中文版 | English
题名

基于特殊材料的多参量高分辨光声显微成像技术研究

其他题名
RESEARCH ON MULTI-PARAMETER HIGH- RESOLUTION PHOTOACOUSTIC MICROSCOPY IMAGING TECHNOLOGY BASED ON SPECIAL MATERIALS
姓名
姓名拼音
WU Zhifeng
学号
12233369
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
刘成波
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2024-05-06
论文提交日期
2024-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

光声成像,以其结合了光学成像的高对比度特性与超声成像的深层探测能力,正迅速成为一个新兴的成像领域。该技术利用红细胞中的血红蛋白作为内源性对比剂,能够清晰地描绘生物微血管的结构细节。通过分析不同生物组织对光的吸收特性,光声成像能够提供血氧饱和度等关键生理信息的多维成像。此外,通过引入高度特异性的外源性对比剂,光声成像在分子层面的灵敏度得以显著提升,有效地解决了内源性标记在疾病标定与诊断上的局限性。

现有的光声成像方法很少能够同时将结构、功能和分子影像紧密结合 。针对这一现状,本课题将着手于多参量高分辨光声显微成像方法的研究,以期获得完整的血管结构、功能及光声分子信息,扩展其应用领域。

此外,在实际活体成像过程中,皮肤、颅骨等组织对光的散射与吸收,以及被测体的体温与呼吸抖动往往对成像质量有极大的影响,因此,探索新的成像窗口,设计合适的成像固定夹具与加热装置,有助于避开皮肤与颅骨的影响,降低被测体成像过程中的抖动,维持活体成像时的生命体征。

从上述背景出发,本文利用双光源结合受激拉曼散射的方案,设计和搭建了三波长多参量高分辨光声显微成像系统,内容包括光路、成像探头、数据采集与系统控制部分以及相关图像处理算法的设计与实现,并通过仿体与活体实验验证了系统成像性能的可靠性。在光路的材料选择上,通过对不同种拉曼光纤材料学参数的研究与测试,选择最高激发效率的拉曼光纤。在成像系统的应用层面,探索出高度贴合光声成像需求的窗口材料,并设计制作轻质、稳固、可连续监测的成像固定夹具。同时,选取性能优越3D打印材料,设计出适合本系统的成像加热装置。最后,基于皮下转移瘤和同种原位移植脑胶质瘤两种疾病模型,结合光声分子探针,对系统连续活体监测能力进行了验证。三波长多参量高分辨光声显微成像技术在生物结构、分子和功能成像研究中提供了重要的成像技术手段,对肿瘤等疾病的发病机理研究及其预后提供了新的思路。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1] WANG L V, SONG H. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 2012, 335(6075): 1458-1462.
[2] BELL A G. Upon the production and reproduction of sound by light[J]. American Journal of Science, 1880, 20(118): 305-324.
[3] ATTIA A B E, BALASUNDARAM G, MOOTHANCHERY M, et al. A review of clinical photoacoustic imaging: Current and future trends[J]. Photoacoustics, 2019, 16: 100144.
[4] 陈宁波. 多光谱高分辨光声显微成像方法与实验研究[D]. 广州大学, 2019.
[5] WANG L V. Multiscale photoacoustic microscopy and computed tomography[J]. Nature Photonics, 2009, 3(9): 503-509.
[6] ANSARI R, ZHANG E Z, DESJARDINS A E, et al. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy[J]. Light: Science & Applications, 2018, 7(1): 75.
[7] LIU W, YAO J. Photoacoustic microscopy: principles and biomedical applications[J]. Biomedical Engineering Letters, 2018, 8(2): 203-213.
[8] ZHOU J, JOKERST J V. Photoacoustic imaging with fiber optic technology: A review[J]. Photoacoustics, 2020, 20: 100211.
[9] MASLOV K, STOICA G, WANG L V. In vivo dark‐field reflection‐mode photoacoustic microscopy[J]. Optics Letters, 2005, 30(6): 625-627.
[10] MASLOV K, ZHANG H F, HU S, et al. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries[J]. Optics Letters, 2008, 33(9): 929-931.
[11] HU S, MASLOV K, WANG L V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed[J]. Optics Letters, 2011, 36(7): 1134-1136.
[12] ZHANG H F, XIE Z, JIAO S, et al. Laser-scanning optical-resolution photoacoustic microscopy: Photons Plus Ultrasound: Imaging and Sensing 2009[J]. Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 2009, 7177(71770L).
[13] RAO B, LI L, MASLOV K, et al. Hybrid-scanning optical-resolution photoacoustic microscopy for in vivo vasculature imaging[J]. Optics Letters, 2010, 35(10): 1521-1523.
[14] SONG L, MASLOV K, WANG L V. Multifocal optical-resolution photoacoustic microscopy in vivo[J]. Optics Letters, 2011, 36(7): 1236-1238.
[15] LI G, MASLOV K, WANG L V, et al. Reflection-mode multifocal optical-resolution photoacoustic microscopy[J]. Journal of Biomedical Optics, 2013, 18(3): 030501.
[16] YAO J, HUANG C, WANG L, et al. Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror[J]. Journal of Biomedical Optics, 2012, 17(8): 0805051‐0805053.
[17] XU S, HUANG C, ZOU J, et al. Microfabricated water-immersible scanning mirror with a small form factor for handheld ultrasound and photoacoustic microscopy[J]. Journal of Micro‐nanolithography Mems and Moems, 2015, 14(3): 035004.
[18] KIM J Y, LEE C, PARK K, et al. Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner[J]. Scientific Reports, 2015, 5(1): 7932.
[19] YAO J, WANG L, YANG J M, et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action[J]. Nature Methods, 2015, 12(5): 407.
[20] LAN B, LIU W, WANG Y, et al. High-speed widefield photoacoustic microscopy of small‐animal hemodynamics[J]. Biomedical Optics Express, 2018, 9(10): 4689-4701.
[21] 骆清铭, 张镇西. 生物医学光子学[M]. 北京: 人民卫生出版社, 2018:175.
[22] YANG Z, CHEN J, YAO J, et al. Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo[J]. Optics Express, 2014, 22(2): 1500.
[23] ZHAO H, WANG G, LIN R, et al. Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo[J]. Journal of Biomedical Optics, 2018, 23(04): 1.
[24] ZHANG H F, MASLOV K, SIVARAMAKRISHNAN M, et al. Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy[J]. Applied physics letters, 2007, 90(5): 053901.
[25] LEE C, JEON M, JEON M Y, et al. In vitro photoacoustic measurement of hemoglobin oxygen saturation using a single pulsed broadband supercontinuum laser source[J]. Applied optics, 2014, 53(18): 3884-3889.
[26] WANG L, MASLOV K, WANG L V. Single-cell label-free photoacoustic flowoxigraphy in vivo[J]. Proceedings of the National Academy of Sciences, 2013, 110(15): 5759-5764.
[27] LIU C, CHEN J, ZHANG Y, et al. Five-wavelength optical-resolution photoacoustic microscopy of blood and lymphatic vessels[J]. Advanced Photonics, 2021, 3(01).
[28] NITZAN M, TAITELBAUM H. The measurement of oxygen saturation in arterial and venous blood[J]. IEEE Instrumentation & Measurement Magazine, 2008, 11(3): 9-15.
[29] LIANG Y, JIN L, GUAN B O, et al. 2 MHz multi-wavelength pulsed laser for functional photoacoustic microscopy[J]. Optics Letters, 2017, 42(7): 1452.
[30] 敖建鹏, 黄静, 季敏标. 受激拉曼散射显微技术及其应用[J].激光与光电子学进展, 2022, 59(4): 0400001.
[31] STOLEN R H, IPPEN E P. Raman gain in glass optical waveguides[J]. Applied Physics Letters, 1973, 22(6): 276-278.
[32] SANGHERA J S, SHAW L B, AGGARWAL I D. Applications of chalcogenide glass optical fibers[J]. Comptes Rendus. Chimie, 2002, 5(12): 873-883.
[33] POLLEY A, RALPH S E. Raman Amplification in Multimode Fiber[J]. IEEE Photonics Technology Letters, 2007, 19(4): 218-220.
[34] HAJIREZA P, FORBRICH A, ZEMP R. In-Vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source[J]. Biomedical Optics Express, 2014, 5(2): 539.
[35] HOSSEINAEE Z, ECCLESTONE B, PELLEGRINO N, et al. Functional photoacoustic remote sensing microscopy using a stabilized temperature-regulated stimulated Raman scattering light source[J]. Optics Express, 2021, 29(19): 29745.
[36] J. W. NICHOLSON et al., "Raman Amplification in Fiber Optical Communication Systems," Optics Express, vol. 12, no. 26, pp. 6799-6812, 2004.
[37] ZHENG YE, NI QINGLE, ZHANG LIN, et al. Influence of Stimulated Raman Scattering on Propagation Properties of High-Power Laser[J]. Chinese Journal of Lasers, 2021, 48(7): 0701005.
[38] LOYA A K, DUMAS J P, BUMA T. Photoacoustic microscopy with a tunable source based on cascaded stimulated Raman scattering in a large-mode area photonic crystal fiber[C]//2012 IEEE International Ultrasonics Symposium. Dresden, Germany: IEEE, 2012: 1208-1211.
[39] ZHANG BOHAN, GUO LI, YAO LIE, et al. Rapid Histological Imaging Using Stimulated Raman Scattering Microscopy[J]. Chinese Journal of Lasers, 2020, 47(2): 0207018.
[40] GUO H, LI Y, QI W, et al. Photoacoustic endoscopy: A progress review[J]. Journal of Biophotonics, 2020, 13(12): e202000217.

所在学位评定分委会
材料与化工
国内图书分类号
TB57
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778792
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
吴志峰. 基于特殊材料的多参量高分辨光声显微成像技术研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233369-吴志峰-中国科学院深圳(4303KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吴志峰]的文章
百度学术
百度学术中相似的文章
[吴志峰]的文章
必应学术
必应学术中相似的文章
[吴志峰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。