[1] SVOBODA K, YASUDA R. Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience[J]. Neuron, 2006, 50(6): 823-839.
[2] PACKER A M, PETERKA D S, HIRTZ J J, et al. Two-photon optogenetics of dendritic spines and neural circuits[J]. Nature Methods, 2012, 9(12): 1202-1205.
[3] MADSEN S J, WILSON B C. Optical Properties of Brain Tissue[M]//MADSEN S J. Optical Methods and Instrumentation in Brain Imaging and Therapy. New York, NY: Springer New York, 2013: 1-22.
[4] DAVIES R, KASPER M. Adaptive Optics for Astronomy[J]. Annual Review of Astronomy and Astrophysics, 2012, 50(1): 305-351.
[5] RODRÍGUEZ C, CHEN A, RIVERA J A, et al. An adaptive optics module for deep tissue multiphoton imaging in vivo[J]. Nature Methods, 2021, 18(10): 1259-1264.
[6] TAO X, FERNANDEZ B, AZUCENA O, et al. Adaptive optics confocal microscopy using direct wavefront sensing[J]. Optics Letters, 2011, 36(7): 1062.
[7] CHAMPELOVIER D, TEIXEIRA J, CONAN J M, et al. Image-based adaptive optics for in vivo imaging in the hippocampus[J]. Scientific Reports, 2017, 7(1): 42924.
[8] MARSHEL J H, KIM Y S, MACHADO T A, et al. Cortical layer–specific critical dynamics triggering perception[J]. Science, 2019: 14.
[9] MAGUIRE E A. Studying the freely-behaving brain with fMRI[J]. NeuroImage, 2012, 62(2): 1170-1176.
[10] NAMIKI S, MATSUKI N, IKEGAYA Y. Large-scale imaging of brain network activity from >10,000 neocortical cells[J]. Nature Precedings, 2009.
[11] CHOQUET D, SAINLOS M, SIBARITA J B. Advanced imaging and labelling methods to decipher brain cell organization and function[J]. Nature Reviews Neuroscience, 2021, 22(4): 237-255.
[12] WANG M, DA Y, TIAN Y. Fluorescent proteins and genetically encoded biosensors[J]. Chemical Society Reviews, 2023, 52(4): 1189-1214.
[13] CHEN Q, CICHON J, WANG W, et al. Imaging Neural Activity Using Thy1-GCaMP Transgenic Mice[J]. Neuron, 2012, 76(2): 297-308.
[14] VERES J M, ANDRASI T, NAGY-PAL P, et al. CaMKIIα Promoter-Controlled Circuit Manipulations Target Both Pyramidal Cells and Inhibitory Interneurons in Cortical Networks[J]. eneuro, 2023, 10(4): ENEURO.0070-23.2023.
[15] JIN L, LANGE W, KEMPMANN A, et al. High-efficiency transduction and specific expression of ChR2opt for optogenetic manipulation of primary cortical neurons mediated by recombinant adeno-associated viruses[J]. Journal of Biotechnology, 2016, 233: 171-180.
[16] DEROSA B A, BELLE K C, THOMAS B J, et al. hVGAT-mCherry: A novel molecular tool for analysis of GABAergic neurons derived from human pluripotent stem cells[J]. Molecular and Cellular Neuroscience, 2015, 68: 244-257.
[17] ZHAO X F, ALAM M M, LIAO Y, et al. Targeting Microglia Using Cx3cr1-Cre Lines: Revisiting the Specificity[J]. eneuro, 2019, 6(4): ENEURO.0114-19.2019.
[18] ESCARTIN C, GALEA E, LAKATOS A, et al. Reactive astrocyte nomenclature, definitions, and future directions[J]. Nature Neuroscience, 2021, 24(3): 312-325.
[19] CAMPBELL B C, PAEZ-SEGALA M G, LOOGER L L, et al. Chemically stable fluorescent proteins for advanced microscopy[J]. Nature Methods, 2022, 19(12): 1612-1621.
[20] GRIENBERGER C, KONNERTH A. Imaging Calcium in Neurons[J]. Neuron, 2012, 73(5): 862-885.
[21] CHEN T W, WARDILL T J, SUN Y, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity[J]. Nature, 2013, 499(7458): 295-300.
[22] NIEH E H, SCHOTTDORF M, FREEMAN N W, et al. Geometry of abstract learned knowledge in the hippocampus[J]. Nature, 2021, 595(7865): 80-84.
[23] MITCHELL-HEGGS R, PRADO S, GAVA G P, et al. Neural manifold analysis of brain circuit dynamics in health and disease[J]. Journal of Computational Neuroscience, 2023, 51(1): 1-21.
[24] CARRILLO-REID L, HAN S, YANG W, et al. Controlling Visually Guided Behavior by Holographic Recalling of Cortical Ensembles[J]. Cell, 2019, 178(2): 447-457.e5.
[25] DANA H, SUN Y, MOHAR B, et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments[J]. Nature Methods, 2019, 16(7): 649-657.
[26] ZHANG Y, RÓZSA M, LIANG Y, et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations[J]. Nature, 2023, 615(7954): 884-891.
[27] PIATKEVICH K D, BENSUSSEN S, TSENG H an, et al. Population imaging of neural activity in awake behaving mice[J]. Nature, 2019, 574(7778): 413-417.
[28] ABDELFATTAH A S, KAWASHIMA T, SINGH A, et al. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging[J]. Science, 2019, 365(6454): 699-704.
[29] MARVIN J S, BORGHUIS B G, TIAN L, et al. An optimized fluorescent probe for visualizing glutamate neurotransmission[J]. Nature Methods, 2013, 10(2): 162-170.
[30] MARVIN J S, SHIMODA Y, MAGLOIRE V, et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA[J]. Nature Methods, 2019, 16(8): 763-770.
[31] CRAMER S W, CARTER R E, ARONSON J D, et al. Through the looking glass: A review of cranial window technology for optical access to the brain[J]. Journal of Neuroscience Methods, 2021, 354: 109100.
[32] AUGUSTINAITE S, KUHN B. Chronic Cranial Window for Imaging Cortical Activity in Head-Fixed Mice[J]. STAR Protocols, 2020, 1(3): 100194.
[33] YANG G, PAN F, PARKHURST C N, et al. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice[J]. Nature Protocols, 2010, 5(2): 201-208.
[34] ZHANG C, FENG W, ZHAO Y, et al. A large, switchable optical clearing skull window for cerebrovascular imaging[J]. Theranostics, 2018, 8(10): 2696-2708.
[35] LI D, HU Z, ZHANG H, et al. A Through-Intact-Skull (TIS) chronic window technique for cortical structure and function observation in mice[J]. eLight, 2022, 2(1): 15.
[36] DENK W, STRICKLER J H, WEBB W W. Two-Photon Laser Scanning Fluorescence Microscopy[J]. Science, 1990, 248(4951): 73-76.
[37] RUMI M, PERRY J W. Two-photon absorption: an overview of measurements and principles[J]. Advances in Optics and Photonics, 2010, 2(4): 451.
[38] MURPHY D B. Fundamentals of light microscopy and electronic imaging[M]. John Wiley & Sons, 2002.
[39] KOBAT D, DURST M E, NISHIMURA N, et al. Deep tissue multiphoton microscopy using longer wavelength excitation[J]. Optics Express, 2009, 17(16): 13354.
[40] RENNINGER S L, ORGER M B. Two-photon imaging of neural population activity in zebrafish[J]. Methods, 2013, 62(3): 255-267.
[41] GREWE B F, VOIGT F F, VAN ’T HOFF M, et al. Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens[J]. Biomedical Optics Express, 2011, 2(7): 2035.
[42] GHANI M U, MESADI F, KANIK S D, et al. Dendritic spine classification using shape and appearance features based on two-photon microscopy[J]. Journal of Neuroscience Methods, 2017, 279: 13-21.
[43] CHO W H, NOH K, LEE B H, et al. Hippocampal astrocytes modulate anxiety-like behavior[J]. Nature Communications, 2022, 13(1): 6536.
[44] CHAIGNEAU E, WRIGHT A J, POLAND S P, et al. Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue[J]. Optics Express, 2011, 19(23): 22755.
[45] DOMBECK D A, HARVEY C D, TIAN L, et al. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation[J]. Nature Neuroscience, 2010, 13(11): 1433-1440.
[46] YANG W, YUSTE R. In vivo imaging of neural activity[J]. Nature Methods, 2017, 14(4): 349-359.
[47] MALACARA-HERNÁNDEZ D, MALACARA-DOBLADO D. What is a Hartmann test? [J]. Applied Optics, 2015, 54(9): 2296.
[48] NIU Y, GAO Z, GAO C, et al. Interferometric Wavefront Sensing System Based on Deep Learning[J]. Applied Sciences, 2020, 10(23): 8460.
[49] YAO P, LIU R, BROGGINI T, et al. Construction and use of an adaptive optics two-photon microscope with direct wavefront sensing[J]. Nature Protocols, 2023, 18(12): 3732-3766.
[50] BOOTH M J. Adaptive optics in microscopy[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1861): 2829-2843.
[51] NEIL, WILSON, JUSKAITIS. A wavefront generator for complex pupil function synthesis and point spread function engineering[J]. Journal of Microscopy, 2000, 197(3): 219-223.
[52] BOOTH M J, NEIL M A A, JUŠKAITIS R, et al. Adaptive aberration correction in a confocal microscope[J]. Proceedings of the National Academy of Sciences, 2002, 99(9): 5788-5792.
[53] SHERMAN L, YE J Y, ALBERT O, et al. Adaptive correction of depth‐induced aberrations in multiphoton scanning microscopy using a deformable mirror[J]. Journal of Microscopy, 2002, 206(1): 65-71.
[54] JI N, MILKIE D E, BETZIG E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues[J]. Nature Methods, 2010, 7(2): 141-147.
[55] GALWADUGE P T, KIM S H, GROSBERG L E, et al. Simple wavefront correction framework for two-photon microscopy of in-vivo brain[J]. Biomedical Optics Express, 2015, 6(8): 2997.
[56] HU Q, HAILSTONE M, WANG J, et al. Universal adaptive optics for microscopy through embedded neural network control[J]. Light: Science & Applications, 2023, 12(1): 270.
[57] WANG K, SUN W, RICHIE C T, et al. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue[J]. Nature Communications, 2015, 6(1): 7276.
[58] QIN Z, CHEN C, HE S, et al. Adaptive optics two-photon endomicroscopy enables deep-brain imaging at synaptic resolution over large volumes[J]. Science Advances, 2020, 6(40): eabc6521.
[59] YANG W, YUSTE R. In vivo imaging of neural activity[J]. Nature Methods, 2017, 14(4): 349-359.
[60] HARTMANN J. Bemerkungen uber den Bau und die Justirung von Spektrograpen[J]. Zt. Instrumentenkd, 1900, 20: 47–58.
[61] SHACK, ROLAND V. Production and use of a lenticular Hartmann screen[J]. Spring Meeting of Optical Society of America, 1971, 656.
[62] BONAQUE‐GONZÁLEZ S, RODRÍGUEZ‐RAMOS J M. Ocular high‐order aberrations in children and adolescents[J]. Ophthalmic and Physiological Optics, 2023, 43(6): 1581-1582.
[63] CHA J W, BALLESTA J, SO P T C. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy[J]. Journal of Biomedical Optics, 2010, 15(4): 046022.
[64] HAMPSON K M, TURCOTTE R, MILLER D T, et al. Adaptive optics for high-resolution imaging[J]. Nature Reviews Methods Primers, 2021, 1(1): 68.
[65] QIN Z, HE S, YANG C, et al. Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo[J]. Light: Science & Applications, 2020, 9(1): 79.
[66] KUBBY J A. Adaptive Optics for Biological Imaging[M]. CRC Press, 2013.
[67] YANG W, MILLER J eun K, CARRILLO-REID L, et al. Simultaneous Multi-plane Imaging of Neural Circuits[J]. Neuron, 2016, 89(2): 269-284.
[68] PACKER A M, RUSSELL L E, DALGLEISH H W P, et al. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo[J]. Nature Methods, 2015, 12(2): 140-146.
[69] SHYMKIV Y, YUSTE R. Aberration-free holographic microscope for simultaneous imaging and stimulation of neuronal populations[J]. Optics Express, 2023, 31(20): 33461.
[70] STRINGER C, PACHITARIU M, STEINMETZ N, et al. High-dimensional geometry of population responses in visual cortex[J]. Nature, 2019, 571(7765): 361-365.
[71] YANG W, MILLER J eun K, CARRILLO-REID L, et al. Simultaneous Multi-plane Imaging of Neural Circuits[J]. Neuron, 2016, 89(2): 269-284.
[72] RICHARDSON D S, GUAN W, MATSUMOTO K, et al. Tissue clearing[J]. Nature Reviews Methods Primers, 2021, 1(1): 84.
[73] RICHARDSON D S, LICHTMAN J W. Clarifying Tissue Clearing[J]. Cell, 2015, 162(2): 246-257.
[74] TIAN T, YANG Z, LI X. Tissue clearing technique: Recent progress and biomedical applications[J]. Journal of Anatomy, 2021, 238(2): 489-507.
[75] GENINA E A, BASHKATOV A N, TUCHIN V V. Optical Clearing of Cranial Bone[J]. Advances in Optical Technologies, 2008, 2008: 1-8.
[76] XU C. Optical clearing of the mouse skull[J]. Light: Science & Applications, 2022, 11(1): 284.
[77] WANG J, ZHANG Y, XU T H, et al. An innovative transparent cranial window based on skull optical clearing[J]. Laser Physics Letters, 2012, 9(6): 469-473.
[78] ZHAO Y J, YU T T, ZHANG C, et al. Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution[J]. Light: Science & Applications, 2017, 7(2): 17153-17153.
[79] LI D, HU Z, ZHANG H, et al. A Through-Intact-Skull (TIS) chronic window technique for cortical structure and function observation in mice[J]. eLight, 2022, 2(1): 15.
[80] CHEN Y, LIU S, LIU H, et al. Coherent Raman Scattering Unravelling Mechanisms Underlying Skull Optical Clearing for Through-Skull Brain Imaging[J]. Analytical Chemistry, 2019, 91(15): 9371-9375.
[81] JUNG H, LEE D, YOU H, et al. LPS induces microglial activation and GABAergic synaptic deficits in the hippocampus accompanied by prolonged cognitive impairment[J]. Scientific Reports, 2023, 13(1): 6547.
[82] WANG T, OUZOUNOV D G, WU C, et al. Three-photon imaging of mouse brain structure and function through the intact skull[J]. Nature Methods, 2018, 15(10): 789-792.
修改评论