题名 | Numerical Simulations of Neutron Transport Equation and Its Parameter Estimations |
其他题名 | 中子输运方程的数值模拟以及参数估计
|
姓名 | |
姓名拼音 | ZAN Boqian
|
学号 | 12032858
|
学位类型 | 硕士
|
学位专业 | 0701 数学
|
学科门类/专业学位类别 | 07 理学
|
导师 | |
导师单位 | 数学系
|
论文答辩日期 | 2024-05-13
|
论文提交日期 | 2024-07-01
|
学位授予单位 | 南方科技大学
|
学位授予地点 | 深圳
|
摘要 | The neutron transport equation (NTE) plays a critical role in various engineering applications, such as nuclear reactors and CT imaging. With the rapid development of science and computing, numerical simulation and parameter estimations of NTE are becoming increasingly important in engineering and medical fields. However, solving the neutron transport equation faces two challenges: Firstly, the NTE lacks an analytical solution, necessitating the use of numerical methods. Secondly, direct computation requires solving a complex matrix equation, making iteration methods preferable. So far, many acceleration methods based on the source iteration method have been used to solve the NTE more quickly, especially in complicated and high-dimensional cases. With the development of deep learning, using a neural network instead of a mesh-based method is preferred due to shorter computation times and higher accuracy.
In this thesis, we have completed two main tasks: Firstly, we do a method review. We review and investigate the source iteration method and several acceleration methods based on it, including the nonlinear diffusion method (NDA), diffusion synthetic method (DSA), quasi diffusion method (QD), S2SA, and the KP method. Additionally, we introduce the Andersen Acceleration method, a universal acceleration method in iteration methods. Then we implement these methods in 1-D isotropic and anisotropic cases and compare the acceleration effects of these methods combined with Andersen acceleration. Besides traditional numerical methods, we also utilize an auxiliary physics-informed neural network (A-PINN), which is a specialized framework for solving integral-differential equations (IDE), to solve the NTE in 1-D and 2-D cases. Based on PINNs, A-PINN changes the single-output neural network into a multi-output neural network. The multi output includes the approximation of the solution and an auxiliary output as the integral
of the solution. Secondly, we use A-PINN to do some parameter estimations and find that it produced good results even with noisy data. As far as I know, this is the first attempt to use such a framework to wwwwsolve inverse problems of NTE. |
关键词 | |
语种 | 英语
|
培养类别 | 独立培养
|
入学年份 | 2020
|
学位授予年份 | 2024-06
|
参考文献列表 | [1] HE X, LUO L S. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation[J]. Physical Review, 1997, 56: 6811. |
所在学位评定分委会 | 数学
|
国内图书分类号 | O29
|
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/778782 |
专题 | 理学院_数学系 |
推荐引用方式 GB/T 7714 |
Zan BQ. Numerical Simulations of Neutron Transport Equation and Its Parameter Estimations[D]. 深圳. 南方科技大学,2024.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
12032858-昝博千-数学系.pdf(1384KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[昝博千]的文章 |
百度学术 |
百度学术中相似的文章 |
[昝博千]的文章 |
必应学术 |
必应学术中相似的文章 |
[昝博千]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论