[1] DEKKER E, TANIS P J, VLEUGELS J L A, et al. Colorectal cancer [J]. Lancet, 2019, 394(10207): 1467-80.
[2] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. Ca-a Cancer Journal for Clinicians, 2021, 71(3): 209-49.
[3] THE LANCET O. Colorectal cancer: a disease of the young? [J]. Lancet Oncol, 2017, 18(4): 413.
[4] ZHOU J C, ZHENG R S, ZHANG S W, et al. Colorectal cancer burden and trends: Comparison between China and major burden countries in the world [J]. Chinese Journal of Cancer Research, 2021, 33(1): 1-10.
[5] PATEL S G, KARLITZ J J, YEN T, et al. The rising tide of early-onset colorectal cancer: a comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection [J]. Lancet Gastroenterol Hepatol, 2022, 7(3): 262-74.
[6] BARETTI M, LE D T. DNA mismatch repair in cancer [J]. Pharmacol Ther, 2018, 189: 45-62.
[7] KUNKEL T A, ERIE D A. Eukaryotic Mismatch Repair in Relation to DNA Replication [J]. Annu Rev Genet, 2015, 49: 291-313.
[8] RICHMAN S. Deficient mismatch repair: Read all about it (Review) [J]. Int J Oncol, 2015, 47(4): 1189-202.
[9] ELLEGREN H. Microsatellites: simple sequences with complex evolution [J]. Nature Reviews Genetics, 2004, 5(6): 435-45.
[10] GUINNEY J, DIENSTMANN R, WANG X, et al. The consensus molecular subtypes of colorectal cancer [J]. Nat Med, 2015, 21(11): 1350-6.
[11] JIN M-Z, JIN W-L. The updated landscape of tumor microenvironment and drug repurposing [J]. Signal Transduction and Targeted Therapy, 2020, 5(1): 166.
[12] BAGHBAN R, ROSHANGAR L, JAHANBAN-ESFAHLAN R, et al. Tumor microenvironment complexity and therapeutic implications at a glance [J]. Cell Commun Signal, 2020, 18(1): 59.
[13] BILLER L H, SCHRAG D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review [J]. Jama, 2021, 325(7): 669-85.
[14] GANESH K, STADLER Z K, CERCEK A, et al. Immunotherapy in colorectal cancer: rationale, challenges and potential [J]. Nature Reviews Gastroenterology & Hepatology, 2019, 16(6): 361-75.
[15] SHAN J, HAN D, SHEN C, et al. Mechanism and strategies of immunotherapy resistance in colorectal cancer [J]. Front Immunol, 2022, 13: 1016646.
[16] MöRBE U M, JøRGENSEN P B, FENTON T M, et al. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function [J]. Mucosal Immunology, 2021, 14(4): 793-802.
[17] NELSON C M. The mechanics of crypt morphogenesis [J]. Nature Cell Biology, 2021, 23(7): 678-9.
[18] JOHANSSON M E, LARSSON J M, HANSSON G C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions [J]. Proc Natl Acad Sci U S A, 2011, 108 Suppl 1(Suppl 1): 4659-65.
[19] GRIBBLE F M, REIMANN F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism [J]. Nature Reviews Endocrinology, 2019, 15(4): 226-37.
[20] CHENG H, LEBLOND C P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types [J]. Am J Anat, 1974, 141(4): 537-61.
[21] BARKER N, VAN ES J H, KUIPERS J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5 [J]. Nature, 2007, 449(7165): 1003-7.
[22] VAN DE WETERING M, SANCHO E, VERWEIJ C, et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells [J]. Cell, 2002, 111(2): 241-50.
[23] BARKER N, CLEVERS H. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells [J]. Gastroenterology, 2010, 138(5): 1681-96.
[24] VAN DER FLIER L G, CLEVERS H. Stem cells, self-renewal, and differentiation in the intestinal epithelium [J]. Annu Rev Physiol, 2009, 71: 241-60.
[25] SANGIORGI E, CAPECCHI M R. Bmi1 is expressed in vivo in intestinal stem cells [J]. Nat Genet, 2008, 40(7): 915-20.
[26] ZHU L, GIBSON P, CURRLE D S, et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation [J]. Nature, 2009, 457(7229): 603-7.
[27] KAIKO G E, RYU S H, KOUES O I, et al. The Colonic Crypt Protects Stem Cells from Microbiota-Derived Metabolites [J]. Cell, 2016, 167(4): 1137.
[28] LIU J, WALKER N M, COOK M T, et al. Functional Cftr in crypt epithelium of organotypic enteroid cultures from murine small intestine [J]. Am J Physiol Cell Physiol, 2012, 302(10): C1492-503.
[29] TREZISE A E, ROMANO P R, GILL D R, et al. The multidrug resistance and cystic fibrosis genes have complementary patterns of epithelial expression [J]. EMBO J, 1992, 11(12): 4291-303.
[30] BIRCHENOUGH G M, NYSTROM E E, JOHANSSON M E, et al. A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion [J]. Science, 2016, 352(6293): 1535-42.
[31] PINTO D, GREGORIEFF A, BEGTHEL H, et al. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium [J]. Genes Dev, 2003, 17(14): 1709-13.
[32] LIN G, XU N, XI R. Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells [J]. Nature, 2008, 455(7216): 1119-23.
[33] ZORN A M. Wnt signalling: antagonistic Dickkopfs [J]. Curr Biol, 2001, 11(15): R592-5.
[34] HE X C, ZHANG J, TONG W G, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling [J]. Nat Genet, 2004, 36(10): 1117-21.
[35] HOWE J R, BAIR J L, SAYED M G, et al. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis [J]. Nature Genetics, 2001, 28(2): 184-7.
[36] SCOVILLE D H, SATO T, HE X C, et al. Current view: intestinal stem cells and signaling [J]. Gastroenterology, 2008, 134(3): 849-64.
[37] HARAMIS A P, BEGTHEL H, VAN DEN BORN M, et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine [J]. Science, 2004, 303(5664): 1684-6.
[38] BATTS L E, POLK D B, DUBOIS R N, et al. Bmp signaling is required for intestinal growth and morphogenesis [J]. Dev Dyn, 2006, 235(6): 1563-70.
[39] MARSHMAN E, BOOTH C, POTTEN C S. The intestinal epithelial stem cell [J]. Bioessays, 2002, 24(1): 91-8.
[40] OHLSTEIN B, SPRADLING A. Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling [J]. Science, 2007, 315(5814): 988-92.
[41] ARTAVANIS-TSAKONAS S, RAND M D, LAKE R J. Notch signaling: cell fate control and signal integration in development [J]. Science, 1999, 284(5415): 770-6.
[42] MILANO J, MCKAY J, DAGENAIS C, et al. Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation [J]. Toxicol Sci, 2004, 82(1): 341-58.
[43] CROSNIER C, STAMATAKI D, LEWIS J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control [J]. Nature Reviews Genetics, 2006, 7(5): 349-59.
[44] TODARO M, FRANCIPANE M G, MEDEMA J P, et al. Colon cancer stem cells: promise of targeted therapy [J]. Gastroenterology, 2010, 138(6): 2151-62.
[45] SCHMITT M, GRETEN F R. The inflammatory pathogenesis of colorectal cancer [J]. Nat Rev Immunol, 2021, 21(10): 653-67.
[46] SONG C, CHAI Z, CHEN S, et al. Intestinal mucus components and secretion mechanisms: what we do and do not know [J]. Exp Mol Med, 2023, 55(4): 681-91.
[47] SHAN M, GENTILE M, YEISER J R, et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals [J]. Science, 2013, 342(6157): 447-53.
[48] MENG H, LI W, BOARDMAN L A, et al. Loss of ZG16 is associated with molecular and clinicopathological phenotypes of colorectal cancer [J]. BMC Cancer, 2018, 18(1): 433.
[49] MENG H, DING Y, LIU E, et al. ZG16 regulates PD-L1 expression and promotes local immunity in colon cancer [J]. Transl Oncol, 2021, 14(2): 101003.
[50] LI X, YANG Y, HUANG Q, et al. Crosstalk Between the Tumor Microenvironment and Cancer Cells: A Promising Predictive Biomarker for Immune Checkpoint Inhibitors [J]. Front Cell Dev Biol, 2021, 9: 738373.
[51] PAGE A, CHUVIN N, VALLADEAU-GUILEMOND J, et al. Development of NK cell-based cancer immunotherapies through receptor engineering [J]. Cellular & Molecular Immunology, 2024.
[52] DEL PRETE A, SALVI V, SORIANI A, et al. Dendritic cell subsets in cancer immunity and tumor antigen sensing [J]. Cellular & Molecular Immunology, 2023, 20(5): 432-47.
[53] WANG Y, XIANG Y, XIN V W, et al. Dendritic cell biology and its role in tumor immunotherapy [J]. Journal of Hematology & Oncology, 2020, 13(1): 107.
[54] CHRISTOFIDES A, STRAUSS L, YEO A, et al. The complex role of tumor-infiltrating macrophages [J]. Nature Immunology, 2022, 23(8): 1148-56.
[55] ÖHLUND D, HANDLY-SANTANA A, BIFFI G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer [J]. J Exp Med, 2017, 214(3): 579-96.
[56] PENG Z, YE M, DING H, et al. Spatial transcriptomics atlas reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment components in colorectal cancer [J]. J Transl Med, 2022, 20(1): 302.
[57] ELYADA E, BOLISETTY M, LAISE P, et al. Cross-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma Reveals Antigen-Presenting Cancer-Associated Fibroblasts [J]. Cancer Discov, 2019, 9(8): 1102-23.
[58] KALLURI R, ZEISBERG M. Fibroblasts in cancer [J]. Nat Rev Cancer, 2006, 6(5): 392-401.
[59] PIERA-VELAZQUEZ S, JIMENEZ S A. Endothelial to Mesenchymal Transition: Role in Physiology and in the Pathogenesis of Human Diseases [J]. Physiol Rev, 2019, 99(2): 1281-324.
[60] BOCHET L, LEHUéDé C, DAUVILLIER S, et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer [J]. Cancer Res, 2013, 73(18): 5657-68.
[61] NIKOLIC-PATERSON D J, WANG S, LAN H Y. Macrophages promote renal fibrosis through direct and indirect mechanisms [J]. Kidney Int Suppl (2011), 2014, 4(1): 34-8.
[62] LAGORY E L, GIACCIA A J. The ever-expanding role of HIF in tumour and stromal biology [J]. Nat Cell Biol, 2016, 18(4): 356-65.
[63] PALAZON A, TYRAKIS P A, MACIAS D, et al. An HIF-1α/VEGF-A Axis in Cytotoxic T Cells Regulates Tumor Progression [J]. Cancer Cell, 2017, 32(5): 669-83.e5.
[64] FUKUMURA D, XU L, CHEN Y, et al. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo [J]. Cancer Res, 2001, 61(16): 6020-4.
[65] BOEDTKJER E, PEDERSEN S F. The Acidic Tumor Microenvironment as a Driver of Cancer [J]. Annu Rev Physiol, 2020, 82: 103-26.
[66] ZHAO H, WU L, YAN G, et al. Inflammation and tumor progression: signaling pathways and targeted intervention [J]. Signal Transduction and Targeted Therapy, 2021, 6(1): 263.
[67] IVASHKIV L B. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy [J]. Nature Reviews Immunology, 2018, 18(9): 545-58.
[68] SARAIVA M, O'GARRA A. The regulation of IL-10 production by immune cells [J]. Nature Reviews Immunology, 2010, 10(3): 170-81.
[69] WU Y, ZHOU B P. TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion [J]. British Journal of Cancer, 2010, 102(4): 639-44.
[70] LIU S, REN J, TEN DIJKE P. Targeting TGFβ signal transduction for cancer therapy [J]. Signal Transduction and Targeted Therapy, 2021, 6(1): 8.
[71] MILLER M C, MAYO K H. Chemokines from a Structural Perspective [J]. Int J Mol Sci, 2017, 18(10).
[72] BACHELERIE F, BEN-BARUCH A, BURKHARDT A M, et al. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors [J]. Pharmacol Rev, 2014, 66(1): 1-79.
[73] MEMPEL T R, LILL J K, ALTENBURGER L M. How chemokines organize the tumour microenvironment [J]. Nature Reviews Cancer, 2024, 24(1): 28-50.
[74] MARIANI M, LANG R, BINDA E, et al. Dominance of CCL22 over CCL17 in induction of chemokine receptor CCR4 desensitization and internalization on human Th2 cells [J]. Eur J Immunol, 2004, 34(1): 231-40.
[75] ROUSSOS E T, CONDEELIS J S, PATSIALOU A. Chemotaxis in cancer [J]. Nature Reviews Cancer, 2011, 11(8): 573-87.
[76] FARES J, FARES M Y, KHACHFE H H, et al. Molecular principles of metastasis: a hallmark of cancer revisited [J]. Signal Transduct Target Ther, 2020, 5(1): 28.
[77] CHOW M T, OZGA A J, SERVIS R L, et al. Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy [J]. Immunity, 2019, 50(6): 1498-512.e5.
[78] MIKUCKI M E, FISHER D T, MATSUZAKI J, et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints [J]. Nat Commun, 2015, 6: 7458.
[79] ZHANG Y, ZHANG Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications [J]. Cellular & Molecular Immunology, 2020, 17(8): 807-21.
[80] MOROTTI M, ALBUKHARI A, ALSAADI A, et al. Promises and challenges of adoptive T-cell therapies for solid tumours [J]. British Journal of Cancer, 2021, 124(11): 1759-76.
[81] ZHANG P, ZHANG G, WAN X. Challenges and new technologies in adoptive cell therapy [J]. Journal of Hematology & Oncology, 2023, 16(1): 97.
[82] ROZENBLIT M, HUANG R, DANZIGER N, et al. Comparison of PD-L1 protein expression between primary tumors and metastatic lesions in triple negative breast cancers [J]. J Immunother Cancer, 2020, 8(2).
[83] DUFFY M J, CROWN J. Biomarkers for Predicting Response to Immunotherapy with Immune Checkpoint Inhibitors in Cancer Patients [J]. Clin Chem, 2019, 65(10): 1228-38.
[84] ZHANG Z, LIU X, CHEN D, et al. Radiotherapy combined with immunotherapy: the dawn of cancer treatment [J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 258.
[85] ELBANNA M, CHOWDHURY N N, RHOME R, et al. Clinical and Preclinical Outcomes of Combining Targeted Therapy With Radiotherapy [J]. Front Oncol, 2021, 11: 749496.
[86] TANG F, BARBACIORU C, WANG Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell [J]. Nat Methods, 2009, 6(5): 377-82.
[87] ISLAM S, KJäLLQUIST U, MOLINER A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq [J]. Genome Res, 2011, 21(7): 1160-7.
[88] WEN L, TANG F. Single-cell sequencing in stem cell biology [J]. Genome Biol, 2016, 17: 71.
[89] HAN X, WANG R, ZHOU Y, et al. Mapping the Mouse Cell Atlas by Microwell-Seq [J]. Cell, 2018, 172(5): 1091-107.e17.
[90] FAN X, ZHANG X, WU X, et al. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos [J]. Genome Biol, 2015, 16(1): 148.
[91] ZILIONIS R, NAINYS J, VERES A, et al. Single-cell barcoding and sequencing using droplet microfluidics [J]. Nat Protoc, 2017, 12(1): 44-73.
[92] MACOSKO E Z, BASU A, SATIJA R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets [J]. Cell, 2015, 161(5): 1202-14.
[93] CAO J, PACKER J S, RAMANI V, et al. Comprehensive single-cell transcriptional profiling of a multicellular organism [J]. Science, 2017, 357(6352): 661-7.
[94] ROSENBERG A B, ROCO C M, MUSCAT R A, et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding [J]. Science, 2018, 360(6385): 176-82.
[95] SRIVATSAN S R, MCFALINE-FIGUEROA J L, RAMANI V, et al. Massively multiplex chemical transcriptomics at single-cell resolution [J]. Science, 2020, 367(6473): 45-51.
[96] ZHENG G X, TERRY J M, BELGRADER P, et al. Massively parallel digital transcriptional profiling of single cells [J]. Nat Commun, 2017, 8: 14049.
[97] CHEN A, LIAO S, CHENG M, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays [J]. Cell, 2022, 185(10): 1777-92.e21.
[98] MA S, ZHANG B, LAFAVE L M, et al. Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin [J]. Cell, 2020, 183(4): 1103-16 e20.
[99] XU W, YANG W, ZHANG Y, et al. ISSAAC-seq enables sensitive and flexible multimodal profiling of chromatin accessibility and gene expression in single cells [J]. Nature Methods, 2022, 19(10): 1243-9.
[100] CHEN A F, PARKS B, KATHIRIA A S, et al. NEAT-seq: simultaneous profiling of intra-nuclear proteins, chromatin accessibility and gene expression in single cells [J]. Nat Methods, 2022, 19(5): 547-53.
[101] FISKIN E, LAREAU C A, LUDWIG L S, et al. Single-cell profiling of proteins and chromatin accessibility using PHAGE-ATAC [J]. Nature Biotechnology, 2022, 40(3): 374-81.
[102] LIU Y, DISTASIO M, SU G, et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq [J]. Nature Biotechnology, 2023.
[103] DEY S S, KESTER L, SPANJAARD B, et al. Integrated genome and transcriptome sequencing of the same cell [J]. Nature Biotechnology, 2015, 33(3): 285-9.
[104] DEY S S, KESTER L, SPANJAARD B, et al. Integrated genome and transcriptome sequencing of the same cell [J]. Nat Biotechnol, 2015, 33(3): 285-9.
[105] MACAULAY I C, HAERTY W, KUMAR P, et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes [J]. Nat Methods, 2015, 12(6): 519-22.
[106] HAN K Y, KIM K T, JOUNG J G, et al. SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells [J]. Genome Res, 2018, 28(1): 75-87.
[107] RODRIGUEZ-MEIRA A, BUCK G, CLARK S A, et al. Unravelling Intratumoral Heterogeneity through High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing [J]. Mol Cell, 2019, 73(6): 1292-305.e8.
[108] SMALLWOOD S A, LEE H J, ANGERMUELLER C, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity [J]. Nature Methods, 2014, 11(8): 817-20.
[109] GUO H S, ZHU P, WU X L, et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing [J]. Genome Research, 2013, 23(12): 2126-35.
[110] JIN W, TANG Q, WAN M, et al. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples [J]. Nature, 2015, 528(7580): 142-6.
[111] BUENOSTRO J D, WU B J, LITZENBURGER U M, et al. Single-cell chromatin accessibility reveals principles of regulatory variation [J]. Nature, 2015, 523(7561): 486-U264.
[112] XU W, WEN Y, LIANG Y, et al. A plate-based single-cell ATAC-seq workflow for fast and robust profiling of chromatin accessibility [J]. Nat Protoc, 2021, 16(8): 4084-107.
[113] CHEN X, MIRAGAIA R J, NATARAJAN K N, et al. A rapid and robust method for single cell chromatin accessibility profiling [J]. Nat Commun, 2018, 9(1): 5345.
[114] LAI B, GAO W, CUI K, et al. Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing [J]. Nature, 2018, 562(7726): 281-5.
[115] ANGERMUELLER C, CLARK S J, LEE H J, et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity [J]. Nat Methods, 2016, 13(3): 229-32.
[116] HU Y J, HUANG K, AN Q, et al. Simultaneous profiling of transcriptome and DNA methylome from a single cell [J]. Genome Biology, 2016, 17.
[117] HOU Y, GUO H H, CAO C, et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas [J]. Cell Res, 2016, 26(3): 304-19.
[118] CAO J Y, CUSANOVICH D A, RAMANI V, et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells [J]. Science, 2018, 361(6409): 1380-5.
[119] LIU L Q, LIU C Y, QUINTERO A, et al. Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity [J]. Nature Communications, 2019, 10.
[120] CHEN S, LAKE B B, ZHANG K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell [J]. Nat Biotechnol, 2019, 37(12): 1452-7.
[121] PLONGTHONGKUM N, DIEP D, CHEN S, et al. Scalable dual-omics profiling with single-nucleus chromatin accessibility and mRNA expression sequencing 2 (SNARE-seq2) [J]. Nat Protoc, 2021, 16(11): 4992-5029.
[122] ZHU C, YU M, HUANG H, et al. An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome [J]. Nat Struct Mol Biol, 2019, 26(11): 1063-70.
[123] RANG F J, DE LUCA K L, DE VRIES S S, et al. Single-cell profiling of transcriptome and histone modifications with EpiDamID [J]. Mol Cell, 2022, 82(10): 1956-70 e14.
[124] LI G, LIU Y, ZHANG Y, et al. Joint profiling of DNA methylation and chromatin architecture in single cells [J]. Nat Methods, 2019, 16(10): 991-3.
[125] LEE D S, LUO C, ZHOU J, et al. Simultaneous profiling of 3D genome structure and DNA methylation in single human cells [J]. Nat Methods, 2019, 16(10): 999-1006.
[126] GUO F, LI L, LI J Y, et al. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells [J]. Cell Res, 2017, 27(8): 967-88.
[127] CLARK S J, ARGELAGUET R, KAPOURANI C A, et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells [J]. Nature Communications, 2018, 9.
[128] WANG Y, YUAN P, YAN Z, et al. Single-cell multiomics sequencing reveals the functional regulatory landscape of early embryos [J]. Nature Communications, 2021, 12(1): 1247.
[129] YAN R, GU C, YOU D, et al. Decoding dynamic epigenetic landscapes in human oocytes using single-cell multi-omics sequencing [J]. Cell Stem Cell, 2021, 28(9): 1641-56 e7.
[130] GENSHAFT A S, LI S, GALLANT C J, et al. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction [J]. Genome Biology, 2016, 17.
[131] FREI A P, BAVA F A, ZUNDER E R, et al. Highly multiplexed simultaneous detection of RNAs and proteins in single cells [J]. Nat Methods, 2016, 13(3): 269-75.
[132] STOECKIUS M, HAFEMEISTER C, STEPHENSON W, et al. Simultaneous epitope and transcriptome measurement in single cells [J]. Nat Methods, 2017, 14(9): 865-8.
[133] PETERSON V M, ZHANG K X, KUMAR N, et al. Multiplexed quantification of proteins and transcripts in single cells [J]. Nat Biotechnol, 2017, 35(10): 936-9.
[134] MIMITOU E P, CHENG A, MONTALBANO A, et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells [J]. Nat Methods, 2019, 16(5): 409-12.
[135] FRANGIEH C J, MELMS J C, THAKORE P I, et al. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion [J]. Nat Genet, 2021, 53(3): 332-41.
[136] GERLACH J P, VAN BUGGENUM J A G, TANIS S E J, et al. Combined quantification of intracellular (phospho-)proteins and transcriptomics from fixed single cells [J]. Sci Rep-Uk, 2019, 9.
[137] RIVELLO F, VAN BUIJTENEN E, MATUŁA K, et al. Single-cell intracellular epitope and transcript detection reveals signal transduction dynamics [J]. Cell Rep Methods, 2021, 1(5): 100070.
[138] KATZENELENBOGEN Y, SHEBAN F, YALIN A, et al. Coupled scRNA-Seq and Intracellular Protein Activity Reveal an Immunosuppressive Role of TREM2 in Cancer [J]. Cell, 2020, 182(4): 872-85.e19.
[139] CHUNG H, PARKHURST C N, MAGEE E M, et al. Joint single-cell measurements of nuclear proteins and RNA in vivo [J]. Nat Methods, 2021, 18(10): 1204-12.
[140] SWANSON E, LORD C, READING J, et al. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq [J]. Elife, 2021, 10.
[141] RUFF D W, DHINGRA D M, THOMPSON K, et al. High-Throughput Multimodal Single-Cell Targeted DNA and Surface Protein Analysis Using the Mission Bio Tapestri Platform [J]. Methods Mol Biol, 2022, 2386: 171-88.
[142] MIMITOU E P, LAREAU C A, CHEN K Y, et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells [J]. Nat Biotechnol, 2021, 39(10): 1246-58.
[143] RAJ A, VAN DEN BOGAARD P, RIFKIN S A, et al. Imaging individual mRNA molecules using multiple singly labeled probes [J]. Nature Methods, 2008, 5(10): 877-9.
[144] BATTICH N, STOEGER T, PELKMANS L. Image-based transcriptomics in thousands of single human cells at single-molecule resolution [J]. Nature Methods, 2013, 10(11): 1127-33.
[145] LUBECK E, COSKUN A F, ZHIYENTAYEV T, et al. Single-cell in situ RNA profiling by sequential hybridization [J]. Nature Methods, 2014, 11(4): 360-1.
[146] SHAH S, LUBECK E, ZHOU W, et al. In Situ Transcription Profiling of Single Cells Reveals Spatial Organization of Cells in the Mouse Hippocampus [J]. Neuron, 2016, 92(2): 342-57.
[147] MOFFITT J R, HAO J J, WANG G P, et al. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization [J]. P Natl Acad Sci USA, 2016, 113(39): 11046-51.
[148] CHEN K H, BOETTIGER A N, MOFFITT J R, et al. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells [J]. Science, 2015, 348(6233): aaa6090.
[149] HAIMOVICH G, GERST J E. Single-molecule Fluorescence in situ Hybridization (smFISH) for RNA Detection in Adherent Animal Cells [J]. Bio Protoc, 2018, 8(21): e3070.
[150] CODELUPPI S, BORM L E, ZEISEL A, et al. Spatial organization of the somatosensory cortex revealed by osmFISH [J]. Nat Methods, 2018, 15(11): 932-5.
[151] WANG X, ALLEN W E, WRIGHT M A, et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states [J]. Science, 2018, 361(6400).
[152] RODRIQUES S G, STICKELS R R, GOEVA A, et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution [J]. Science, 2019, 363(6434): 1463-7.
[153] VICKOVIC S, ERASLAN G, SALMéN F, et al. High-definition spatial transcriptomics for in situ tissue profiling [J]. Nat Methods, 2019, 16(10): 987-90.
[154] LIU Y, YANG M, DENG Y, et al. High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue [J]. Cell, 2020, 183(6): 1665-81 e18.
[155] VICKOVIC S, LöTSTEDT B, KLUGHAMMER J, et al. SM-Omics is an automated platform for high-throughput spatial multi-omics [J]. Nature Communications, 2022, 13(1): 795.
[156] GUI G, WONG-ROLLE A, DILLON L W, et al. Spatial-Temporal Multiomic Analysis of Tumor-Immune Interactions in Patients with AML Receiving Pembrolizumab and Decitabine [J]. Blood, 2022, 140: 3427-8.
[157] MAYNARD A, MCCOACH C E, ROTOW J K, et al. Therapy-Induced Evolution of Human Lung Cancer Revealed by Single-Cell RNA Sequencing [J]. Cell, 2020, 182(5): 1232-51 e22.
[158] PURAM S V, TIROSH I, PARIKH A S, et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer [J]. Cell, 2017, 171(7): 1611-24 e24.
[159] VENTEICHER A S, TIROSH I, HEBERT C, et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq [J]. Science, 2017, 355(6332).
[160] PATEL A P, TIROSH I, TROMBETTA J J, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma [J]. Science, 2014, 344(6190): 1396-401.
[161] QIN P, PANG Y, HOU W, et al. Integrated decoding hematopoiesis and leukemogenesis using single-cell sequencing and its medical implication [J]. Cell Discov, 2021, 7(1): 2.
[162] FU R, QIN P, ZOU X, et al. A Comprehensive Characterization of Monoallelic Expression During Hematopoiesis and Leukemogenesis via Single-Cell RNA-Sequencing [J]. Front Cell Dev Biol, 2021, 9: 702897.
[163] FRANZEN O, GAN L M, BJORKEGREN J L M. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data [J]. Database (Oxford), 2019, 2019.
[164] CAO Y, ZHU J, JIA P, et al. scRNASeqDB: A Database for RNA-Seq Based Gene Expression Profiles in Human Single Cells [J]. Genes (Basel), 2017, 8(12): 368.
[165] ABUGESSAISA I, NOGUCHI S, BOTTCHER M, et al. SCPortalen: human and mouse single-cell centric database [J]. Nucleic Acids Res, 2018, 46(D1): D781-D7.
[166] MORENO P, FEXOVA S, GEORGE N, et al. Expression Atlas update: gene and protein expression in multiple species [J]. Nucleic Acids Res, 2021.
[167] YUAN H, YAN M, ZHANG G, et al. CancerSEA: a cancer single-cell state atlas [J]. Nucleic Acids Res, 2019, 47(D1): D900-D8.
[168] FAN Z, CHEN R, CHEN X. SpatialDB: a database for spatially resolved transcriptomes [J]. Nucleic Acids Res, 2020, 48(D1): D233-D7.
[169] ZHANG K, HOCKER J D, MILLER M, et al. A single-cell atlas of chromatin accessibility in the human genome [J]. Cell, 2021, 184(24): 5985-6001 e19.
[170] DOMCKE S, HILL A J, DAZA R M, et al. A human cell atlas of fetal chromatin accessibility [J]. Science, 2020, 370(6518).
[171] REGEV A, TEICHMANN S A, LANDER E S, et al. The Human Cell Atlas [J]. Elife, 2017, 6: e27041.
[172] STUART T, BUTLER A, HOFFMAN P, et al. Comprehensive Integration of Single-Cell Data [J]. Cell, 2019, 177(7): 1888-902 e21.
[173] ARGELAGUET R, VELTEN B, ARNOL D, et al. Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets [J]. Mol Syst Biol, 2018, 14(6): e8124.
[174] GAYOSO A, STEIER Z, LOPEZ R, et al. Joint probabilistic modeling of single-cell multi-omic data with totalVI [J]. Nat Methods, 2021, 18(3): 272-82.
[175] LAKKIS J, SCHROEDER A, SU K, et al. A multi-use deep learning method for CITE-seq and single-cell RNA-seq data integration with cell surface protein prediction and imputation [J]. Nature Machine Intelligence, 2022, 4(11): 940-52.
[176] CAO Z J, GAO G. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding [J]. Nat Biotechnol, 2022, 40(10): 1458-66.
[177] KANG J B, NATHAN A, WEINAND K, et al. Efficient and precise single-cell reference atlas mapping with Symphony [J]. Nat Commun, 2021, 12(1): 5890.
[178] KLESHCHEVNIKOV V, SHMATKO A, DANN E, et al. Cell2location maps fine-grained cell types in spatial transcriptomics [J]. Nature Biotechnology, 2022, 40(5): 661-71.
[179] CABLE D M, MURRAY E, ZOU L S, et al. Robust decomposition of cell type mixtures in spatial transcriptomics [J]. Nat Biotechnol, 2022, 40(4): 517-26.
[180] ARGELAGUET R, CUOMO A S E, STEGLE O, et al. Computational principles and challenges in single-cell data integration [J]. Nature Biotechnology, 2021, 39(10): 1202-15.
[181] TARAZONA S, ARZALLUZ-LUQUE A, CONESA A. Undisclosed, unmet and neglected challenges in multi-omics studies [J]. Nature Computational Science, 2021, 1(6): 395-402.
[182] THORSSON V, GIBBS D L, BROWN S D, et al. The Immune Landscape of Cancer [J]. Immunity, 2018, 48(4): 812-30.e14.
[183] HINSHAW D C, SHEVDE L A. The Tumor Microenvironment Innately Modulates Cancer Progression [J]. Cancer Res, 2019, 79(18): 4557-66.
[184] KOLIARAKI V, PRADOS A, ARMAKA M, et al. The mesenchymal context in inflammation, immunity and cancer [J]. Nat Immunol, 2020, 21(9): 974-82.
[185] GALIPEAU J, SENSéBé L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities [J]. Cell Stem Cell, 2018, 22(6): 824-33.
[186] JALKANEN S, SALMI M. Lymphatic endothelial cells of the lymph node [J]. Nat Rev Immunol, 2020, 20(9): 566-78.
[187] AMERSFOORT J, EELEN G, CARMELIET P. Immunomodulation by endothelial cells - partnering up with the immune system? [J]. Nat Rev Immunol, 2022: 1-13.
[188] CARDENAS M A, PROKHNEVSKA N, KISSICK H T. Organized immune cell interactions within tumors sustain a productive T-cell response [J]. Int Immunol, 2021, 33(1): 27-37.
[189] SALTZ J, GUPTA R, HOU L, et al. Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images [J]. Cell Rep, 2018, 23(1): 181-93.e7.
[190] BINNEWIES M, ROBERTS E W, KERSTEN K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy [J]. Nat Med, 2018, 24(5): 541-50.
[191] BEJARANO L, JORDĀO M J C, JOYCE J A. Therapeutic Targeting of the Tumor Microenvironment [J]. Cancer Discov, 2021, 11(4): 933-59.
[192] DEBERARDINIS R J. Tumor Microenvironment, Metabolism, and Immunotherapy [J]. N Engl J Med, 2020, 382(9): 869-71.
[193] WANG Z, GERSTEIN M, SNYDER M. RNA-Seq: a revolutionary tool for transcriptomics [J]. Nat Rev Genet, 2009, 10(1): 57-63.
[194] OZSOLAK F, MILOS P M. RNA sequencing: advances, challenges and opportunities [J]. Nat Rev Genet, 2011, 12(2): 87-98.
[195] ELMENTAITE R, KUMASAKA N, ROBERTS K, et al. Cells of the human intestinal tract mapped across space and time [J]. Nature, 2021, 597(7875): 250-5.
[196] ELMENTAITE R, ROSS A D B, ROBERTS K, et al. Single-Cell Sequencing of Developing Human Gut Reveals Transcriptional Links to Childhood Crohn's Disease [J]. Developmental Cell, 2020, 55(6): 771-83.
[197] FAWKNER-CORBETT D, ANTANAVICIUTE A, PARIKH K, et al. Spatiotemporal analysis of human intestinal development at single-cell resolution [J]. Cell, 2021, 184(3): 810-26.
[198] LI H, COURTOIS E T, SENGUPTA D, et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors [J]. Nature Genetics, 2017, 49(5): 708-18.
[199] BIAN S, HOU Y, ZHOU X, et al. Single-cell multiomics sequencing and analyses of human colorectal cancer [J]. Science, 2018, 362(6418): 1060-3.
[200] ZHANG L, YU X, ZHENG L, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer [J]. Nature, 2018, 564(7735): 268-72.
[201] ZHANG L, LI Z, SKRZYPCZYNSKA K M, et al. Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer [J]. Cell, 2020, 181(2): 442-59 e29.
[202] LEE H O, HONG Y, ETLIOGLU H E, et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer [J]. Nat Genet, 2020, 52(6): 594-603.
[203] CHEN B, SCURRAH C R, MCKINLEY E T, et al. Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps [J]. Cell, 2021, 184(26): 6262-80.e26.
[204] GUO W, ZHANG C, WANG X, et al. Resolving the difference between left-sided and right-sided colorectal cancer by single-cell sequencing [J]. JCI Insight, 2022, 7(1).
[205] RAO A, BARKLEY D, FRANçA G S, et al. Exploring tissue architecture using spatial transcriptomics [J]. Nature, 2021, 596(7871): 211-20.
[206] LONGO S K, GUO M G, JI A L, et al. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics [J]. Nat Rev Genet, 2021, 22(10): 627-44.
[207] STåHL P L, SALMéN F, VICKOVIC S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics [J]. Science, 2016, 353(6294): 78-82.
[208] MERRITT C R, ONG G T, CHURCH S E, et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue [J]. Nat Biotechnol, 2020, 38(5): 586-99.
[209] STICKELS R R, MURRAY E, KUMAR P, et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2 [J]. Nat Biotechnol, 2021, 39(3): 313-9.
[210] PELKA K, HOFREE M, CHEN J H, et al. Spatially organized multicellular immune hubs in human colorectal cancer [J]. Cell, 2021, 184(18): 4734-52.e20.
[211] WU Y, YANG S, MA J, et al. Spatiotemporal Immune Landscape of Colorectal Cancer Liver Metastasis at Single-Cell Level [J]. Cancer Discov, 2022, 12(1): 134-53.
[212] QI J, SUN H, ZHANG Y, et al. Single-cell and spatial analysis reveal interaction of FAP(+) fibroblasts and SPP1(+) macrophages in colorectal cancer [J]. Nat Commun, 2022, 13(1): 1742.
[213] ZHONG C, WANG L, HU S, et al. Poly(I:C) enhances the efficacy of phagocytosis checkpoint blockade immunotherapy by inducing IL-6 production [J]. J Leukoc Biol, 2021, 110(6): 1197-208.
[214] SNIDER A J, BIALKOWSKA A B, GHALEB A M, et al. Murine Model for Colitis-Associated Cancer of the Colon [J]. Methods Mol Biol, 2016, 1438: 245-54.
[215] GRIVENNIKOV S, KARIN E, TERZIC J, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer [J]. Cancer Cell, 2009, 15(2): 103-13.
[216] WOLOCK S L, LOPEZ R, KLEIN A M. Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data [J]. Cell Syst, 2019, 8(4): 281-91 e9.
[217] PARIKH K, ANTANAVICIUTE A, FAWKNER-CORBETT D, et al. Colonic epithelial cell diversity in health and inflammatory bowel disease [J]. Nature, 2019, 567(7746): 49-55.
[218] JOANITO I, WIRAPATI P, ZHAO N, et al. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer [J]. Nat Genet, 2022, 54(7): 963-75.
[219] LOPEZ R, REGIER J, COLE M B, et al. Deep generative modeling for single-cell transcriptomics [J]. Nature Methods, 2018, 15(12): 1053-8.
[220] XU C, LOPEZ R, MEHLMAN E, et al. Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models [J]. Mol Syst Biol, 2021, 17(1): e9620.
[221] LUECKEN M D, THEIS F J. Current best practices in single‐cell RNA‐seq analysis: a tutorial [J]. Molecular Systems Biology, 2019, 15(6): e8746.
[222] MAĆKIEWICZ A, RATAJCZAK W. Principal components analysis (PCA) [J]. Computers & Geosciences, 1993, 19(3): 303-42.
[223] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE [J]. Journal of machine learning research, 2008, 9(11).
[224] BECHT E, MCINNES L, HEALY J, et al. Dimensionality reduction for visualizing single-cell data using UMAP [J]. Nat Biotechnol, 2018.
[225] LINDERMAN G C, RACHH M, HOSKINS J G, et al. Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data [J]. Nat Methods, 2019, 16(3): 243-5.
[226] KOBAK D, BERENS P. The art of using t-SNE for single-cell transcriptomics [J]. Nat Commun, 2019, 10(1): 5416.
[227] CAO Y, LIN Y, ORMEROD J T, et al. scDC: single cell differential composition analysis [J]. BMC Bioinformatics, 2019, 20(Suppl 19): 721.
[228] BEZDEK J C, EHRLICH R, FULL W. FCM: The fuzzy c-means clustering algorithm [J]. Computers & Geosciences, 1984, 10(2): 191-203.
[229] YAARI G, BOLEN C R, THAKAR J, et al. Quantitative set analysis for gene expression: a method to quantify gene set differential expression including gene-gene correlations [J]. Nucleic Acids Res, 2013, 41(18): e170.
[230] ZHOU Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets [J]. Nat Commun, 2019, 10(1): 1523.
[231] LA MANNO G, SOLDATOV R, ZEISEL A, et al. RNA velocity of single cells [J]. Nature, 2018, 560(7719): 494-8.
[232] BERGEN V, LANGE M, PEIDLI S, et al. Generalizing RNA velocity to transient cell states through dynamical modeling [J]. Nat Biotechnol, 2020, 38(12): 1408-14.
[233] LANGE M, BERGEN V, KLEIN M, et al. CellRank for directed single-cell fate mapping [J]. Nat Methods, 2022, 19(2): 159-70.
[234] JIN S, GUERRERO-JUAREZ C F, ZHANG L, et al. Inference and analysis of cell-cell communication using CellChat [J]. Nat Commun, 2021, 12(1): 1088.
[235] EFREMOVA M, VENTO-TORMO M, TEICHMANN S A, et al. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes [J]. Nat Protoc, 2020, 15(4): 1484-506.
[236] FANG S, XU M, CAO L, et al. Stereopy: modeling comparative and spatiotemporal cellular heterogeneity via multi-sample spatial transcriptomics [J]. BioRxiv, 2023, 10.1101/2023.12.04.569485.
[237] WOLF F A, ANGERER P, THEIS F J. SCANPY: large-scale single-cell gene expression data analysis [J]. Genome Biol, 2018, 19(1): 15.
[238] BLONDEL V D, GUILLAUME J-L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks [J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): P10008.
[239] TRAAG V A, WALTMAN L, VAN ECK N J. From Louvain to Leiden: guaranteeing well-connected communities [J]. Sci Rep, 2019, 9(1): 5233.
[240] QIU X, ZHU D Y, YAO J, et al. Spateo: multidimensional spatiotemporal modeling of single-cell spatial transcriptomics [J]. BioRxiv, 2022, 10.1101/2022.12.07.519417.
[241] DOBIN A, DAVIS C A, SCHLESINGER F, et al. STAR: ultrafast universal RNA-seq aligner [J]. Bioinformatics, 2013, 29(1): 15-21.
[242] LI H, HANDSAKER B, WYSOKER A, et al. The Sequence Alignment/Map format and SAMtools [J]. Bioinformatics, 2009, 25(16): 2078-9.
[243] LIAO Y, SMYTH G K, SHI W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features [J]. Bioinformatics, 2014, 30(7): 923-30.
[244] LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J]. Genome Biol, 2014, 15(12): 550.
[245] MEI Y, LIU Y B, CAO S, et al. RIF1 promotes tumor growth and cancer stem cell-like traits in NSCLC by protein phosphatase 1-mediated activation of Wnt/β-catenin signaling [J]. Cell Death Dis, 2018, 9(10): 942.
[246] SUN B, ZHONG F-J, XU C, et al. Programmed cell death 10 promotes metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma via PP2Ac-mediated YAP activation [J]. Cell Death & Disease, 2021, 12(9): 849.
[247] YAMAZAKI C, SUGIYAMA M, OHTA T, et al. Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1 [J]. J Immunol, 2013, 190(12): 6071-82.
[248] OHTA T, SUGIYAMA M, HEMMI H, et al. Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis [J]. Scientific Reports, 2016, 6(1): 23505.
[249] FöRSTER R, DAVALOS-MISSLITZ A C, ROT A. CCR7 and its ligands: balancing immunity and tolerance [J]. Nature Reviews Immunology, 2008, 8(5): 362-71.
[250] MORENO AYALA M A, CAMPBELL T F, ZHANG C, et al. CXCR3 expression in regulatory T cells drives interactions with type I dendritic cells in tumors to restrict CD8+ T cell antitumor immunity [J]. Immunity, 2023, 56(7): 1613-30.e5.
[251] SCHUMACHER T N, THOMMEN D S. Tertiary lymphoid structures in cancer [J]. Science, 2022, 375(6576): eabf9419.
[252] WHELAN S, OPHIR E, KOTTURI M F, et al. PVRIG and PVRL2 Are Induced in Cancer and Inhibit CD8(+) T-cell Function [J]. Cancer Immunol Res, 2019, 7(2): 257-68.
[253] ZHANG Q Q, ZHOU D L, LEI Y, et al. Slit2/Robo1 signaling promotes intestinal tumorigenesis through Src-mediated activation of the Wnt/β-catenin pathway [J]. Oncotarget, 2015, 6(5): 3123-35.
[254] ALKAN F K, KORKAYA H. Therapeutic utility of immunosuppressive TREM2+ macrophages: an important step forward in potentiating the immune checkpoint inhibitors [J]. Signal Transduction and Targeted Therapy, 2020, 5(1): 264.
[255] RAVETCH J V, LANIER L L. Immune inhibitory receptors [J]. Science, 2000, 290(5489): 84-9.
[256] RUMPRET M, DRYLEWICZ J, ACKERMANS L J E, et al. Functional categories of immune inhibitory receptors [J]. Nat Rev Immunol, 2020, 20(12): 771-80.
[257] DENG M, GUI X, KIM J, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration [J]. Nature, 2018, 562(7728): 605-9.
[258] BARKAL A A, WEISKOPF K, KAO K S, et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy [J]. Nat Immunol, 2018, 19(1): 76-84.
[259] JIANG P, LAGENAUR C F, NARAYANAN V. Integrin-associated protein is a ligand for the P84 neural adhesion molecule [J]. J Biol Chem, 1999, 274(2): 559-62.
[260] BROWN E J, FRAZIER W A. Integrin-associated protein (CD47) and its ligands [J]. Trends Cell Biol, 2001, 11(3): 130-5.
[261] KHARITONENKOV A, CHEN Z, SURES I, et al. A family of proteins that inhibit signalling through tyrosine kinase receptors [J]. Nature, 1997, 386(6621): 181-6.
[262] FUJIOKA Y, MATOZAKI T, NOGUCHI T, et al. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion [J]. Mol Cell Biol, 1996, 16(12): 6887-99.
[263] TIMMS J F, CARLBERG K, GU H, et al. Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages [J]. Mol Cell Biol, 1998, 18(7): 3838-50.
[264] ALVEY C M, SPINLER K R, IRIANTO J, et al. SIRPA-Inhibited, Marrow-Derived Macrophages Engorge, Accumulate, and Differentiate in Antibody-Targeted Regression of Solid Tumors [J]. Curr Biol, 2017, 27(14): 2065-77 e6.
[265] PAN L, WANG B, CHEN M, et al. Lack of SIRP-alpha reduces lung cancer growth in mice by promoting anti-tumour ability of macrophages and neutrophils [J]. Cell Prolif, 2023, 56(2): e13361.
[266] BIAN Z, SHI L, KIDDER K, et al. Intratumoral SIRPalpha-deficient macrophages activate tumor antigen-specific cytotoxic T cells under radiotherapy [J]. Nat Commun, 2021, 12(1): 3229.
[267] THOMMEN D S, SCHUMACHER T N. T Cell Dysfunction in Cancer [J]. Cancer Cell, 2018, 33(4): 547-62.
[268] ZHAO H, MING T, TANG S, et al. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target [J]. Mol Cancer, 2022, 21(1): 144.
[269] YU R, ZHU B, CHEN D. Type I interferon-mediated tumor immunity and its role in immunotherapy [J]. Cell Mol Life Sci, 2022, 79(3): 191.
[270] HOUSE I G, SAVAS P, LAI J, et al. Macrophage-Derived CXCL9 and CXCL10 Are Required for Antitumor Immune Responses Following Immune Checkpoint Blockade [J]. Clin Cancer Res, 2020, 26(2): 487-504.
[271] OSTUNI R, KRATOCHVILL F, MURRAY P J, et al. Macrophages and cancer: from mechanisms to therapeutic implications [J]. Trends Immunol, 2015, 36(4): 229-39.
[272] CHEN D S, MELLMAN I. Oncology meets immunology: the cancer-immunity cycle [J]. Immunity, 2013, 39(1): 1-10.
[273] SANMAMED M F, CHEN L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization [J]. Cell, 2019, 176(3): 677.
[274] SHARPE A H. Introduction to checkpoint inhibitors and cancer immunotherapy [J]. Immunol Rev, 2017, 276(1): 5-8.
[275] DRAKE C G, LIPSON E J, BRAHMER J R. Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer [J]. Nat Rev Clin Oncol, 2014, 11(1): 24-37.
[276] VESELY M D, ZHANG T, CHEN L. Resistance Mechanisms to Anti-PD Cancer Immunotherapy [J]. Annu Rev Immunol, 2022, 40: 45-74.
[277] KUBLI S P, BERGER T, ARAUJO D V, et al. Beyond immune checkpoint blockade: emerging immunological strategies [J]. Nat Rev Drug Discov, 2021, 20(12): 899-919.
[278] KEREN L, BOSSE M, MARQUEZ D, et al. A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging [J]. Cell, 2018, 174(6): 1373-87 e19.
[279] KIM I S, GAO Y, WELTE T, et al. Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms [J]. Nat Cell Biol, 2019, 21(9): 1113-26.
[280] GUBIN M M, ESAULOVA E, WARD J P, et al. High-Dimensional Analysis Delineates Myeloid and Lymphoid Compartment Remodeling during Successful Immune-Checkpoint Cancer Therapy [J]. Cell, 2018, 175(4): 1014-30 e19.
[281] PITTET M J, MICHIELIN O, MIGLIORINI D. Clinical relevance of tumour-associated macrophages [J]. Nat Rev Clin Oncol, 2022, 19(6): 402-21.
[282] VEILLETTE A, CHEN J. SIRPalpha-CD47 Immune Checkpoint Blockade in Anticancer Therapy [J]. Trends Immunol, 2018, 39(3): 173-84.
[283] CHAO M P, WEISSMAN I L, MAJETI R. The CD47-SIRPalpha pathway in cancer immune evasion and potential therapeutic implications [J]. Curr Opin Immunol, 2012, 24(2): 225-32.
[284] FENG M, JIANG W, KIM B Y S, et al. Phagocytosis checkpoints as new targets for cancer immunotherapy [J]. Nat Rev Cancer, 2019, 19(10): 568-86.
[285] JAISWAL S, JAMIESON C H, PANG W W, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis [J]. Cell, 2009, 138(2): 271-85.
[286] MAJETI R, CHAO M P, ALIZADEH A A, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells [J]. Cell, 2009, 138(2): 286-99.
[287] CHAO M P, ALIZADEH A A, TANG C, et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma [J]. Cell, 2010, 142(5): 699-713.
[288] HUTTER G, THERUVATH J, GRAEF C M, et al. Microglia are effector cells of CD47-SIRPalpha antiphagocytic axis disruption against glioblastoma [J]. Proc Natl Acad Sci U S A, 2019, 116(3): 997-1006.
[289] INGRAM J R, BLOMBERG O S, SOCKOLOSKY J T, et al. Localized CD47 blockade enhances immunotherapy for murine melanoma [J]. Proc Natl Acad Sci U S A, 2017, 114(38): 10184-9.
[290] CHEN J, ZHONG M C, GUO H, et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin [J]. Nature, 2017, 544(7651): 493-7.
[291] ADVANI R, FLINN I, POPPLEWELL L, et al. CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma [J]. N Engl J Med, 2018, 379(18): 1711-21.
[292] VEGLIA F, PEREGO M, GABRILOVICH D. Myeloid-derived suppressor cells coming of age [J]. Nat Immunol, 2018, 19(2): 108-19.
[293] HUANG C, WANG X, WANG Y, et al. Sirpα on tumor-associated myeloid cells restrains antitumor immunity in colorectal cancer independent of its interaction with CD47 [J]. Nature Cancer, 2024, 5(3): 500-16.
[294] AHN E, ARAKI K, HASHIMOTO M, et al. Role of PD-1 during effector CD8 T cell differentiation [J]. Proc Natl Acad Sci U S A, 2018, 115(18): 4749-54.
[295] MENSALI N, GRENOV A, PATI N B, et al. Antigen-delivery through invariant chain (CD74) boosts CD8 and CD4 T cell immunity [J]. Oncoimmunology, 2019, 8(3): 1558663.
[296] OKAZAWA H, MOTEGI S, OHYAMA N, et al. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system [J]. J Immunol, 2005, 174(4): 2004-11.
[297] DONG H, STROME S E, SALOMAO D R, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion [J]. Nat Med, 2002, 8(8): 793-800.
[298] WALDMAN A D, FRITZ J M, LENARDO M J. A guide to cancer immunotherapy: from T cell basic science to clinical practice [J]. Nat Rev Immunol, 2020, 20(11): 651-68.
[299] KHALIL D N, SMITH E L, BRENTJENS R J, et al. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy [J]. Nat Rev Clin Oncol, 2016, 13(5): 273-90.
[300] REN X, ZHANG L, ZHANG Y, et al. Insights Gained from Single-Cell Analysis of Immune Cells in the Tumor Microenvironment [J]. Annu Rev Immunol, 2021, 39: 583-609.
[301] MOLGORA M, ESAULOVA E, VERMI W, et al. TREM2 Modulation Remodels the Tumor Myeloid Landscape Enhancing Anti-PD-1 Immunotherapy [J]. Cell, 2020, 182(4): 886-900 e17.
[302] ZHAO X W, VAN BEEK E M, SCHORNAGEL K, et al. CD47-signal regulatory protein-alpha (SIRPalpha) interactions form a barrier for antibody-mediated tumor cell destruction [J]. Proc Natl Acad Sci U S A, 2011, 108(45): 18342-7.
[303] RING N G, HERNDLER-BRANDSTETTER D, WEISKOPF K, et al. Anti-SIRPalpha antibody immunotherapy enhances neutrophil and macrophage antitumor activity [J]. Proc Natl Acad Sci U S A, 2017, 114(49): E10578-E85.
[304] VAN HELDEN M J, ZWARTHOFF S A, ARENDS R J, et al. BYON4228 is a pan-allelic antagonistic SIRPalpha antibody that potentiates destruction of antibody-opsonized tumor cells and lacks binding to SIRPgamma on T cells [J]. J Immunother Cancer, 2023, 11(4).
[305] GAUTTIER V, PENGAM S, DURAND J, et al. Selective SIRPalpha blockade reverses tumor T cell exclusion and overcomes cancer immunotherapy resistance [J]. J Clin Invest, 2020.
[306] WILLINGHAM S B, VOLKMER J P, GENTLES A J, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors [J]. Proc Natl Acad Sci U S A, 2012, 109(17): 6662-7.
[307] LIU X, PU Y, CRON K, et al. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors [J]. Nat Med, 2015, 21(10): 1209-15.
[308] D. TSENG, J.-P. VOLKMER, B. WILLINGHAM S, et al. Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response [J]. Proceedings of the National Academy of Sciences, 2013, 110(27): 11103-8.
[309] THERUVATH J, MENARD M, SMITH B A H, et al. Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication [J]. Nat Med, 2022, 28(2): 333-44.
[310] LIU M, O'CONNOR R S, TREFELY S, et al. Metabolic rewiring of macrophages by CpG potentiates clearance of cancer cells and overcomes tumor-expressed CD47-mediated 'don't-eat-me' signal [J]. Nat Immunol, 2019, 20(3): 265-75.
[311] SIM J, SOCKOLOSKY J T, SANGALANG E, et al. Discovery of high affinity, pan-allelic, and pan-mammalian reactive antibodies against the myeloid checkpoint receptor SIRPalpha [J]. MAbs, 2019, 11(6): 1036-52.
[312] JHUNJHUNWALA S, HAMMER C, DELAMARRE L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion [J]. Nat Rev Cancer, 2021, 21(5): 298-312.
[313] KROEMER G, GALASSI C, ZITVOGEL L, et al. Immunogenic cell stress and death [J]. Nat Immunol, 2022, 23(4): 487-500.
[314] RIGHELLI D, SOTTOSANTI A, RISSO D. Designing spatial transcriptomic experiments [J]. Nature Methods, 2023, 20(3): 355-6.
[315] YANG R, XU T, ZHANG L, et al. A single-cell atlas depicting the cellular and molecular features in human anterior cruciate ligamental degeneration: A single cell combined spatial transcriptomics study [J]. Elife, 2023, 12.
[316] WEI H, WANG J Y. Role of Polymeric Immunoglobulin Receptor in IgA and IgM Transcytosis [J]. Int J Mol Sci, 2021, 22(5).
[317] BRANDTZAEG P, PRYDZ H. Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins [J]. Nature, 1984, 311(5981): 71-3.
[318] SEIKRIT C, PABST O. The immune landscape of IgA induction in the gut [J]. Semin Immunopathol, 2021, 43(5): 627-37.
[319] WANG S, CHEN Y G. BMP signaling in homeostasis, transformation and inflammatory response of intestinal epithelium [J]. Sci China Life Sci, 2018, 61(7): 800-7.
[320] BINNERTS M E, KIM K A, BRIGHT J M, et al. R-Spondin1 regulates Wnt signaling by inhibiting internalization of LRP6 [J]. Proc Natl Acad Sci U S A, 2007, 104(37): 14700-5.
[321] LEBENSOHN A M, ROHATGI R. R-spondins can potentiate WNT signaling without LGRs [J]. Elife, 2018, 7.
[322] SCHULTE G, BRYJA V. The Frizzled family of unconventional G-protein-coupled receptors [J]. Trends Pharmacol Sci, 2007, 28(10): 518-25.
[323] FRE S, HUYGHE M, MOURIKIS P, et al. Notch signals control the fate of immature progenitor cells in the intestine [J]. Nature, 2005, 435(7044): 964-8.
[324] STANGER B Z, DATAR R, MURTAUGH L C, et al. Direct regulation of intestinal fate by Notch [J]. Proc Natl Acad Sci U S A, 2005, 102(35): 12443-8.
[325] ITO K, LIM A C, SALTO-TELLEZ M, et al. RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis [J]. Cancer Cell, 2008, 14(3): 226-37.
[326] PRABHU K S. The selenoprotein P-LRP5/6-WNT3A complex promotes tumorigenesis in sporadic colorectal cancer [J]. J Clin Invest, 2023, 133(13).
[327] WANG G, BONKOVSKY H L, DE LEMOS A, et al. Recent insights into the biological functions of liver fatty acid binding protein 1 [J]. J Lipid Res, 2015, 56(12): 2238-47.
[328] MCKILLOP I H, GIRARDI C A, THOMPSON K J. Role of fatty acid binding proteins (FABPs) in cancer development and progression [J]. Cellular Signalling, 2019, 62: 109336.
[329] LIU L Z, ZHANG Z, ZHENG B H, et al. CCL15 Recruits Suppressive Monocytes to Facilitate Immune Escape and Disease Progression in Hepatocellular Carcinoma [J]. Hepatology, 2019, 69(1): 143-59.
[330] JI L, QIAN W, GUI L, et al. Blockade of β-Catenin-Induced CCL28 Suppresses Gastric Cancer Progression via Inhibition of Treg Cell Infiltration [J]. Cancer Res, 2020, 80(10): 2004-16.
[331] WANG S, WANG J, CHEN Z, et al. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance [J]. npj Precision Oncology, 2024, 8(1): 31.
[332] ZHANG R, QI F, ZHAO F, et al. Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in colorectal cancer [J]. Cell Death Dis, 2019, 10(4): 273.
[333] ROJAS R, APODACA G. Immunoglobulin transport across polarized epithelial cells [J]. Nature Reviews Molecular Cell Biology, 2002, 3(12): 944-56.
[334] TOKUNAGA R, ZHANG W, NASEEM M, et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy [J]. Cancer Treat Rev, 2018, 63: 40-7.
[335] COLONNA M. The biology of TREM receptors [J]. Nature Reviews Immunology, 2023, 23(9): 580-94.
[336] BINNEWIES M, POLLACK J L, RUDOLPH J, et al. Targeting TREM2 on tumor-associated macrophages enhances immunotherapy [J]. Cell Rep, 2021, 37(3): 109844.
[337] HAND T W, REBOLDI A. Production and Function of Immunoglobulin A [J]. Annu Rev Immunol, 2021, 39: 695-718.
[338] GOMMERMAN J L, ROJAS O L, FRITZ J H. Re-thinking the functions of IgA(+) plasma cells [J]. Gut Microbes, 2014, 5(5): 652-62.
[339] MEYLAN M, PETITPREZ F, BECHT E, et al. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer [J]. Immunity, 2022, 55(3): 527-41.e5.
[340] KDIMATI S, MULLINS C S, LINNEBACHER M. Cancer-Cell-Derived IgG and Its Potential Role in Tumor Development [J]. Int J Mol Sci, 2021, 22(21).
[341] WANG J, LIN D, PENG H, et al. Cancer-derived immunoglobulin G promotes tumor cell growth and proliferation through inducing production of reactive oxygen species [J]. Cell Death Dis, 2013, 4(12): e945.
修改评论