[1] ABBASS K, QASIM M Z, SONG H, et al. A Review of the Global Climate Change Impacts, Adaptation, and Sustainable Mitigation Measures [J]. Environmental Science and Pollution Research, 2022, 29(28): 42539-42559.
[2] HARPER S L, CUNSOLO A, BABUJEE A, et al. Climate Change and Health in North America: Literature Review Protocol [J]. Systematic Reviews, 2021, 10(1): 3-15.
[3] WEI Y-M, CHEN K, KANG J-N, et al. Policy and Management of Carbon Peaking and Carbon Neutrality: A Literature Review [J]. Engineering, 2022, 14(7): 52-63.
[4] KEMPASIDDAIAH M, SREE RAJ K A, KANDATHIL V, et al. Waste Biomass-Derived Carbon-Supported Palladium-Based Catalyst for Cross-Coupling Reactions and Energy Storage Applications [J]. Applied Surface Science, 2021, 570(1): 151156-151169.
[5] EGOROVA K S, KOLESNIKOV A E, POSVYATENKO A V, et al. Establishing the Main Determinants of the Environmental Safety of Catalytic Fine Chemical Synthesis with Catalytic Cross-Coupling Reactions [J]. Green Chemistry, 2024, 26(5): 2825-2841.
[6] NAGIB D A. Asymmetric Catalysis in Radical Chemistry [J]. Chemical Reviews, 2022, 122(21): 15989-15992.
[7] XIANG S H, TAN B. Advances in Asymmetric Organocatalysis over the Last 10 Years [J]. Nature Communications, 2020, 11(1): 3786-3790.
[8] SCHETTINI R, DELLA SALA G. New Trends in Asymmetric Catalysis [J]. Catalysts, 2021, 11(3): 306-308.
[9] JOHANSSON SEECHURN C C, KITCHING M O, COLACOT T J, et al. Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize [J]. Angewandte Chemie International Edition, 2012, 51(21): 5062-5085.
[10] BIFFIS A, CENTOMO P, DEL ZOTTO A, et al. Pd Metal Catalysts for Cross-Couplings and Related Reactions in the 21st Century: A Critical Review [J]. Chemical Reviews, 2018, 118(4): 2249-2295.
[11] ARMIN DE MEIJERE S B, MARTIN OESTREICH. Metal Catalyzed Cross-Coupling Reactions and More [M]. Weinheim: Wiley‐VCH, 2014.
[12] CHOI J, FU G C. Transition Metal-Catalyzed Alkyl-Alkyl Bond Formation: Another Dimension in Cross-Coupling Chemistry [J]. Science, 2017, 356(6334): eaaf7230.
[13] FU G C. Transition-Metal Catalysis of Nucleophilic Substitution Reactions: A Radical Alternative to SN1 and SN2 Processes [J]. ACS Central Science, 2017, 3(7): 692-700.
[14] DONG X Y, LI Z L, GU Q S, et al. Ligand Development for Copper-Catalyzed Enantioconvergent Radical Cross-Coupling of Racemic Alkyl Halides [J]. Journal of the American Chemical Society, 2022, 144(38): 17319-17329.
[15] CHERNEY A H, KADUNCE N T, REISMAN S E. Enantioselective and Enantiospecific Transition-Metal-Catalyzed Cross-Coupling Reactions of Organometallic Reagents to Construct C-C Bonds [J]. Chemical Reviews, 2015, 115(17): 9587-9652.
[16] ZHOU H, LI Z-L, GU Q-S, et al. Ligand-Enabled Copper(I)-Catalyzed Asymmetric Radical C(sp3)–C Cross-Coupling Reactions [J]. ACS Catalysis, 2021, 11(13): 7978-7986.
[17] LI B, LI T, ALIYU M A, et al. Enantioselective Palladium-Catalyzed Cross-Coupling of Alpha-Bromo Carboxamides and Aryl Boronic Acids [J]. Angewandte Chemie International Edition, 2019, 58(33): 11355-11359.
[18] 徐明华. 铜催化的不对称 Sonogashira 碳(sp3)–碳(sp)偶联反应 [J]. 科学通报, 2019, 64(36): 3776-3778.
[19] 程磊, 周其林. 镍催化构筑 C(sp3)— C(sp3)键反应研究进展 [J]. 化学学报, 2020, 78(10): 1017-1029.
[20] 董晓阳. 铜催化末端炔烃的自由基不对称反应研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
[21] HUANG C, WAN Z, ZHU A, et al. Copper Catalyzed Enantioconvergent Nucleophilic Substitutions [J]. Chinese Journal of Chemistry, 2024, 42: 1161-1174.
[22] 王璐锦, 阴国印. 光镍双催化实现 C(sp)—C(sp3)对映收敛还原交叉偶联反应 [J]. 有机化学, 2023, 43(6): 2264-2266.
[23] TASKER S Z, STANDLEY E A, JAMISON T F. Recent Advances in Homogeneous Nickel Catalysis [J]. Nature, 2014, 509(7500): 299-309.
[24] QUASDORF K W, OVERMAN L E. Catalytic Enantioselective Synthesis of Quaternary Carbon Stereocentres [J]. Nature, 2014, 516(7530): 181-191.
[25] LIU Y, HAN S J, LIU W B, et al. Catalytic Enantioselective Construction of Quaternary Stereocenters: Assembly of Key Building Blocks for the Synthesis of Biologically Active Molecules [J]. Accounts of Chemical Research, 2015, 48(3): 740-751.
[26] ZENG X P, CAO Z Y, WANG Y H, et al. Catalytic Enantioselective Desymmetrization Reactions to All-Carbon Quaternary Stereocenters [J]. Chemical Reviews, 2016, 116(12): 7330-7396.
[27] EGOROVA K S, ANANIKOV V P. Which Metals Are Green for Catalysis? Comparison of the Toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au Salts [J]. Angewandte Chemie International Edition, 2016, 55(40): 12150-12162.
[28] TRAMMELL R, RAJABIMOGHADAM K, GARCIA-BOSCH I. Copper-Promoted Functionalization of Organic Molecules: From Biologically Relevant Cu/O2 Model Systems to Organometallic Transformations [J]. Chemical Reviews, 2019, 119(4): 2954-3031.
[29] 邓维, 刘磊, 郭庆祥. 铜催化交叉偶联反应研究的新进展 [J]. 有机化学, 2004, 24(2): 150-165.
[30] ZHANG Q, TONG S, WANG M X. Unraveling the Chemistry of High Valent Arylcopper Compounds and Their Roles in Copper-Catalyzed Arene C-H Bond Transformations Using Synthetic Macrocycles [J]. Accounts of Chemical Research, 2022, 55(19): 2796-2810.
[31] XIAO H, ZHANG Z, FANG Y, et al. Radical Trifluoromethylation [J]. Chemical Society Reviews, 2021, 50(11): 6308-6319.
[32] LU F D, CHEN J, JIANG X, et al. Recent Advances in Transition-Metal-Catalysed Asymmetric Coupling Reactions with Light Intervention [J]. Chemical Society Reviews, 2021, 50(22): 12808-12827.
[33] XIONG T, ZHANG Q. Recent Advances in the Direct Construction of Enantioenriched Stereocenters through Addition of Radicals to Internal Alkenes [J]. Chemical Society Reviews, 2021, 50(16): 8857-8873.
[34] WANG F, CHEN P, LIU G. Copper-Catalyzed Radical Relay for Asymmetric Radical Transformations [J]. Accounts of Chemical Research, 2018, 51(9): 2036-2046.
[35] ZHANG C, LI Z L, GU Q S, et al. Catalytic Enantioselective C(sp3)-H Functionalization Involving Radical Intermediates [J]. Nature Communications, 2021, 12(1): 475.
[36] CHEN C, PETERS J C, FU G C. Photoinduced Copper-Catalysed Asymmetric Amidation Via Ligand Cooperativity [J]. Nature, 2021, 596(7871): 250-256.
[37] DONG X Y, ZHANG Y F, MA C L, et al. A General Asymmetric Copper-Catalysed Sonogashira C(sp3)-C(sp) Coupling [J]. Nature Chemistry, 2019, 11(12): 1158-1166.
[38] 李桂根. 手性的控制:不对称有机催化——2021年诺贝尔化学奖成果简析 [J]. 科技导报, 2021, 39(22): 121-130.
[39] TROWBRIDGE A, WALTON S M, GAUNT M J. New Strategies for the Transition-Metal Catalyzed Synthesis of Aliphatic Amines [J]. Chemical Reviews, 2020, 120(5): 2613-2692.
[40] KERRU N, GUMMIDI L, MADDILA S, et al. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications [J]. Molecules, 2020, 25(8): 1909-1950.
[41] ALFREDO RICCI L B. Methodologies in Amine Synthesis: Challenges and Applications [M]. Boschstr: WILEY‐VCH, 2021.
[42] Ma D, Yao J. Synthesis of Chiral N-Aryl-α-Amino Acids by Pd-Cu Catalyzed Couplings of Chiral Α-Amino Acids with Aryl Halides [J]. Tetrahedron: Asymmetry, 1996, 7(11): 3075-3078.
[43] 王晔峰, 曾京辉, 崔晓瑞. 铜催化 C-N 交叉偶联反应的研究进展 [J]. 有机化学, 2010, 30(2): 181-199.
[44] UYEDA C, TAN Y, FU G C, et al. A New Family of Nucleophiles for Photoinduced, Copper-Catalyzed Cross-Couplings Via Single-Electron Transfer: Reactions of Thiols with Aryl Halides under Mild Conditions (O °C) [J]. Journal of the American Chemical Society, 2013, 135(25): 9548-9552.
[45] ZIEGLER D T, CHOI J, MUNOZ-MOLINA J M, et al. A Versatile Approach to Ullmann C-N Couplings at Room Temperature: New Families of Nucleophiles and Electrophiles for Photoinduced, Copper-Catalyzed Processes [J]. Journal of the American Chemical Society, 2013, 135(35): 13107-13112.
[46] TAN Y, MUñOZ-MOLINA J M, FU G C, et al. Oxygen Nucleophiles as Reaction Partners in Photoinduced, Copper-Catalyzed Cross-Couplings: O-Arylations of Phenols at Room Temperature [J]. Chemical Science, 2014, 5(7): 2831-2835.
[47] BISSEMBER A C, LUNDGREN R J, CREUTZ S E, et al. Transition-Metal-Catalyzed Alkylations of Amines with Alkyl Halides: Photoinduced, Copper-Catalyzed Couplings of Carbazoles [J]. Angewandte Chemie International Edition, 2013, 52(19): 5129-5133.
[48] DO H Q, BACHMAN S, BISSEMBER A C, et al. Photoinduced, Copper-Catalyzed Alkylation of Amides with Unactivated Secondary Alkyl Halides at Room Temperature [J]. Journal of the American Chemical Society, 2014, 136(5): 2162-2167.
[49] RATANI T S, BACHMAN S, FU G C, et al. Photoinduced, Copper-Catalyzed Carbon-Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature [J]. Journal of the American Chemical Society, 2015, 137(43): 13902-13907.
[50] AHN J M, PETERS J C, FU G C. Design of a Photoredox Catalyst That Enables the Direct Synthesis of Carbamate-Protected Primary Amines Via Photoinduced, Copper-Catalyzed N-Alkylation Reactions of Unactivated Secondary Halides [J]. Journal of the American Chemical Society, 2017, 139(49): 18101-18106.
[51] HE J, CHEN C, FU G C, et al. Visible-Light-Induced, Copper-Catalyzed Three-Component Coupling of Alkyl Halides, Olefins, and Trifluoromethylthiolate to Generate Trifluoromethyl Thioethers [J]. ACS Catalysis, 2018, 8(12): 11741-11748.
[52] BEAUDELOT J, OGER S, PERUSKO S, et al. Photoactive Copper Complexes: Properties and Applications [J]. Chemical Reviews, 2022, 122(22): 16365-16609.
[53] SONG L, CAI L, GONG L, et al. Photoinduced Copper-Catalyzed Enantioselective Coupling Reactions [J]. Chemical Society Reviews, 2023, 52(7): 2358-2376.
[54] 郭晓宁, 吴骊珠. 中国自由基驱动有机合成领域的发展现状和未来挑战 [J]. 科学观察, 2023, 18(1): 2-6.
[55] WANG D, ZHU N, CHEN P, et al. Enantioselective Decarboxylative Cyanation Employing Cooperative Photoredox Catalysis and Copper Catalysis [J]. Journal of the American Chemical Society, 2017, 139(44): 15632-15635.
[56] CHEN H W, LU F D, CHENG Y, et al. Asymmetric Deoxygenative Cyanation of Benzyl Alcohols Enabled by Synergistic Photoredox and Copper Catalysis [J]. Chinese Journal of Chemistry, 2020, 38(12): 1671-1675.
[57] XIA H D, LI Z L, GU Q S, et al. Photoinduced Copper-Catalyzed Asymmetric Decarboxylative Alkynylation with Terminal Alkynes [J]. Angewandte Chemie International Edition, 2020, 59(39): 16926-16932.
[58] MO X, CHEN B, ZHANG G. Copper-Catalyzed Enantioselective Sonogashira Type Coupling of Alkynes with Alpha-Bromoamides [J]. Angewandte Chemie International Edition, 2020, 59(33): 13998-14002.
[59] GUO R, SANG J, XIAO H, et al. Development of Novel Phosphino‐Oxazoline Ligands and Their Application in Asymmetric Alkynlylation of Benzylic Halides [J]. Chinese Journal of Chemistry, 2022, 40(11): 1337-1345.
[60] LI J, NING L, TAN Q, et al. Asymmetric Sonogashira C(sp3)–C(sp) Bond Coupling Enabled by a Copper(I) Complex of a New Guanidine-Hybrid Ligand [J]. Organic Chemistry Frontiers, 2022, 9(22): 6312-6318.
[61] WANG F L, YANG C J, LIU J R, et al. Mechanism-Based Ligand Design for Copper-Catalysed Enantioconvergent C(sp3)-C(sp) Cross-Coupling of Tertiary Electrophiles with Alkynes [J]. Nature Chemistry, 2022, 14(8): 949-957.
[62] MO X, HUANG H, ZHANG G. Tetrasubstituted Carbon Stereocenters Via Copper-Catalyzed Asymmetric Sonogashira Coupling Reactions with Cyclic Gem-Dihaloketones and Tertiary Α-Carbonyl Bromides [J]. ACS Catalysis, 2022, 12(16): 9944-9952.
[63] JIANG S P, DONG X Y, GU Q S, et al. Copper-Catalyzed Enantioconvergent Radical Suzuki-Miyaura C(sp3)-C(sp2) Cross-Coupling [J]. Journal of the American Chemical Society, 2020, 142(46): 19652-19659.
[64] SU X L, YE L, CHEN J J, et al. Copper-Catalyzed Enantioconvergent Cross-Coupling of Racemic Alkyl Bromides with Azole C(sp2)-H Bonds [J]. Angewandte Chemie International Edition, 2021, 60(1): 380-384.
[65] LI C, CHEN B, MA X, et al. Light-Promoted Copper-Catalyzed Enantioselective Alkylation of Azoles [J]. Angewandte Chemie International Edition, 2021, 60(4): 2130-2134.
[66] WANG P F, YU J, GUO K X, et al. Design of Hemilabile N,N,N-Ligands in Copper-Catalyzed Enantioconvergent Radical Cross-Coupling of Benzyl/Propargyl Halides with Alkenylboronate Esters [J]. Journal of the American Chemical Society, 2022, 144(14): 6442-6452.
[67] WANG F L, LIU L, YANG C J, et al. Synthesis of Alpha-Quaternary Beta-Lactams Via Copper-Catalyzed Enantioconvergent Radical C(sp3)-C(sp2) Cross-Coupling with Organoboronate Esters [J]. Angewandte Chemie International Edition, 2023, 62(2): e202214709.
[68] LIPP A, BADIR S O, MOLANDER G A. Stereoinduction in Metallaphotoredox Catalysis [J]. Angewandte Chemie International Edition, 2021, 60(4): 1714-1726.
[69] MAO J, LIU F, WANG M, et al. Cobalt-Bisoxazoline-Catalyzed Asymmetric Kumada Cross-Coupling of Racemic Alpha-Bromo Esters with Aryl Grignard Reagents [J]. Journal of the American Chemical Society, 2014, 136(50): 17662-17668.
[70] JIN M, ADAK L, NAKAMURA M. Iron-Catalyzed Enantioselective Cross-Coupling Reactions of Alpha-Chloroesters with Aryl Grignard Reagents [J]. Journal of the American Chemical Society, 2015, 137(22): 7128-7134.
[71] WANG Z, YIN H, FU G C. Catalytic Enantioconvergent Coupling of Secondary and Tertiary Electrophiles with Olefins [J]. Nature, 2018, 563(7731): 379-383.
[72] WANG Z, YANG Z P, FU G C. Quaternary Stereocentres Via Catalytic Enantioconvergent Nucleophilic Substitution Reactions of Tertiary Alkyl Halides [J]. Nature Chemistry, 2021, 13(3): 236-242.
[73] KAINZ Q M, MATIER C D, BARTOSZEWICZ A, et al. Asymmetric Copper-Catalyzed C-N Cross-Couplings Induced by Visible Light [J]. Science, 2016, 351(6274): 681-684.
[74] BARTOSZEWICZ A, MATIER C D, FU G C. Enantioconvergent Alkylations of Amines by Alkyl Electrophiles: Copper-Catalyzed Nucleophilic Substitutions of Racemic Alpha-Halolactams by Indoles [J]. Journal of the American Chemical Society, 2019, 141(37): 14864-14869.
[75] CHO H, SUEMATSU H, OYALA P H, et al. Photoinduced, Copper-Catalyzed Enantioconvergent Alkylations of Anilines by Racemic Tertiary Electrophiles: Synthesis and Mechanism [J]. Journal of the American Chemical Society, 2022, 144(10): 4550-4558.
[76] ZHANG Y F, DONG X Y, CHENG J T, et al. Enantioconvergent Cu-Catalyzed Radical C-N Coupling of Racemic Secondary Alkyl Halides to Access Alpha-Chiral Primary Amines [J]. Journal of the American Chemical Society, 2021, 143(37): 15413-15419.
[77] ZHANG Y F, WANG J H, YANG N Y, et al. Copper-Catalyzed Enantioconvergent Radical C(sp3)-N Cross-Coupling: Access to α, α-Disubstituted Amino Acids [J]. Angewandte Chemie International Edition, 2023, 62(27): e202302983.
[78] ZUCCARELLO G, BATISTE S M, CHO H, et al. Enantioselective Synthesis of Alpha-Aminoboronic Acid Derivatives Via Copper-Catalyzed N-Alkylation [J]. Journal of the American Chemical Society, 2023, 145(6): 3330-3334.
[79] CHEN C, FU G C. Copper-Catalysed Enantioconvergent Alkylation of Oxygen Nucleophiles [J]. Nature, 2023, 618(7964): 301-307.
[80] TIAN Y, LI X T, LIU J R, et al. A General Copper-Catalysed Enantioconvergent C(sp3)-S Cross-Coupling Via Biomimetic Radical Homolytic Substitution [J]. Nature Chemistry, 2024, 16(3): 466-475.
[81] ZHANG W, TIAN Y, LIU X D, et al. Copper‐Catalyzed Enantioselective C(sp3)−SCF3 Coupling of Carbon‐Centered Benzyl Radicals with (Me4N)SCF3 [J]. Angewandte Chemie International Edition, 2024, 63(11): e2023198.
[82] IWAMOTO H, ENDO K, OZAWA Y, et al. Copper(I)-Catalyzed Enantioconvergent Borylation of Racemic Benzyl Chlorides Enabled by Quadrant-by-Quadrant Structure Modification of Chiral Bisphosphine Ligands [J]. Angewandte Chemie International Edition, 2019, 58(32): 11112-11117.
[83] WANG L-L, ZHOU H, CAO Y-X, et al. A General Copper-Catalysed Enantioconvergent Radical Michaelis–Becker-Type C(sp3)–P Cross-Coupling [J]. Nature Synthesis, 2023, 2(5): 430-438.
[84] KWAN M H T, POKAR N P B, GOOD C, et al. Deactivation Mechanisms of Iodo-Iridium Catalysts in Chiral Amine Racemization [J]. Tetrahedron, 2021, 80: 131823-131827.
[85] CABRE A, VERDAGUER X, RIERA A. Recent Advances in the Enantioselective Synthesis of Chiral Amines Via Transition Metal-Catalyzed Asymmetric Hydrogenation [J]. Chemical Reviews, 2022, 122(1): 269-339.
[86] KOBAYASHI S, MORI Y, FOSSEY J S, et al. Catalytic Enantioselective Formation of C-C Bonds by Addition to Imines and Hydrazones: A Ten-Year Update [J]. Chemical Reviews, 2011, 111(4): 2626-2704.
[87] SHI S L, WONG Z L, BUCHWALD S L. Copper-Catalysed Enantioselective Stereodivergent Synthesis of Amino Alcohols [J]. Nature, 2016, 532(7599): 353-356.
[88] XI Y, MA S, HARTWIG J F. Catalytic Asymmetric Addition of an Amine N-H Bond across Internal Alkenes [J]. Nature, 2020, 588(7837): 254-260.
[89] DAVIES H M, MANNING J R. Catalytic C-H Functionalization by Metal Carbenoid and Nitrenoid Insertion [J]. Nature, 2008, 451(7177): 417-424.
[90] LI M L, YU J H, LI Y H, et al. Highly Enantioselective Carbene Insertion into N-H Bonds of Aliphatic Amines [J]. Science, 2019, 366(6468): 990-994.
[91] ROSSLER S L, PETRONE D A, CARREIRA E M. Iridium-Catalyzed Asymmetric Synthesis of Functionally Rich Molecules Enabled by (Phosphoramidite,Olefin) Ligands [J]. Accounts of Chemical Research, 2019, 52(9): 2657-2672.
[92] LAUDER K, TOSCANI A, SCALACCI N, et al. Synthesis and Reactivity of Propargylamines in Organic Chemistry [J]. Chemical Reviews, 2017, 117(24): 14091-14200.
[93] WANG Y, HAIGHT I, GUPTA R, et al. What Is in Our Kit? An Analysis of Building Blocks Used in Medicinal Chemistry Parallel Libraries [J]. Journal of Medicinal Chemistry, 2021, 64(23): 17115-17122.
[94] THORPE T W, MARSHALL J R, HARAWA V, et al. Multifunctional Biocatalyst for Conjugate Reduction and Reductive Amination [J]. Nature, 2022, 604(7904): 86-91.
[95] BROWN D G, BOSTROM J. Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone? [J]. Journal of Medicinal Chemistry, 2016, 59(10): 4443-4458.
[96] KIM H, HEO J, KIM J, et al. Copper-Mediated Amination of Aryl C-H Bonds with the Direct Use of Aqueous Ammonia Via a Disproportionation Pathway [J]. Journal of the American Chemical Society, 2018, 140(43): 14350-14356.
[97] LEE H, AHN J M, OYALA P H, et al. Investigation of the C-N Bond-Forming Step in a Photoinduced, Copper-Catalyzed Enantioconvergent N-Alkylation: Characterization and Application of a Stabilized Organic Radical as a Mechanistic Probe [J]. Journal of the American Chemical Society, 2022, 144(9): 4114-4123.
[98] FISCHER C, FU G C. Asymmetric Nickel-Catalyzed Negishi Cross-Couplings of Secondary Alpha-Bromo Amides with Organozinc Reagents [J]. Journal of the American Chemical Society, 2005, 127(13): 4594-4595.
[99] HUANG W, WAN X, SHEN Q. Enantioselective Construction of Trifluoromethoxylated Stereogenic Centers by a Nickel-Catalyzed Asymmetric Suzuki-Miyaura Coupling of Secondary Benzyl Bromides [J]. Angewandte Chemie International Edition, 2017, 56(39): 11986-11989.
[100] MU X, SHIBATA Y, MAKIDA Y, et al. Control of Vicinal Stereocenters through Nickel-Catalyzed Alkyl-Alkyl Cross-Coupling [J]. Angewandte Chemie International Edition, 2017, 56(21): 5821-5824.
[101] HARTWIG J F, STANLEY L M. Mechanistically Driven Development of Iridium Catalysts for Asymmetric Allylic Substitution [J]. Accounts of Chemical Research, 2010, 43(12): 1461-1475.
[102] TROST B, SCHULTZ J. Palladium-Catalyzed Asymmetric Allylic Alkylation Strategies for the Synthesis of Acyclic Tetrasubstituted Stereocenters [J]. Synthesis, 2018, 51(01): 1-30.
[103] CHENG Q, TU H F, ZHENG C, et al. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions [J]. Chemical Reviews, 2019, 119(3): 1855-1969.
[104] CHEN J J, FANG J H, DU X Y, et al. Enantioconvergent Cu-Catalysed N-Alkylation of Aliphatic Amines [J]. Nature, 2023, 618(7964): 294-300.
[105] YE C-X, DANSBY D R, CHEN S, et al. Expedited Synthesis of Α-Amino Acids by Single-Step Enantioselective Α-Amination of Carboxylic Acids [J]. Nature Synthesis, 2023, 2(7): 645-652.
[106] LANG K, HU Y, CINDY LEE W C, et al. Combined Radical and Ionic Approach for the Enantioselective Synthesis of Beta-Functionalized Amines from Alcohols [J]. Nature Synthesis, 2022, 1(7): 548-557.
[107] XU P, XIE J, WANG D S, et al. Metalloradical Approach for Concurrent Control in Intermolecular Radical Allylic C-H Amination [J]. Nature Chemistry, 2023, 15(4): 498-507.
[108] DING C H, HOU X L. Catalytic Asymmetric Propargylation [J]. Chemical Reviews, 2011, 111(3): 1914-1937.
[109] EVANS P, GRANGE R, CLIZBE E. Recent Developments in Asymmetric Allylic Amination Reactions [J]. Synthesis, 2016, 48(18): 2911-2968.
[110] ROY R, SAHA S. Scope and Advances in the Catalytic Propargylic Substitution Reaction [J]. RSC Advances, 2018, 8(54): 31129-31193.
[111] ABDINE R A A, HEDOUIN G, COLOBERT F, et al. Metal-Catalyzed Asymmetric Hydrogenation of C═N Bonds [J]. ACS Catalysis, 2020, 11(1): 215-247.
[112] ZHANG X, TAN C-H. Stereospecific and Stereoconvergent Nucleophilic Substitution Reactions at Tertiary Carbon Centers [J]. Chem, 2021, 7(6): 1451-1486.
[113] JIN L M, XU P, XIE J, et al. Enantioselective Intermolecular Radical C-H Amination [J]. Journal of the American Chemical Society, 2020, 142(49): 20828-20836.
[114] LIU Y, DIAO H, HONG G, et al. Iridium-Catalyzed Enantioconvergent Borrowing Hydrogen Annulation of Racemic 1,4-Diols with Amines [J]. Journal of the American Chemical Society, 2023, 145(9): 5007-5016.
[115] LIU B, ZHU S F, ZHANG W, et al. Highly Enantioselective Insertion of Carbenoids into N-H Bonds Catalyzed by Copper Complexes of Chiral Spiro Bisoxazolines [J]. Journal of the American Chemical Society, 2007, 129(18): 5834-5835.
[116] GUO W, LUO Y, SUNG H H, et al. Chiral Phosphoric Acid Catalyzed Enantioselective Synthesis of Alpha-Tertiary Amino Ketones from Sulfonium Ylides [J]. Journal of the American Chemical Society, 2020, 142(33): 14384-14390.
[117] CHEN J J, ZHANG J Y, FANG J H, et al. Copper-Catalyzed Enantioconvergent Radical C(sp3)-N Cross-Coupling of Activated Racemic Alkyl Halides with (Hetero)Aromatic Amines under Ambient Conditions [J]. Journal of the American Chemical Society, 2023, 145(27): 14686-14696.
[118] CHOI S, CHOI Y, KIM Y, et al. Copper-Catalyzed C-C Cross-Couplings of Tertiary Alkyl Halides with Anilines Enabled by Cyclopropenimine-Based Ligands [J]. Journal of the American Chemical Society, 2023, 145(45): 24897-24905.
[119] CHAN J Z, YESILCIMEN A, CAO M, et al. Direct Conversion of N-Alkylamines to N-Propargylamines through C-H Activation Promoted by Lewis Acid/Organocopper Catalysis: Application to Late-Stage Functionalization of Bioactive Molecules [J]. Journal of the American Chemical Society, 2020, 142(38): 16493-16505.
[120] BOURBEAU M P, ASHTON K S, YAN J, et al. Nonracemic Synthesis of Gk-Gkrp Disruptor Amg-3969 [J]. The Journal of Organic Chemistry, 2014, 79(8): 3684-3687.
[121] MORGAN D M, REID C M, GUIRY P J. Enantioselective Copper-Catalyzed Alkynylation of Quinolones Using Chiral P,N Ligands [J]. The Journal of Organic Chemistry, 2024, 89(3): 1993-2000.
[122] LANGSTON J W, IRWIN I, LANGSTON E B, et al. Pargyline Prevents Mptp-Induced Parkinsonism in Primates [J]. Science, 1984, 225(4669): 1480-1482.
[123] CHEN J J, SWOPE D M. Clinical Pharmacology of Rasagiline: A Novel, Second-Generation Propargylamine for the Treatment of Parkinson Disease [J]. The Journal of Clinical Pharmacology, 2005, 45(8): 878-894.
[124] BOLEA I, GELLA A, UNZETA M. Propargylamine-Derived Multitarget-Directed Ligands: Fighting Alzheimer's Disease with Monoamine Oxidase Inhibitors [J]. Journal of Neural Transmission, 2013, 120(6): 893-902.
[125] ARSHADI S, VESSALLY E, EDJLALI L, et al. N-Propargylamines: Versatile Building Blocks in the Construction of Thiazole Cores [J]. The Beilstein Journal of Organic Chemistry, 2017, 13: 625-638.
[126] CARDOSO F S, ABBOUD K A, APONICK A. Design, Preparation, and Implementation of an Imidazole-Based Chiral Biaryl P,N-Ligand for Asymmetric Catalysis [J]. Journal of the American Chemical Society, 2013, 135(39): 14548-14551.
[127] DETZ R J, DELVILLE M M, HIEMSTRA H, et al. Enantioselective Copper-Catalyzed Propargylic Amination [J]. Angewandte Chemie International Edition, 2008, 47(20): 3777-3780.
[128] LIU L, GUO K X, TIAN Y, et al. Copper-Catalyzed Intermolecular Enantioselective Radical Oxidative C(sp3)-H/C(sp)-H Cross-Coupling with Rationally Designed Oxazoline-Derived N,N,P(O)-Ligands [J]. Angewandte Chemie International Edition, 2021, 60(51): 26710-26717.
[129] ZHANG H, CHEN B, ZHANG G. Enantioselective 1,2-Alkylhydroxylmethylation of Alkynes Via Chromium/Cobalt Cocatalysis [J]. Organic Letters, 2020, 22(2): 656-660.
[130] HU B, BEZPALKO M W, FEI C, et al. Origin of and a Solution for Uneven Efficiency by Cinchona Alkaloid-Derived, Pseudoenantiomeric Catalysts for Asymmetric Reactions [J]. Journal of the American Chemical Society, 2018, 140(42): 13913-13920.
[131] WANG Y, YANG L, LIU S, et al. Surgical Cleavage of Unstrained C(sp3)−C(sp3) Bonds in General Alcohols for Heteroaryl C−H Alkylation and Acylation [J]. Advanced Synthesis & Catalysis, 2019, 361(19): 4568-4574.
[132] SARKAR S M, TAIRA Y, NAKANO A, et al. Organocatalytic Asymmetric Synthesis of Quinine and Quinidine [J]. Tetrahedron Letters, 2011, 52(8): 923-927.
[133] LINE N J, WITHERSPOON B P, HANCOCK E N, et al. Synthesis of Ent-
[3]-Ladderanol: Development and Application of Intramolecular Chirality Transfer
[2+2] Cycloadditions of Allenic Ketones and Alkenes [J]. Journal of the American Chemical Society, 2017, 139(41): 14392-14395.
[134] XU Q, XIE H, ZHANG E-L, et al. Selective Catalytic Hofmann N-Alkylation of Poor Nucleophilic Amines and Amides with Catalytic Amounts of Alkyl Halides [J]. Green Chemistry, 2016, 18(14): 3940-3944.
[135] BHATTACHARYYA S, PATHAK U, MATHUR S, et al. Selective N-Alkylation of Primary Amines with R–NH2·HBr and Alkyl Bromides Using a Competitive Deprotonation/Protonation Strategy [J]. RSC Advances, 2014, 4(35): 18229-18233.
[136] LUCAS E L, JARVO E R. Stereospecific and Stereoconvergent Cross-Couplings between Alkyl Electrophiles [J]. Nature Reviews Chemistry, 2017, 1(9): 65-71.
[137] BROOKS W H, GUIDA W C, DANIEL K G. The Significance of Chirality in Drug Design and Development [J]. Current Topics in Medicinal Chemistry, 2011, 11(7): 760-770.
[138] ZHOU Y, WU S, ZHOU H, et al. Chiral Pharmaceuticals: Environment Sources, Potential Human Health Impacts, Remediation Technologies and Future Perspective [J]. Environment International, 2018, 121(1): 523-537.
[139] CERAMELLA J, IACOPETTA D, FRANCHINI A, et al. A Look at the Importance of Chirality in Drug Activity: Some Significative Examples [J]. Applied Sciences, 2022, 12(21): 10909-10932.
[140] NADENDLA R. Molecular Modification: A Strategy in Drug Discovery and Drug Design [J]. Biomedical Journal of Scientific & Technical Research, 2023, 52(2): 43511-43522.
[141] HAO Y, LI R, MIN Y. Platinum-Based Twin Drug Modulates Tumor-Infiltrating Immune Cells to Improve Immune Checkpoint Blockade Therapy [J]. Journal of Medicinal Chemistry, 2023, 66(19): 13607-13621.
[142] GOLDEN D L, SUH S E, STAHL S S. Radical C(sp3)-H Functionalization and Cross-Coupling Reactions [J]. Nature Reviews Chemistry, 2022, 6(6): 405-427.
[143] ZHANG T, WU Y-H, WANG N-X, et al. Advances in C(sp3)–H Bond Functionalization Via Radical Processes [J]. Synthesis, 2019, 51(24): 4531-4548.
[144] JANKOVIC J, TAN E K. Parkinson's Disease: Etiopathogenesis and Treatment [J]. Journal of Neurology, Neurosurgery & Psychiatry, 2020, 91(8): 795-808.
[145] SHARAF J, WILLIAMS K D, TARIQ M, et al. The Efficacy of Safinamide in the Management of Parkinson's Disease: A Systematic Review [J]. Cureus, 2022, 14(9): e29118.
[146] OMORI A T, HIGA V M. A Two Hour Synthesis of the Anti-Parkinson Drug Safinamide Methanesulfonate [J]. Synlett, 2021, 32(14): 1433-1436.
修改评论