[1]JIA L, YOU L C. Seventy-year major research progress in plant hormones by Chinese scholars [J]. Zhongguo Kexue: Shengming Kexue, 2019, 49(10): 1227-81.
[2]BAKSHI A, SHEMANSKY J M, CHANG C R, et al. History of research on the plant hormone ethylene [J]. J Plant Growth Regul, 2015, 34(4): 809-27.
[3]JOHNSON P R, ECKER J R. The ethylene gas signal transduction pathway: a molecular perspective [J]. Annu Rev Genet, 1998, 32: 227-54.
[4]FAHNESTOCK G W. Memoranda of the effects of carburetted hydrogen gas upon a collection of exotic plants [J]. Proc Acad Nat Sci Phil, 1858, 9-10: 118-34.
[5]GIRARDIN J P L. Einfluss des leuchtgases auf die promenaden und Strassenbaume [J]. Agrikultur, 1864, 7: 199-200.
[6]NELJUBOV D N. Uber die horizontale nutation der stengel von Pisum sativum und einiger anderen pflanzen [J]. Beih Bot Zentralb, 1901, 10: 128-39.
[7]CROCKER W, KNIGHT L I, ROSE R C. A delicate seedling test [J]. Science, 1913, 37: 380-1.
[8]BURG S P, BURG E A. Ethylene action and the ripening of fruits [J]. Science, 1965, 148(3674): 1190-6.
[9]CHANG C, KWOK S F, BLEECKER A B, et al. Arabidopsis ethylene-response gene ETR1: Similarity of product to two-component regulators [J]. Science, 1993, 262(5133): 539-44.
[10]CHEN Y F, RANDLETT M D, FINDELL J L, et al. Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis [J]. J Biol Chem, 2002, 277(22): 19861-6.
[11]GREFEN C, STäDELE K, RŮŽIČKA K, et al. Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members [J]. Mol Plant, 2008, 1(2): 308-20.
[12]HUA J, CHANG C, SUN Q, et al. Ethylene insensitivity conferred by Arabidopsis ERS gene [J]. Science, 1995, 269(5231): 1712-4.
[13]SAKAI H, HUA J, CHEN Q G, et al. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis [J]. Proc Natl Acad Sci, 1998, 95(10): 5812-7.
[14]HUA J, SAKAI H, NOURIZADEH S, et al. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis [J]. Plant Cell, 1998, 10(8): 1321-32.
[15]SCHALLER G E, BLEECKER A B. Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene [J]. Science, 1995, 270(5243): 1809-11.
[16]KONISHI M, YANAGISAWA S. Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3 [J]. Plant J, 2008, 55(5): 821-31.
[17]HOPPEN C, GROTH G. Novel insights into the transfer routes of the essential copper co-factor to the ethylene plant hormone receptor family [J]. Plant Signal Behav, 2020, 15(2): 1716512.
[18]WANG W, ESCH J J, SHIU S H, et al. Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis [J]. Plant Cell, 2006, 18(12): 3429-42.
[19]ZHOU X, LIU Q, XIE F, et al. RTE1 is a Golgi-associated and ETR1-dependent negative regulator of ethylene responses [J]. Plant Physiol, 2007, 145(1): 75-86.
[20]DONG C H, JANG M, SCHAREIN B, et al. Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1 [J]. J Biol Chem, 2010, 285(52): 40706-13.
[21]QIU L, XIE F, YU J, et al. Arabidopsis RTE1 is essential to ethylene receptor ETR1 amino-terminal signaling independent of CTR1 [J]. Plant Physiol, 2012, 159(3): 1263-76.
[22]WANG F, WANG L, QIAO L, et al. Arabidopsis CPR5 regulates ethylene signaling via molecular association with the ETR1 receptor [J]. J Integr Plant Biol, 2017, 59(11): 810-24.
[23]SHI H, LIU R, XUE C, et al. Seedlings transduce the depth and mechanical pressure of covering soil using COP1 and ethylene to regulate EBF1/EBF2 for soil emergence [J]. Curr Biol, 2016, 26(2): 139-49.
[24]JU C, CHANG C. Mechanistic insights in ethylene perception and signal transduction [J]. Plant Physiol, 2015, 169(1): 85-95.
[25]WANG H, SUN Y, CHANG J, et al. Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling [J]. Plant Mol Biol, 2016, 91(4-5): 471-84.
[26]HUA J, MEYEROWITZ E M. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana [J]. Cell, 1998, 94(2): 261-71.
[27]QU X, HALL B P, GAO Z, et al. A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1 [J]. BMC Plant Biol, 2007, 7: 3.
[28]BERLETH M, BERLETH N, MINGES A, et al. Molecular analysis of protein-protein interactions in the ethylene pathway in the different ethylene receptor subfamilies [J]. Front Plant Sci, 2019, 10: 726.
[29]BINDER B M. Ethylene signaling in plants [J]. J Biol Chem, 2020, 295(22): 7710-25.
[30]GAO Z, CHEN Y F, RANDLETT M D, et al. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes [J]. J Biol Chem, 2003, 278(36): 34725-32.
[31]HUANG Y F, LI H, HUTCHISON C E, et al. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis [J]. Plant J, 2003, 33(2): 221-33.
[32]KIEBER J J, ROTHENBERG M, ROMAN G, et al. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases [J]. Cell, 1993, 72(3): 427-41.
[33]TESTERINK C, LARSEN P B, DOES D V D, et al. Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1 [J]. J Exp Bot, 2007, 58(14): 3905-14.
[34]XIE L J, CHEN Q F, CHEN M X, et al. Unsaturation of very-long-chain ceramides protects plant from hypoxia-induced damages by modulating ethylene signaling in Arabidopsis [J]. PLoS Genet, 2015, 11(3): e1005143.
[35]ALONSO J M, HIRAYAMA T, ROMAN G, et al. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J]. Science, 1999, 284(5423): 2148-52.
[36]FLEET J C. Identification of Nramp2 as an iron transport protein: another piece of the intestinal iron absorption puzzle [J]. Nutr Rev, 1998, 56(3): 88-9.
[37]SUPEK F, SUPEKOVA L, NELSON H, et al. Function of metal-ion homeostasis in the cell division cycle, mitochondrial protein processing, sensitivity to mycobacterial infection and brain function [J]. J Exp Biol, 1997, 200(Pt 2): 321-30.
[38]BISSON M M A, BLECKMANN A, ALLEKOTTE S, et al. EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1 [J]. Biochem J, 2009, 424: 1-6.
[39]BISSON M M, GROTH G. New paradigm in ethylene signaling: EIN2, the central regulator of the signaling pathway, interacts directly with the upstream receptors [J]. Plant Signal Behav, 2011, 6(1): 164-6.
[40]COKOL M, NAIR R, ROST B. Finding nuclear localization signals [J]. EMBO Rep, 2000, 1(5): 411-5.
[41]JU C, YOON G M, SHEMANSKY J M, et al. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis [J]. Proc Natl Acad Sci, 2012, 109(47): 19486-91.
[42]CHEN R, BINDER B M, GARRETT W M, et al. Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene [J]. Mol Biosyst, 2011, 7(9): 2637-50.
[43]GUO H, ECKER J R. Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor [J]. Cell, 2003, 115(6): 667-77.
[44]WEN X, ZHANG C, JI Y, et al. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus [J]. Cell Res, 2012, 22(11): 1613-6.
[45]QIAO H, SHEN Z, HUANG S-S C, et al. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas [J]. Science, 2012, 338(6105): 390-3.
[46]AN F, ZHAO Q, JI Y, et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-Box 1 and 2 that requires EIN2 in Arabidopsis [J]. Plant Cell, 2010, 22(7): 2384-401.
[47]QIAO H, CHANG K N, YAZAKI J, et al. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis [J]. Genes Dev, 2009, 23(4): 512-21.
[48]JI Y, GUO H. From endoplasmic reticulum (ER) to nucleus: EIN2 bridges the gap in ethylene signaling [J]. Mol Plant, 2013, 6(1): 11-4.
[49]CHAO Q, ROTHENBERG M, SOLANO R, et al. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins [J]. Cell, 1997, 89(7): 1133-44.
[50]LIU Q, XU C, WEN C K. Genetic and transformation studies reveal negative regulation of ERS1 ethylene receptor signaling in Arabidopsis [J]. BMC Plant Biol, 2010, 10: 60.
[51]STREET I H, AMAN S, ZUBO Y, et al. Ethylene inhibits cell proliferation of the Arabidopsis root meristem [J]. Plant Physiol, 2015, 169(1): 338-50.
[52]BAKSHI A, PIYA S, FERNANDEZ J C, et al. Ethylene receptors signal via a non-canonical pathway to regulate abscisic acid responses [J]. Plant Physiol, 2018, 176(1): 910-29.
[53]PIYA S, BINDER B M, HEWEZI T. Canonical and non-canonical ethylene signaling pathways that regulate Arabidopsis susceptibility to the cyst nematode Heterodera schachtii [J]. New Phytol, 2019, 221(2): 946-59.
[54]KIEBER J J, SCHALLER G E. Cytokinin signaling in plant development [J]. Development, 2018, 145(4): dev149344.
[55]SOMERS D E, SCHAREIN B, GROTH G. Phosphorylation alters the interaction of the Arabidopsis phosphotransfer protein AHP1 with its sensor kinase ETR1 [J]. PLoS One, 2011, 6(9): e24173.
[56]ZDARSKA M, CUYACOT A R, TARR P T, et al. ETR1 integrates response to ethylene and cytokinins into a single multistep phosphorelay pathway to control root growth [J]. Mol Plant, 2019, 12(10): 1338-52.
[57]ZHANG J, CHEN Y, LU J, et al. Uncertainty of EIN2ser645/ser924 inactivation by CTR1 mediated phosphorylation reveals the complexity of ethylene signaling [J]. Plant Commun, 2020, 1(3) :100046.
[58]PARK H L, SEO D H, LEE H Y, et al. Ethylene-triggered subcellular trafficking of CTR1 enhances the response to ethylene gas [J]. Nat Commun, 2023, 14(1): 365.
[59]SOMMER A L. Copper as an essential for plant growth [J]. Plant Physiol, 1931, 6(2): 339-45.
[60]RODRı́GUEZ F I, ESCH J J, HALL A E, et al. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis [J]. Science, 1999, 283(5404): 996-8.
[61]BINDER B M, RODRíGUEZ F I, BLEECKER A B. The copper transporter RAN1 is essential for biogenesis of ethylene receptors in Arabidopsis [J]. J Biol Chem, 2010, 285(48): 37263-70.
[62]HIRAYAMA T, KIEBER J J, HIRAYAMA N, et al. RESPONSIVE-TO ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis [J]. Cell, 1999, 97(3): 383-93.
[63]WOESTE K E, KIEBER J J. A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a Rosette-lethal phenotype [J]. Plant Cell, 2000, 12(3): 443-55.
[64]HOPPEN C, MüLLER L, HäNSCH S, et al. Soluble and membrane-bound protein carrier mediate direct copper transport to the ethylene receptor family [J]. Sci Rep, 2019, 9(1): 10715.
[65]SCHOTT-VERDUGO S, MULLER L, CLASSEN E, et al. Structural model of the ETR1 ethylene receptor transmembrane sensor domain [J]. Sci Rep, 2019, 9(1): 8869.
[66]STOCK A M, ROBINSON V L, GOUDREAU P N. Two-component signal transduction [J]. Annu Rev Biochem, 2000, 69: 183-215.
[67]SWANSON R V, BOURRET R B, SIMON M I. Intermolecular complementation of the kinase activity of CheA [J]. Mol Microbiol, 1993, 8(3): 435-41.
[68]STOCK J. Signal transduction: Gyrating protein kinases [J]. Curr Biol, 1999, 9(10): R364-7.
[69]ALEX L A, SIMON M I. Protein histidine kinases and signal transduction in prokaryotes and eukaryotes [J]. Trends Genet, 1994, 10(4): 133-8.
[70]PARKINSON J S, KOFOID E C. Communication modules in bacterial signaling proteins [J]. Annu Rev Genet, 1992, 26: 71-112.
[71]BILWES A M, ALEX L A, CRANE B R, et al. Structure of CheA, a signal-transducing histidine kinase [J]. Cell, 1999, 96(1): 131-41.
[72]BILWES A M, QUEZADA C M, CROAL L R, et al. Nucleotide binding by the histidine kinase CheA [J]. Nat Struct Biol, 2001, 8(4): 353-60.
[73]MARINA A, MOTT C, AUYZENBERG A, et al. Structural and mutational analysis of the PhoQ histidine kinase catalytic domain. Insight into the reaction mechanism [J]. J Biol Chem, 2001, 276(44): 41182-90.
[74]MARINA A, WALDBURGER C D, HENDRICKSON W A. Structure of the entire cytoplasmic portion of a sensor histidine-kinase protein [J]. EMBO J, 2005, 24(24): 4247-59.
[75]SONG Y, PEISACH D, PIOSZAK A A, et al. Crystal structure of the C-terminal domain of the two-component system transmitter protein nitrogen regulator II (NRII; NtrB), regulator of nitrogen assimilation in Escherichia coli [J]. Biochemistry, 2004, 43(21): 6670-8.
[76]SWANSON R V, ALEX L A, SIMON M I. Histidine and aspartate phosphorylation: two-component systems and the limits of homology [J]. Trends Biochem Sci, 1994, 19(11): 485-90.
[77]POSAS F, WURGLER-MURPHY S M, MAEDA T, et al. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor [J]. Cell, 1996, 86(6): 865-75.
[78]POPOV K M, ZHAO Y, SHIMOMURA Y, et al. Branched-chain alpha-ketoacid dehydrogenase kinase. Molecular cloning, expression, and sequence similarity with histidine protein kinases [J]. J Biol Chem, 1992, 267(19): 13127-30.
[79]POPOV K M, KEDISHVILI N Y, ZHAO Y, et al. Primary structure of pyruvate dehydrogenase kinase establishes a new family of eukaryotic protein kinases [J]. J Biol Chem, 1993, 268(35): 26602-6.
[80]BLEECKER A B, SCHALLER G E. The mechanism of ethylene perception [J]. Plant Physiol, 1996, 111(3): 653-60.
[81]PARKINSON J S. Signal transduction schemes of bacteria [J]. Cell, 1993, 73(5): 857-71.
[82]CLARK K L, LARSEN P B, WANG X, et al. Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors [J]. Proc Natl Acad Sci, 1998, 95(9): 5401-6.
[83]HIRT H. Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-activated protein kinase pathway [J]. Proc Natl Acad Sci, 2000, 97(6): 2405-7.
[84]YOO S D, CHO Y H, TENA G, et al. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling [J]. Nature, 2008, 451(7180): 789-95.
[85]MAYERHOFER H, PANNEERSELVAM S, MUELLER-DIECKMANN J. Protein kinase domain of CTR1 from Arabidopsis thaliana promotes ethylene receptor cross talk [J]. J Mol Biol, 2012, 415(4): 768-79.
[86]MAGNESCHI L, PERATA P. Rice germination and seedling growth in the absence of oxygen [J]. Ann Bot, 2009, 103(2): 181-96.
[87]SASIDHARAN R, VOESENEK L A C J. Ethylene-mediated acclimations to flooding Stress [J]. Plant Physiol, 2015, 169(1): 3-12.
[88]YANG C, LU X, MA B, et al. Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects [J]. Mol Plant, 2015, 8(4): 495-505.
[89]CHEN T, LIU J, LEI G, et al. Effects of tobacco ethylene receptor mutations on receptor kinase activity, plant growth and stress responses [J]. Plant Cell Physiol, 2009, 50(9): 1636-50.
[90]WURIYANGHAN H, ZHANG B, CAO W-H, et al. The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice [J]. Plant Cell, 2009, 21(5): 1473-94.
[91]COPENHAVER G P, MA B, YIN C C, et al. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings [J]. PLoS Genet, 2014, 10(10): e1004701.
[92]ZHAO H, DUAN K-X, MA B, et al. Histidine kinase MHZ1/OsHK1 interacts with ethylene receptors to regulate root growth in rice [J]. Nat Commun, 2020, 11(1): 518.
[93]YIN C C, MA B, COLLINGE D P, et al. Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway [J]. Plant Cell, 2015, 27(4): 1061-81.
[94]YU M, YAU C P, YIP W K. Differentially localized rice ethylene receptors OsERS1 and OsETR2 and their potential role during submergence [J]. Plant Signal Behav, 2017, 12(8): e1356532.
[95]SEKHAR S, PANDA B B, MOHAPATRA T, et al. Spikelet-specific variation in ethylene production and constitutive expression of ethylene receptors and signal transducers during grain filling of compact- and lax-panicle rice (Oryza sativa) cultivars [J]. J Plant Physiol, 2015, 179: 21-34.
[96]HUA J, MEYEROWITZ E M. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana [J]. Cell, 1998, 94(2): 261-71.
[97]GLASSMAN C R, TSUTSUMI N, SAXTON R A, et al. Structure of a Janus kinase cytokine receptor complex reveals the basis for dimeric activation [J]. Science, 2022, 376(6589): 163-9.
[98]SOLANO R, STEPANOVA A, CHAO Q, et al. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1 [J]. Genes Dev, 1998, 12(23): 3703-14.
[99]ZHAO H, YIN C C, MA B, et al. Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms [J]. J Integr Plant Biol, 2021, 63(1): 102-25.
修改评论