[1] FILIPIČ B, TUŠAR T. Visualization in Multiobjective Optimization[C]//Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2019: 951-974.
[2] INSELBERG A, DIMSDALE B. Parallel Coordinates: A Tool for Visualizing Multi-Dimensional Geometry[C]//Proceedings of the IEEE Conference on Visualization. 1990: 361-378.
[3] LI M, ZHEN L, YAO X. How to Read Many-Objective Solution Sets in Parallel Coordinates [Educational Forum][J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 88-100.
[4] PRYKE A, MOSTAGHIM S, NAZEMI A. Heatmap Visualization of Population Based Multi Objective Algorithms[C]//Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization. 2007: 361-375.
[5] KOOOCHAKSARAEI R H, MENEGHINI I R, COELHO V N, et al. A New Visualization Method in Many-Objective Optimization with Chord Diagram and Angular Mapping[J]. Knowledge-Based Systems, 2017, 138: 134-154.
[6] HOFFMAN P, GRINSTEIN G, MARX K, et al. DNA Visual and Analytic Data Mining[C]// Proceedings of the IEEE Conference on Visualization. 1997: 437-441.
[7] IBRAHIM A, RAHNAMAYAN S, MARTIN M V, et al. 3D-RadVis: Visualization of Pareto Front in Many-Objective Optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation. 2016: 736-745.
[8] TALUKDER A K A, DEB K. PaletteViz: A Visualization Method for Functional Understanding of High-Dimensional Pareto-Optimal Data-Sets to Aid Multi-Criteria Decision Making[J]. IEEE Computational Intelligence Magazine, 2020, 15(2): 36-48.
[9] TUŠAR T, FILIPIČ B. Visualization of Pareto Front Approximations in Evolutionary Multiobjective Optimization: A Critical Review and the Prosection Method[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(2): 225-245.
[10] BLASCO X, HERRERO J M, SANCHIS J, et al. A New Graphical Visualization of N-Dimensional Pareto Front for Decision-Making in Multiobjective Optimization[J]. Information Sciences, 2008, 178(20): 3908-3924.
[11] DEB K, THIELE L, LAUMANNNS M, et al. Scalable Multi-Objective Optimization Test Problems[C]//Proceedings of the IEEE Congress on Evolutionary Computation: Vol. 1. 2002: 825-830.
[12] WALKER D J, EVESON R, FIELDSEND J E. Visualizing Mutually Nondominating Solution Sets in Many-Objective Optimization[J]. IEEE Transactions on Evolutionary Computation, 2012, 17(2): 165-184.
[13] DE FREITAS A R, FLEMING P J, GUIMARAES F G. Aggregation Trees for Visualization and Dimension Reduction in Many-Objective Optimization[J]. Information Sciences, 2015, 298: 288-314.
[14] MASAFUMI Y, TOMOHIRO Y, TAKESHI F. Study on Effect of MOGA with Interactive Island Model using Visualization[C]//Proceedings of the IEEE Congress on Evolutionary Computation. 2010: 1-6.
[15] KUDO F, YOSHIKAWA T. Knowledge Extraction in Multi-Objective Optimization Problem Based on Visualization of Pareto Solutions[C]//Proceedings of the IEEE Congress on Evolutionary Computation. 2012: 1-6.
[16] VALDÉS J J, BARTON A J. Visualizing High Dimensional Objective Spaces for Multi-Objective Optimization: A Virtual Reality Approach[C]//Proceedings of the IEEE Congress on Evolutionary Computation. 2007: 4199-4206.
[17] LOWE D, TIPPING M. Neuroscale: Novel Topographic Feature Extraction using RBF Networks[C]. Advances in Neural Information Processing Systems, 1996, 9.
[18] AGRAWAL G, BLOEBAUM C, LEWIS K. Intuitive Design Selection using Visualized N-Dimensional Pareto Frontier[C]//Proceedings of the AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 2005: 1813.
[19] ANG K H, CHONG G, LI Y. Visualization Technique for Analyzing Non-Dominated Set Comparison[C]//Proceedings of the Asia-Pacific Conference on Simulated Evolution and Learning: Vol. 1. 2002: 36.
[20] ODAYASHI S, SASAKI D. Visualization and Data Mining of Pareto Solutions using Self-Organizing Map[C]//Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization. 2003: 796-809.
[21] WALKER D J, EVERSON R M, FIELDSEND E J. Visualisation and Ordering of Many-Objective Populations[C]//Proceedings of the IEEE Congress on Evolutionary Computation. 2010: 1-8.
[22] KOPPEN M, YOSHIDA K. Visualization of Pareto-Sets in Evolutionary Multi-Objective Optimi-zation[C]//Proceedings of the International Conference on Hybrid Intelligent Systems. 2007: 156-161.
[23] FIELDSEND J, EVERSON R. Visualising High-Dimensional Pareto Relationships in Two-Dimensional Scatterplots[C]//Proceedings of the International Conference Evolutionary Multi-Criterion Optimization. 2013: 558-572.
[24] TRAWINSKI K, CHICA M, PANCHO D P, et al. mograms: A Network-Based Methodology for Visualizing the Set of Nondominated Solutions in Multiobjective Optimization[J]. IEEE Transactions on Cybernetics, 2017, 48(2): 474-485.
[25] WALKER D J, CRAVEN M J. Identifying Good Algorithm Parameters in Evolutionary Multi-and Many-Objective Optimisation: A Visualisation Approach[J]. Applied Soft Computing, 2020, 88: 105902.
[26] DE LORENZO A, MEDVET E, TUŠAR T, et al. An Analysis of Dimensionality Reduction Techniques for Visualizing Evolution[C]//Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2019: 1864-1872.
[27] BORG I, GROENEN P J. Modern Multidimensional Scaling: Theory and Applications[M]. Springer Science & Business Media, 2005.
[28] WALTER M J, WALKER D J, CRAVEN M J. Visualising Population Dynamics to Examine Algorithm Performance[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(6): 1501-1510.
[29] WALTER M J, WALKER D J, CRAVEN M J. Visualising Evolution History in Multi-and Many-Objective Optimisation[C]//Proceedings of the International Conference on Parallel Problem Solving from Nature. 2020: 299-312.
[30] DE SILVA V, TENENBAUM J B. Sparse Multidimensional Scaling using Landmark Points[R]. Technical Report, Stanford University, 2004.
[31] WALTER M J, WALKER D J, CRAVEN M J. An Explainable Visualisation of the Evolutionary Search Process[C]//Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2022: 1794-1802.
[32] LI K, WANG R, ZHANG T, et al. Evolutionary Many-Objective Optimization: A Comparative Study of the State-of-The-Art[J]. IEEE Access, 2018, 6: 26194-26214.
[33] ZITZLER E, THIELE L. Multiobjective Optimization using Evolutionary Algorithms - A Comparative Case Study[C]//Proceedings of the International Conference on Parallel Problem Solving from Nature. 1998: 292-301.
[34] COELLO COELLO C A, REYES SIERRA M. A Study of the Parallelization of a Coevolutionary Multi-objective Evolutionary Algorithm[C]//Proceedings of the Mexican International Conference on Artificial Intelligence. 2004: 688-697.
[35] VAN VELDHUIZEN D A, LAMONT G B, et al. Evolutionary Computation and Convergence to a Pareto Front[C]/Late Breaking Papers at the Genetic Programming. 1998: 221-228.
[36] SCHOTT J R. Fault Tolerant Design using Single and Multicriteria Genetic Algorithm Optimization[D]. Massachusetts Institute of Technology, 1995.
[37] ZITZLER E, DEB K, THIELE L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results[J]. Evolutionary Computation, 2000, 8(2): 173-195.
[38] TIAN Y, SI L, ZHANG X, et al. Evolutionary Large-Scale Multi-Objective Optimization: A Survey[J]. ACM Computing Surveys, 2021, 54(8).
[39] FALCÓN-CARDONA J G, COELLO C A C. Indicator-Based Multi-Objective Evolutionary Algorithms: A Comprehensive Survey[J]. ACM Computing Surveys, 2020, 53(2): 1-35.
[40] COELLO C A C. Evolutionary Algorithms for Solving Multi-Objective Problems[M]. Springer, 2007.
[41] DEB K, AGRAWAL R B, et al. Simulated Binary Crossover for Continuous Search Space[J]. Complex Systems, 1995, 9(2): 115-148.
[42] DEB K, BEYER H G. Self-Adaptive Genetic Algorithms with Simulated Binary Crossover[J]. Evolutionary Computation, 2001, 9(2): 197-221.
[43] KEIM D, ANDRIENKO G, FEKETE J D, et al. Visual Analytics: Definition, Process, and Challenges[M]. Springer, 2008.
[44] 陈为, 沈则潜, 陶煜波, 等. 数据可视化[M]. 电子工业出版社, 2019.
[45] MUNZNER T. A Nested Model for Visualization Design and Validation[J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 921-928.
[46] MUNZNER T. Visualization Analysis and Design[M]. CRC press, 2014.
[47] SEDLMAIR M, MEYER M, MUNZNER T. Design Study Methodology: Reflections from the Trenches and the Stacks[J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2431-2440.
[48] ENDERT A, RIBARSKY W, TURKAY C, et al. The State of the Art in Integrating Machine Learning into Visual Analytics[J]. Computer Graphics Forum, 2017, 36(8): 458-486.
[49] HOHMAN F M, KAHNG M, PIENTA R, et al. Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 25(8): 2674-2693.
[50] YUAN J, CHEN C, YANG W, et al. A Survey of Visual Analytics Techniques for Machine Learning[J]. Computational Visual Media, 2021, 7: 3-36.
[51] ANDRIENKO N, ANDRIENKO G, MIKSCH S, et al. A Theoretical Model for Pattern Discovery in Visual Analytics[J]. Visual Informatics, 2021, 1(1): 23-42.
[52] TZENG F Y, MA K L. Opening the Black Box - Data Driven Visualization of Neural Networks[C]. MUHLBACHER T, PIRINGER H, GRATZL S, et al. Opening the Black Box: Strategies for Increased User Involvement in Existing Algorithm Implementations[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 20(12): 1643-1652.
[53] WANG Z J, TURKO R, SHAIKH O, et al. CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 1396-1406.
[54] LIU D, CUI W, JIN K, et al. DeepTracker: Visualizing the Training Process of Convolutional Neural Networks[J]. ACM Transactions on Intelligent Systems and Technology, 2018, 10(1): 1-25.
[55] LIU M, SHI J, CAO K, et al. Analyzing the Training Processes of Deep Generative Models[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(1): 77-87.
[56] KAHNG M, THORAT N, HORNG D, et al. GAN Lab: Understanding Complex Deep Generative Models using Interactive Visual Experimentation[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(1): 310-320.
[57] GAO L, SHAO Z, LUO Z, et al. TransforLearn: Interactive Visual Tutorial for the Transformer Model[J]. IEEE Transactions on Visualization and Computer Graphics, 2024, 30(1): 891-901.
[58] JIN Z, WANG X, CHENG F, et al. ShortcutLens: A Visual Analytics Approach for Exploring Shortcuts in Natural Language Understanding Dataset[J]. IEEE Transactions on Visualization and Computer Graphics, 2023: 1-15.
[59] YEH C, CHEN Y, WU A, et al. AttentionViz: A Global View of Transformer Attention[J]. IEEE Transactions on Visualization and Computer Graphics, 2024, 30(1): 262-272.
[60] SHAO Z, SUN S, ZHAO Y, et al. Visual Explanation for Open-domain Question Answering with BERT[J]. IEEE Transactions on Visualization and Computer Graphics, 2023: 1-18.
[62] CAWLEY G C, TALBOT N L. On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation[J]. The Journal of Machine Learning Research, 2010, 11: 2079-2107.
[63] RASCHKA S. Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning[A]. 2018.
[64] KOTTHOFF L, THORNTON C, HOOS H H, et al. Auto-WEKA: Automatic Model Selection and Hyperparameter Optimization in WEKA[J]. Automated Machine Learning: Methods, Systems, Challenges, 2019: 81-95.
[65] ZHANG J, WANG Y, MOLINO P, et al. Manifold: A Model-Agnostic Framework for Interpretation and Diagnosis of Machine Learning Models[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(1): 364-373.
[66] GLEICHER M, BARVE A, YU X, et al. Boxer: Interactive Comparison of Classifier Results[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 39(3): 181-193.
[67] PISTER A, BUONO P, FEKETE J D, et al. Integrating Prior Knowledge in Mixed-Initiative Social Network Clustering[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 1775-1785.
[68] XIE T, MA Y, KANG J, et al. FairRankVis: A Visual Analytics Framework for Exploring Algorithmic Fairness in Graph Mining Models[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(1): 368-377.
[69] CHOO J, LIU S. Explainable Deep Learning[J]. IEEE Computer Graphics and Applications, 2018, 38(04): 84-92.
[70] La Rosa B, BLASILLI G, BOURQUI R, et al. State of the Art of Visual Analytics for eXplainable Deep Learning[J]. Computer Graphics Forum, 2023, 42(1): 319-355.
[71] YE Y, HUANG R, ZENG W. VISAtlas: An Image-based Exploration and Query System for Large Visualization Collections via Neural Image Embedding[J]. IEEE Transactions on Visu-alization and Computer Graphics, 2022: 1-15.
[72] MURUGESAN S, MALIK S, DU F, et al. DeepCompare: Visual and Interactive Comparison of Deep Learning Model Performance[J]. IEEE Computer Graphics and Applications, 2019, 39(5): 47-59.
[73] ZENG H, HALEEM H, PLANTAZ X, et al. CNNComparator: Comparative Analytics of Convolutional Neural Networks[C]. Proceedings of the Workshop on Visual Analytics for Deep Learning. 2017.
[74] XUAN X, ZHANG X, KWON O H, et al. VAC-CNN: A Visual Analytics System for Comparative Studies of Deep Convolutional Neural Networks[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(6): 2326-2337.
[75] WANG Q, MING Y, JIN Z, et al. ATMSeer: Increasing Transparency and Controllability in Automated Machine Learning[C]. Proceedings of the ACM CHI Conference on Human Factors in Computing Systems. 2019: 1-12.
[76] ONO J P, CASTELO S, LOPEZ R, et al. PipelineProfiler: A Visual Analytics Tool for the Exploration of AutoML Pipelines[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 390-400.
[77] MA Y, FAN A, HE J, et al. A Visual Analytics Framework for Explaining and Diagnosing Transfer Learning Processes[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 1385-1395.
[78] YANG W, LI Z, LIU M, et al. Diagnosing Concept Drift with Visual Analytics[C]. IEEE Conference on Visual Analytics Science and Technology. 2020.
[79] KIM H, CHOJ J, LEE C, et al. PIVE: Per-Iteration Visualization Environment for Real-Time Interactions with Dimension Reduction and Clustering[C]. AAAI Conference on Artificial Intelligence. 2017: 1001-1009.
[80] BLACK J, DEB K. Pymoo: Multi-Objective Optimization in Python[J]. IEEE Access, 2020, 8: 89497-89509.
[81] TIAN Y, CHENG R, ZHANG X, et al. PlatEMO: A MATLAB Platform for Evolutionary Multi-Objective Optimization [Educational Forum][J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87.
[82] VAN DER MAATEN L, HINTON G. Visualizing Data using t-SNE.[J]. Journal of Machine Learning Research, 2008, 9(11).
[83] MCINNES L, HEALY J, MELVILLE J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction[A]. 2018.
[84] LIU S, MALJOVEC D, WANG B, et al. Visualizing High-Dimensional Data: Advances in the Past Decade[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 23(3): 1249-1268.
[85] CAMPELLO R J, MOULAVI D, SANDER J. Density-Based Clustering Based on Hierarchical Density Estimates[C]. Pacific-Asia Conference on Knowledge Discovery and Data Mining. 2013: 160-172.
[86] BOSTOCK M, OGIEVETSYY V, HEER J. D3: Data-Driven Documents[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2301-2309.
[87] HE C, TIAN Y, WANG H, et al. A Repository of Real-World Datasets for Data-Driven Evolutionary Multiobjective Optimization[J]. Complex & Intelligent Systems, 2020, 6(1): 189-197.
[88] DEB K, PRATAP A, AGARWAL S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[89] ZHANG Q, LI H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[90] BEUME N, NAUJOKS B, EMMERICH M. SMS-EMOA: Multiobjective Selection Based on Dominated Hypervolume[J]. European Journal of Operational Research, 2007, 181(3): 1653-1669.
[91] GLEICHER M. Considerations for Visualizing Comparison[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(1): 413-423.
[92] Shneiderman B. The Eyes Have it: A Task by Data Type Taxonomy for Information Visualizations[C]. IEEE Symposium on Visual Languages. 1996: 336-343.
[93] MÜLLER M. Dynamic Time Warping[J]. Information Retrieval for Music and Motion, 2007: 69-84.
[94] KAMADA T, KAWAI S. An Algorithm for Drawing General Undirected Graphs[J]. Information Processing Letters, 1989, 31(1): 7-15.
[95] MCINNES L, HEALY J, ASTELS S, et al. HDBSCAN: Hierarchical Density Based Clustering[J]. J. Open Source Softw., 2017, 2(11): 205.
[96] LIU S, XIAO J, JIANG J, et al. Visual Diagnosis of Tree Boosting Methods[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 24(1): 163-173.
[97] YUAN J, XIANG S, XIA J, et al. Evaluation of Sampling Methods for Scatterplots[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 1720-1730.
[98] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: Identifying Density-Based Local Outliers[C]. Proceedings of the ACM SIGMOD International Conference on Management of Data. 2000: 93-104.
[99] YUAN Y, XU H, WANG B, et al. A New Dominance Relation-Based Evolutionary Algorithm for Many-Objective Optimization[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(1): 16-37.
[100] TIAN Y, HE C, CHENG R, et al. A Multistage Evolutionary Algorithm for Better Diversity Preservation in Multiobjective Optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(9): 5880-5894.
[101] YANG X, ZOU J, JANG S, et al. A Fuzzy Decision Variables Framework For Large-Scale Multiobjective Optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 27 (3): 445-459.
[102] DEB K, JAIN H. An Evolutionary Many-Objective Optimization Algorithm using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems with Box Constraints[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 577-601.
[103] XIANG Y, ZHOU Y, LI M, et al. A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 21(1): 131-152.
修改评论