioEssays, 2020, 42(10): 1900221.
[12] SINGER R H, WARD D C. Actin gene expression visualized in chicken muscle tissue culture by using in situ hybridization with a biotinated nucleotide analog [J]. Proc Natl Acad Sci U S A, 1982, 79(23): 7331-5.
[13] WANG X, ALLEN W E, WRIGHT M A, et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states [J]. Science, 2018, 361(6400): eaat5691.
[14] STåHL P L, SALMéN F, VICKOVIC S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics [J]. Science, 2016, 353(6294): 78-82.
[15] CHEN A, LIAO S, CHENG M, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays [J]. Cell, 2022, 185(10): 1777-92.e21.
[16] VANDEREYKEN K, SIFRIM A, THIENPONT B, et al. Methods and applications for single-cell and spatial multi-omics [J]. Nature Reviews Genetics, 2023, 24(8): 494-515.
[17] LIU Y, DISTASIO M, SU G, et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq [J]. Nat Biotechnol, 2023,41(10):1405-1409.
[18] LIAO S, HENG Y, LIU W, et al. Integrated Spatial Transcriptomic and Proteomic Analysis of Fresh Frozen Tissue Based on Stereo-seq [J]. BioRxiv, 2023, 10.1101/2023.04.28.538364.
[19] SUN L, SU Y, JIAO A, et al. T cells in health and disease [J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 235.
[20] HOSOKAWA H, ROTHENBERG E V. How transcription factors drive choice of the T cell fate [J]. Nature Reviews Immunology, 2021, 21(3): 162-76.
[21] WEN H, DING J, JIN W, et al. Graph neural networks for multimodal single-cell data integration [C]. Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining, Washington DC, USA; Association for Computing Machinery. 2022: 4153–63.
[22] SONG T, BROADBENT C, KUANG R. GNTD: reconstructing spatial transcriptomes with graph-guided neural tensor decomposition informed by spatial and functional relations [J]. Nature Communications, 2023, 14(1): 8276.
[23] ZHANG S, TONG H, XU J, et al. Graph convolutional networks: a comprehensive review [J]. Computational Social Networks, 2019, 6(1), 10.1186/s40649-019-0069-y.
[24] LONG Y, ANG K S, LI M, et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST [J]. Nature Communications, 2023, 14(1): 1155.
[25] JEONG D, KOO B, OH M, et al. GOAT: Gene-level biomarker discovery from multi-Omics data using graph ATtention neural network for eosinophilic asthma subtype [J]. Bioinformatics, 2023, 39(10): btad582.
[26] LONG Y, ANG K S, LIAO S, et al. Integrated analysis of spatial multi-omics with SpatialGlue [J]. BioRxiv, 2023, 10.1101/2023.04.26.538404.
[27] OGBEIDE S, GIANNESE F, MINCARELLI L, et al. Into the multiverse: advances in single-cell multiomic profiling [J]. Trends in Genetics, 2022, 38(8): 831-43.
[28] STUART T, BUTLER A, HOFFMAN P, et al. Comprehensive Integration of Single-Cell Data [J]. Cell, 2019, 177(7): 1888-902.e21.
[29] HAO Y, HAO S, ANDERSEN-NISSEN E, et al. Integrated analysis of multimodal single-cell data [J]. Cell, 2021, 184(13): 3573-87.e29.
[30] HAO Y, STUART T, KOWALSKI M H, et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis [J]. Nature Biotechnology, 2023, 42(3): 293–04.
[31] HIE B, BRYSON B, BERGER B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama [J]. Nature Biotechnology, 2019, 37(6): 685-91.
[32] LOPEZ R, REGIER J, COLE M B, et al. Deep generative modeling for single-cell transcriptomics [J]. Nature Methods, 2018, 15(12): 1053-8.
[33] JIN S, ZHANG L, NIE Q. scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles [J]. Genome Biology, 2020, 21(1): 25.
[34] LI G, FU S, WANG S, et al. A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data [J]. Genome Biology, 2022, 23(1): 20.
[35] ASHUACH T, GABITTO M I, KOODLI R V, et al. MultiVI: deep generative model for the integration of multimodal data [J]. Nature Methods, 2023, 20(8): 1222-31.
[36] KANG J B, NATHAN A, WEINAND K, et al. Efficient and precise single-cell reference atlas mapping with Symphony [J]. Nature Communications, 2021, 12(1): 5890.
[37] LIN Y, WU T-Y, WAN S, et al. scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning [J]. Nature Biotechnology, 2022, 40, 703–710.
[38] GONG B, ZHOU Y, PURDOM E. Cobolt: integrative analysis of multimodal single-cell sequencing data [J]. Genome Biology, 2021, 22(1): 351.
[39] ZHANG Z, YANG C, ZHANG X. scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously [J]. Genome Biology, 2022, 23(1): 139.
[40] CAO K, BAI X, HONG Y, et al. Unsupervised topological alignment for single-cell multi-omics integration [J]. Bioinformatics, 2020, 36(Supplement_1): i48-i56.
[41] CHEN D, FAN B, OLIVER C, et al. Unsupervised manifold alignment with joint multidimensional scaling [J]. arXiv, 2022, 10.48550/arXiv.2207.02968.
[42] ARGELAGUET R, VELTEN B, ARNOL D, et al. Multi‐Omics Factor Analysis—a framework for unsupervised integration of multi‐omics data sets [J]. Molecular Systems Biology, 2018, 14(6): e8124.
[43] ARGELAGUET R, ARNOL D, BREDIKHIN D, et al. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data [J]. Genome Biology, 2020, 21(1): 111.
[44] LIU J, GAO C, SODICOFF J, et al. Jointly defining cell types from multiple single-cell datasets using LIGER [J]. Nature Protocols, 2020, 15(11): 3632-62.
[45] KRIEBEL A R, WELCH J D. UINMF performs mosaic integration of single-cell multi-omic datasets using nonnegative matrix factorization [J]. Nature Communications, 2022, 13(1): 780.
[46] CAO Z-J, GAO G. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding [J]. Nature Biotechnology, 2022, 40(10): 1458-66.
[47] KORSUNSKY I, MILLARD N, FAN J, et al. Fast, sensitive and accurate integration of single-cell data with Harmony [J]. Nature Methods, 2019, 16(12): 1289-96.
[48] DEMETCI P, SANTORELLA R, SANDSTEDE B, et al. Unsupervised integration of single-cell multi-omics datasets with disparities in cell-type representation [J]. BioRxiv, 2021, 10.1101/2021.11.09.467903.
[49] KANG M, KO E, MERSHA T B. A roadmap for multi-omics data integration using deep learning [J]. Briefings in Bioinformatics, 2022, 23(1): bbab454.
[50] THEODORIS C V, XIAO L, CHOPRA A, et al. Transfer learning enables predictions in network biology [J]. Nature, 2023, 618(7965): 616-24.
[51] CUI H, WANG C, MAAN H, et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI [J]. Nature Methods, 2024: 10.1038/s41592-024-02201-0.
[52] KEDZIERSKA K Z, CRAWFORD L, AMINI A P, et al. Assessing the limits of zero-shot foundation models in single-cell biology [J]. BioRxiv, 2023, 10.1101/2023.10.16.561085
[53] YANG F, WANG W, WANG F, et al. scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data [J]. Nature Machine Intelligence, 2022, 4(10): 852-66.
[54] ROSEN Y, ROOHANI Y, AGARWAL A, et al. Universal Cell Embeddings: A Foundation Model for Cell Biology [J]. BioRxiv, 2023, 10.1101/2023.11.28.568918.
[55] ROSEN Y, BRBIĆ M, ROOHANI Y, et al. Toward universal cell embeddings: integrating single-cell RNA-seq datasets across species with SATURN [J]. Nature Methods, 2024: 10.1038/s41592-024-02191-z.
[56] NGUYEN N D, WANG D. Multiview learning for understanding functional multiomics [J]. PLOS Computational Biology, 2020, 16(4): e1007677.
[57] SVENSSON V, TEICHMANN S A, STEGLE O. SpatialDE: identification of spatially variable genes [J]. Nature Methods, 2018, 15(5): 343-6.
[58] SUN S, ZHU J, ZHOU X. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies [J]. Nature methods, 2020, 17(2): 193-200.
[59] ZHU J, SUN S, ZHOU X. SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies [J]. Genome Biology, 2021, 22(1): 184.
[60] WEBER L M, SAHA A, DATTA A, et al. nnSVG for the scalable identification of spatially variable genes using nearest-neighbor Gaussian processes [J]. Nature Communications, 2023, 14(1): 4059.
[61] HU J, LI X, COLEMAN K, et al. SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network [J]. Nature Methods, 2021, 18(11): 1342-51.
[62] SCHMIDT U, WEIGERT M, BROADDUS C, et al. Cell Detection with Star-Convex Polygons [M]. Springer International Publishing. 2018: 265-73.
[63] PACHITARIU M, STRINGER C. Cellpose 2.0: how to train your own model [J]. Nature Methods, 2022, 19(12): 1634-41.
[64] GREENWALD N F, MILLER G, MOEN E, et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning [J]. Nature Biotechnology, 2022, 40(4): 555-65.
[65] BORM L E, MOSSI ALBIACH A, MANNENS C C A, et al. Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH [J]. Nature Biotechnology, 2022, 41(2): 222-31.
[66] PETUKHOV V, XU R J, SOLDATOV R A, et al. Cell segmentation in imaging-based spatial transcriptomics [J]. Nature Biotechnology, 2022, 40(3): 345-54.
[67] PARK J, CHOI W, TIESMEYER S, et al. Cell segmentation-free inference of cell types from in situ transcriptomics data [J]. Nature Communications, 2021, 12(1): 4103.
[68] HE Y, TANG X, HUANG J, et al. ClusterMap for multi-scale clustering analysis of spatial gene expression [J]. Nature Communications, 2021, 12(1): 5909.
[69] CHEN H, LI D, BAR-JOSEPH Z. SCS: cell segmentation for high-resolution spatial transcriptomics [J]. Nature Methods, 2023, 20(8): 1237-43.
[70] KOTLIAR D, VERES A, NAGY M A, et al. Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq [J]. eLife, 2019, 8: e43803.
[71] HUANG C, LIU X, YAO T, et al. An efficient EM algorithm for the mixture of negative binomial models [J]. Journal of Physics: Conference Series, 2019, 1324(1): 012093.
[72] ZHANG M, EICHHORN S W, ZINGG B, et al. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH [J]. Nature, 2021, 598(7879): 137-43.
[73] WOLF F A, HAMEY F K, PLASS M, et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells [J]. Genome Biology, 2019, 20(1): 59.
[74] JACOMY M, VENTURINI T, HEYMANN S, et al. ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software [J]. PLoS ONE, 2014, 9(6): e98679.
[75] LEWIS S M, WILLIAMS A, EISENBARTH S C. Structure and function of the immune system in the spleen [J]. Sci Immunol, 2019, 4(33): eaau6085.
[76] MARTIN F, KEARNEY J F. Marginal-zone B cells [J]. Nature Reviews Immunology, 2002, 2(5): 323-35.
[77] SANZ I, WEI C, JENKS S A, et al. Challenges and Opportunities for Consistent Classification of Human B Cell and Plasma Cell Populations [J]. Front Immunol, 2019, 10: 2458.
[78] KAMINSKI D A, WEI C, QIAN Y, et al. Advances in human B cell phenotypic profiling [J]. Front Immunol, 2012, 3: 302.
[79] SOMASUNDARAM R, JENSEN C T, TINGVALL-GUSTAFSSON J, et al. EBF1 and PAX5 control pro-B cell expansion via opposing regulation of the Myc gene [J]. Blood, 2021, 137(22): 3037-49.
[80] LODER F, MUTSCHLER B, RAY R J, et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals [J]. J Exp Med, 1999, 190(1): 75-89.
[81] LI X, ISLAM S, XIONG M, et al. Epigenetic regulation of NfatC1 transcription and osteoclastogenesis by nicotinamide phosphoribosyl transferase in the pathogenesis of arthritis [J]. Cell Death Discovery, 2019, 5(1): 62.
[82] ZHANG J, LI S, LIU F, et al. Role of CD68 in tumor immunity and prognosis prediction in pan-cancer [J]. Scientific Reports, 2022, 12(1): 7844.
[83] TONG C, YIN Y. Localization of RNAs in the nucleus: cis - and trans - regulation [J]. RNA Biol, 2021, 18(12): 2073-86.
修改评论