中文版 | English
题名

自适应光学双光子显微镜在活体小鼠脑成像中的应用研究

其他题名
ADAPTIVE OPTICS TWO PHOTON MICROSCOPY FOR IN-VIVO MOUSE BRAIN IMAGING
姓名
姓名拼音
LUO Li
学号
12133053
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
何思聪
导师单位
基础免疫与微生物学系
论文答辩日期
2024-05-10
论文提交日期
2024-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

荧光成像技术具有强大的标记能力、细胞及亚细胞级的分辨率以及广泛的应用领域等优势,是当今生物学研究中的一项重要的研究手段。利用荧光成像技术,在活体实验动物上,用非侵入式的手段进行观测对于获取真实生理学数据、揭示相关生理学机制而言有着重要意义。但是,在厚组织样本如动物大脑中,样本像差、散射等原因使得光学成像质量受到较大影响,限制了其在该样本中的应用。自适应光学技术是一种可以对样本像差进行测量和矫正,从而有效改善成像质量的技术。所以,本文结合双光子成像技术和自适应光学技术,搭建并优化自适应光学双光子成像系统,利用Cx3Cr1-Tdtomato小鼠,在保留颅骨条件下观察大脑中的小胶质细胞形态,并验证该系统在成像质量提升上的有效性。

本文首先基于Shack-Hartmann波前传感器搭建自适应光学双光子成像系统。并基于MATLAB和显微镜控制软件SCANIMAGE编写自适应光学模块控制和计算程序。在荧光溶液样本和胶原蛋白制片中测量和矫正系统像差和物镜矫正环引起的像差,验证像差测量和矫正的有效性和稳定性。由于基于Shack-Hartmann传感器的波前测量方法对数据质量和像差重建算法较为敏感,本文针对不同的数据质量,应用不同的波前重建算法,并在活体样本中实现样本像差的正确测量和矫正。

为了实现微创活体脑成像,本文利用颅骨光学透明化方法,在保留颅骨的情况下进行活体脑成像。利用搭建的自适应光学双光子成像系统,本文对小鼠大脑中的小胶质细胞和血管进行高分辨荧光成像。实验结果显示,自适应光学像差矫正能够在保留颅骨的情况下有效恢复小胶质细胞及血管的精细形态结构,对于揭示它们在神经发育、损伤反应以及疾病过程中的作用机制至关重要。本文基于自适应光学双光子成像系统,对成像性能表现进行系统评估和优化,在活体小鼠大脑中验证了像差测量矫正的有效性,使荧光成像在活体小鼠大脑中的应用得到拓展,为深入理解小胶质细胞和脑血管在神经系统中的功能及其相互作用提供了重要工具。

其他摘要

Fluorescence imaging technology, known for its powerful labeling capabilities, cellular and subcellular resolution, and wide range of applications, is a crucial research tool in modern biological studies. Observing live, awake experimental animals non-invasively using fluorescence imaging is essential for obtaining accurate physiological data and uncovering related mechanisms. However, the quality of optical imaging in thick tissue like animal brains is significantly affected by factors such as refractive indices mismatch and strong scattering, limiting its application in these samples. Adaptive optics as a technology that is able to measures and corrects sample aberrations, can effectively improve imaging quality. Therefore, this paper integrates two-photon imaging and adaptive optics technologies to construct and optimize an adaptive optics two-photon imaging system. And then using Cx3Cr1-Tdtomato mice, we observed the morphology of microglia in the brain and validated the system's effectiveness in enhancing imaging quality.

This paper begins by constructing an adaptive optics two-photon imaging system based on the Shack-Hartmann wavefront sensor. Control and computational programs for the adaptive optics module were then developed using MATLAB and the microscope control software SCANIMAGE. The system's aberrations, as well as those caused by the objective correction ring, were measured and corrected in fluorescent solution samples and collagen slide to validate the effectiveness and stability of aberration measurement and correction. Given the sensitivity of the wavefront measurement based on the Shack-Hartmann sensor to data quality and aberration reconstruction algorithms, this study applies different wavefront reconstruction algorithms for varying data qualities and achieves accurate measurement and correction of sample aberrations in living samples.

Besides, in order to achieve minimally invasive in vivo brain imaging, this paper utilizes a skull optical clearing technique to perform in vivo brain imaging while retaining the skull. Utilizing the adaptive optics two-photon imaging system constructed in this study, we conducted high-resolution fluorescence imaging of microglia and blood vessels in the mouse brain. The experimental results show that adaptive optics aberration correction can effectively restore the fine morphological structure of microglia and blood vessels under the condition of retaining the skull, which is crucial for revealing their mechanisms of action in neural development, injury response, and disease processes. This paper, based on the adaptive optics two-photon imaging system, systematically assesses and optimizes the imaging performance, and verifies the effectiveness of aberration measurement and correction in the living mouse brain, thus expanding the application of fluorescence imaging in the living mouse brain. It provides an important tool for a deeper understanding of the functions of microglia and blood vessels in the nervous system and their interactions.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] SVOBODA K, YASUDA R. Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience[J]. Neuron, 2006, 50(6): 823-839.
[2] PACKER A M, PETERKA D S, HIRTZ J J, et al. Two-photon optogenetics of dendritic spines and neural circuits[J]. Nature Methods, 2012, 9(12): 1202-1205.
[3] MADSEN S J, WILSON B C. Optical Properties of Brain Tissue[M]//MADSEN S J. Optical Methods and Instrumentation in Brain Imaging and Therapy. New York, NY: Springer New York, 2013: 1-22.
[4] DAVIES R, KASPER M. Adaptive Optics for Astronomy[J]. Annual Review of Astronomy and Astrophysics, 2012, 50(1): 305-351.
[5] RODRÍGUEZ C, CHEN A, RIVERA J A, et al. An adaptive optics module for deep tissue multiphoton imaging in vivo[J]. Nature Methods, 2021, 18(10): 1259-1264.
[6] TAO X, FERNANDEZ B, AZUCENA O, et al. Adaptive optics confocal microscopy using direct wavefront sensing[J]. Optics Letters, 2011, 36(7): 1062.
[7] CHAMPELOVIER D, TEIXEIRA J, CONAN J M, et al. Image-based adaptive optics for in vivo imaging in the hippocampus[J]. Scientific Reports, 2017, 7(1): 42924.
[8] MARSHEL J H, KIM Y S, MACHADO T A, et al. Cortical layer–specific critical dynamics triggering perception[J]. Science, 2019: 14.
[9] MAGUIRE E A. Studying the freely-behaving brain with fMRI[J]. NeuroImage, 2012, 62(2): 1170-1176.
[10] NAMIKI S, MATSUKI N, IKEGAYA Y. Large-scale imaging of brain network activity from >10,000 neocortical cells[J]. Nature Precedings, 2009.
[11] CHOQUET D, SAINLOS M, SIBARITA J B. Advanced imaging and labelling methods to decipher brain cell organization and function[J]. Nature Reviews Neuroscience, 2021, 22(4): 237-255.
[12] WANG M, DA Y, TIAN Y. Fluorescent proteins and genetically encoded biosensors[J]. Chemical Society Reviews, 2023, 52(4): 1189-1214.
[13] CHEN Q, CICHON J, WANG W, et al. Imaging Neural Activity Using Thy1-GCaMP Transgenic Mice[J]. Neuron, 2012, 76(2): 297-308.
[14] VERES J M, ANDRASI T, NAGY-PAL P, et al. CaMKIIα Promoter-Controlled Circuit Manipulations Target Both Pyramidal Cells and Inhibitory Interneurons in Cortical Networks[J]. eneuro, 2023, 10(4): ENEURO.0070-23.2023.
[15] JIN L, LANGE W, KEMPMANN A, et al. High-efficiency transduction and specific expression of ChR2opt for optogenetic manipulation of primary cortical neurons mediated by recombinant adeno-associated viruses[J]. Journal of Biotechnology, 2016, 233: 171-180.
[16] DEROSA B A, BELLE K C, THOMAS B J, et al. hVGAT-mCherry: A novel molecular tool for analysis of GABAergic neurons derived from human pluripotent stem cells[J]. Molecular and Cellular Neuroscience, 2015, 68: 244-257.
[17] ZHAO X F, ALAM M M, LIAO Y, et al. Targeting Microglia Using Cx3cr1-Cre Lines: Revisiting the Specificity[J]. eneuro, 2019, 6(4): ENEURO.0114-19.2019.
[18] ESCARTIN C, GALEA E, LAKATOS A, et al. Reactive astrocyte nomenclature, definitions, and future directions[J]. Nature Neuroscience, 2021, 24(3): 312-325.
[19] CAMPBELL B C, PAEZ-SEGALA M G, LOOGER L L, et al. Chemically stable fluorescent proteins for advanced microscopy[J]. Nature Methods, 2022, 19(12): 1612-1621.
[20] GRIENBERGER C, KONNERTH A. Imaging Calcium in Neurons[J]. Neuron, 2012, 73(5): 862-885.
[21] CHEN T W, WARDILL T J, SUN Y, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity[J]. Nature, 2013, 499(7458): 295-300.
[22] NIEH E H, SCHOTTDORF M, FREEMAN N W, et al. Geometry of abstract learned knowledge in the hippocampus[J]. Nature, 2021, 595(7865): 80-84.
[23] MITCHELL-HEGGS R, PRADO S, GAVA G P, et al. Neural manifold analysis of brain circuit dynamics in health and disease[J]. Journal of Computational Neuroscience, 2023, 51(1): 1-21.
[24] CARRILLO-REID L, HAN S, YANG W, et al. Controlling Visually Guided Behavior by Holographic Recalling of Cortical Ensembles[J]. Cell, 2019, 178(2): 447-457.e5.
[25] DANA H, SUN Y, MOHAR B, et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments[J]. Nature Methods, 2019, 16(7): 649-657.
[26] ZHANG Y, RÓZSA M, LIANG Y, et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations[J]. Nature, 2023, 615(7954): 884-891.
[27] PIATKEVICH K D, BENSUSSEN S, TSENG H an, et al. Population imaging of neural activity in awake behaving mice[J]. Nature, 2019, 574(7778): 413-417.
[28] ABDELFATTAH A S, KAWASHIMA T, SINGH A, et al. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging[J]. Science, 2019, 365(6454): 699-704.
[29] MARVIN J S, BORGHUIS B G, TIAN L, et al. An optimized fluorescent probe for visualizing glutamate neurotransmission[J]. Nature Methods, 2013, 10(2): 162-170.
[30] MARVIN J S, SHIMODA Y, MAGLOIRE V, et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA[J]. Nature Methods, 2019, 16(8): 763-770.

[31] CRAMER S W, CARTER R E, ARONSON J D, et al. Through the looking glass: A review of cranial window technology for optical access to the brain[J]. Journal of Neuroscience Methods, 2021, 354: 109100.

[32] AUGUSTINAITE S, KUHN B. Chronic Cranial Window for Imaging Cortical Activity in Head-Fixed Mice[J]. STAR Protocols, 2020, 1(3): 100194.

[33] YANG G, PAN F, PARKHURST C N, et al. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice[J]. Nature Protocols, 2010, 5(2): 201-208.

[34] ZHANG C, FENG W, ZHAO Y, et al. A large, switchable optical clearing skull window for cerebrovascular imaging[J]. Theranostics, 2018, 8(10): 2696-2708.

[35] LI D, HU Z, ZHANG H, et al. A Through-Intact-Skull (TIS) chronic window technique for cortical structure and function observation in mice[J]. eLight, 2022, 2(1): 15.

[36] DENK W, STRICKLER J H, WEBB W W. Two-Photon Laser Scanning Fluorescence Microscopy[J]. Science, 1990, 248(4951): 73-76.

[37] RUMI M, PERRY J W. Two-photon absorption: an overview of measurements and principles[J]. Advances in Optics and Photonics, 2010, 2(4): 451.

[38] MURPHY D B. Fundamentals of light microscopy and electronic imaging[M]. John Wiley & Sons, 2002.

[39] KOBAT D, DURST M E, NISHIMURA N, et al. Deep tissue multiphoton microscopy using longer wavelength excitation[J]. Optics Express, 2009, 17(16): 13354.

[40] RENNINGER S L, ORGER M B. Two-photon imaging of neural population activity in zebrafish[J]. Methods, 2013, 62(3): 255-267.

[41] GREWE B F, VOIGT F F, VAN ’T HOFF M, et al. Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens[J]. Biomedical Optics Express, 2011, 2(7): 2035.

[42] GHANI M U, MESADI F, KANIK S D, et al. Dendritic spine classification using shape and appearance features based on two-photon microscopy[J]. Journal of Neuroscience Methods, 2017, 279: 13-21.

[43] CHO W H, NOH K, LEE B H, et al. Hippocampal astrocytes modulate anxiety-like behavior[J]. Nature Communications, 2022, 13(1): 6536.

[44] CHAIGNEAU E, WRIGHT A J, POLAND S P, et al. Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue[J]. Optics Express, 2011, 19(23): 22755.

[45] DOMBECK D A, HARVEY C D, TIAN L, et al. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation[J]. Nature Neuroscience, 2010, 13(11): 1433-1440.

[46] YANG W, YUSTE R. In vivo imaging of neural activity[J]. Nature Methods, 2017, 14(4): 349-359.

[47] MALACARA-HERNÁNDEZ D, MALACARA-DOBLADO D. What is a Hartmann test? [J]. Applied Optics, 2015, 54(9): 2296.

[48] NIU Y, GAO Z, GAO C, et al. Interferometric Wavefront Sensing System Based on Deep Learning[J]. Applied Sciences, 2020, 10(23): 8460.

[49] YAO P, LIU R, BROGGINI T, et al. Construction and use of an adaptive optics two-photon microscope with direct wavefront sensing[J]. Nature Protocols, 2023, 18(12): 3732-3766.

[50] BOOTH M J. Adaptive optics in microscopy[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1861): 2829-2843.

[51] NEIL, WILSON, JUSKAITIS. A wavefront generator for complex pupil function synthesis and point spread function engineering[J]. Journal of Microscopy, 2000, 197(3): 219-223.

[52] BOOTH M J, NEIL M A A, JUŠKAITIS R, et al. Adaptive aberration correction in a confocal microscope[J]. Proceedings of the National Academy of Sciences, 2002, 99(9): 5788-5792.

[53] SHERMAN L, YE J Y, ALBERT O, et al. Adaptive correction of depth‐induced aberrations in multiphoton scanning microscopy using a deformable mirror[J]. Journal of Microscopy, 2002, 206(1): 65-71.

[54] JI N, MILKIE D E, BETZIG E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues[J]. Nature Methods, 2010, 7(2): 141-147.

[55] GALWADUGE P T, KIM S H, GROSBERG L E, et al. Simple wavefront correction framework for two-photon microscopy of in-vivo brain[J]. Biomedical Optics Express, 2015, 6(8): 2997.

[56] HU Q, HAILSTONE M, WANG J, et al. Universal adaptive optics for microscopy through embedded neural network control[J]. Light: Science & Applications, 2023, 12(1): 270.

[57] WANG K, SUN W, RICHIE C T, et al. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue[J]. Nature Communications, 2015, 6(1): 7276.

[58] QIN Z, CHEN C, HE S, et al. Adaptive optics two-photon endomicroscopy enables deep-brain imaging at synaptic resolution over large volumes[J]. Science Advances, 2020, 6(40): eabc6521.

[59] YANG W, YUSTE R. In vivo imaging of neural activity[J]. Nature Methods, 2017, 14(4): 349-359.

[60] HARTMANN J. Bemerkungen uber den Bau und die Justirung von Spektrograpen[J]. Zt. Instrumentenkd, 1900, 20: 47–58.

[61] SHACK, ROLAND V. Production and use of a lenticular Hartmann screen[J]. Spring Meeting of Optical Society of America, 1971, 656.

[62] BONAQUE‐GONZÁLEZ S, RODRÍGUEZ‐RAMOS J M. Ocular high‐order aberrations in children and adolescents[J]. Ophthalmic and Physiological Optics, 2023, 43(6): 1581-1582.

[63] CHA J W, BALLESTA J, SO P T C. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy[J]. Journal of Biomedical Optics, 2010, 15(4): 046022.

[64] HAMPSON K M, TURCOTTE R, MILLER D T, et al. Adaptive optics for high-resolution imaging[J]. Nature Reviews Methods Primers, 2021, 1(1): 68.

[65] QIN Z, HE S, YANG C, et al. Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo[J]. Light: Science & Applications, 2020, 9(1): 79.

[66] KUBBY J A. Adaptive Optics for Biological Imaging[M]. CRC Press, 2013.

[67] YANG W, MILLER J eun K, CARRILLO-REID L, et al. Simultaneous Multi-plane Imaging of Neural Circuits[J]. Neuron, 2016, 89(2): 269-284.

[68] PACKER A M, RUSSELL L E, DALGLEISH H W P, et al. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo[J]. Nature Methods, 2015, 12(2): 140-146.

[69] SHYMKIV Y, YUSTE R. Aberration-free holographic microscope for simultaneous imaging and stimulation of neuronal populations[J]. Optics Express, 2023, 31(20): 33461.

[70] STRINGER C, PACHITARIU M, STEINMETZ N, et al. High-dimensional geometry of population responses in visual cortex[J]. Nature, 2019, 571(7765): 361-365.

[71] YANG W, MILLER J eun K, CARRILLO-REID L, et al. Simultaneous Multi-plane Imaging of Neural Circuits[J]. Neuron, 2016, 89(2): 269-284.

[72] RICHARDSON D S, GUAN W, MATSUMOTO K, et al. Tissue clearing[J]. Nature Reviews Methods Primers, 2021, 1(1): 84.

[73] RICHARDSON D S, LICHTMAN J W. Clarifying Tissue Clearing[J]. Cell, 2015, 162(2): 246-257.

[74] TIAN T, YANG Z, LI X. Tissue clearing technique: Recent progress and biomedical applications[J]. Journal of Anatomy, 2021, 238(2): 489-507.

[75] GENINA E A, BASHKATOV A N, TUCHIN V V. Optical Clearing of Cranial Bone[J]. Advances in Optical Technologies, 2008, 2008: 1-8.

[76] XU C. Optical clearing of the mouse skull[J]. Light: Science & Applications, 2022, 11(1): 284.

[77] WANG J, ZHANG Y, XU T H, et al. An innovative transparent cranial window based on skull optical clearing[J]. Laser Physics Letters, 2012, 9(6): 469-473.

[78] ZHAO Y J, YU T T, ZHANG C, et al. Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution[J]. Light: Science & Applications, 2017, 7(2): 17153-17153.

[79] LI D, HU Z, ZHANG H, et al. A Through-Intact-Skull (TIS) chronic window technique for cortical structure and function observation in mice[J]. eLight, 2022, 2(1): 15.

[80] CHEN Y, LIU S, LIU H, et al. Coherent Raman Scattering Unravelling Mechanisms Underlying Skull Optical Clearing for Through-Skull Brain Imaging[J]. Analytical Chemistry, 2019, 91(15): 9371-9375.

[81] JUNG H, LEE D, YOU H, et al. LPS induces microglial activation and GABAergic synaptic deficits in the hippocampus accompanied by prolonged cognitive impairment[J]. Scientific Reports, 2023, 13(1): 6547.

[82] WANG T, OUZOUNOV D G, WU C, et al. Three-photon imaging of mouse brain structure and function through the intact skull[J]. Nature Methods, 2018, 15(10): 789-792.

所在学位评定分委会
生物学
国内图书分类号
TH742
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778783
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
骆立. 自适应光学双光子显微镜在活体小鼠脑成像中的应用研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12133053-骆立-生物系.pdf(10356KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[骆立]的文章
百度学术
百度学术中相似的文章
[骆立]的文章
必应学术
必应学术中相似的文章
[骆立]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。