中文版 | English
题名

基于气泡辅助技术的柔性蛋白凝胶触觉传感器制备研究

其他题名
A STUDY ON THE FABRICATION OF FLEXIBLE PROTEIN GEL TACTILE SENSORS VIA BUBBLE-ASSISTED TECHNIQUE
姓名
姓名拼音
TANG Yuwei
学号
12232167
学位类型
硕士
学位专业
085401 新一代电子信息技术
学科门类/专业学位类别
0854 电子信息
导师
王太宏
导师单位
电子与电气工程系
论文答辩日期
2024-05-07
论文提交日期
2024-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
    柔性传感技术作为柔性电子技术领域的关键研究方向之一,广泛应用于生理信号监测、医疗器械上,同时在物联网和可穿戴电子应用方面也有着具有巨大的潜力。然而,传统的柔性传感器一直存在生物不友好的问题,同时工艺流程复杂、价格昂贵。本研究致力于开发一种创新的生物兼容型柔性水凝胶传感器的制备技术,从制备效率及效益,器件性能,应用领域三个角度,阐述了传感器的优势。该技术的核心优势在于免除了传统意义上需手工进行的倒膜雕刻等复杂微结构制备步骤,促使微结构的自发形成,有效避免了有毒有害物质的产生,同时显著提升了反应速度与制备效率,从而提供了一种高效、经济的解决方案,以推动智能柔性传感器领域的发展。
    本课题以蛋清为基础材料,通过蛋清与氢氧化钠的碱性反应诱发凝胶化过程,并借助于铝箔与氢氧化钠间的化学反应自发产生的气泡,成功制备出含有气泡微结构的水凝胶传感器。其制备时间短,无需人工掩膜,五分钟即可自发完成介电层中微结构的制备,生产成本降至几分钱,极大的提高了生产效率,降低生产成本。
    根据杨氏弹性模量测试结果 571.4 kPa,本研究设计了范围为 0-470 kPa 的压力
测试,将循环测试值设置为 10 kPa 与 470 kPa。在 0 至 470 kPa 的压力范围内传感器的灵敏度可到达 10.080 kPa−1。此外,对压力值分别设置为为 10 kPa 与 470 kPa,进行了 400 次循环测试,传感器依旧表现出了良好的电容响应,其响应时间更是小于 200 ms,充分证明了该传感器在高频动态压力变化下的可靠性和实用性。为了验证本研究制备的传感器应用范围,本课题设计了一个生理信号检测装置,可以从手机端收到实时的生理信号,实验进行了脉搏、握拳、按压、叠加等测试,并观察到了清晰、实时的运动信号,实现了实时、连续、准确、直观地监测日常生理信号的功能。最后本文还介绍了蛋清水凝胶制备的 4*4 的传感器阵列,该阵列可有效的知晓放置物体的位置和形状以及重力大小。以上结果表明,实验制备的传感器相较于其他生物材料的传感器,制备效率高、成本低,灵敏度较高,稳定性更好,为生物材料传感器技术提供了一条既简便又有效的微结构制备新途径。
 
其他摘要
    As a key research direction in the field of flexible electronics, flexible sensing tech
nology is widely used in physiological signal monitoring and medical devices, and it also possesses tremendous potential in the Internet of Things and wearable electronics applications. However, traditional flexible sensors have consistently presented issues with bio incompatibility, alongside complex manufacturing processes and high costs.         This study is dedicated to developing an innovative preparation technology for biocompatible flexible hydrogel sensors, discussing the advantages of the sensors from three perspectives: preparation efficiency and effectiveness, device performance, and application areas. The core advantage of this technology is that it eliminates the need for manual and complex microstructure preparation steps such as membrane casting traditionally required, facilitating the spontaneous formation of microstructures, effectively preventing the production of toxic substances, and significantly enhancing reaction speed and preparation efficiency. This provides an efficient and economical solution to advance the development of the smart flexible sensor field. This project uses egg white as the base material, where the alkaline reaction between egg white and sodium hydroxide induces gelation, and the chemical reaction between aluminum foil and sodium hydroxide spontaneously generates bubbles, successfully producing a hydrogel sensor with bubble microstructures. The preparation process is short, requires no manual masking, and can spontaneously complete the microstructure formation in the dielectric layer in five minutes, reducing production costs to mere cents and significantly improving production efficiency and cost-effectiveness.
    Based on Young’s modulus test results of 571.4 kPa, this study designed a pressure
test range from 0 to 470 kPa, with cyclic test values set at 10 kPa and 470 kPa. Within the 0 to 470 kPa pressure range, the sensor’s sensitivity can reach up to 10.080 kPa−1. Furthermore, 400 cyclic tests were conducted at pressures set at 10 kPa and 470 kPa, where the sensor still demonstrated good capacitive response, and its response time was even less than 200 ms, fully proving the sensor’s reliability and practicality under high-frequency dynamic pressure changes. To verify the application range of the sensors prepared in this study, a physiological signal detection device was designed that can receive real time physiological signals from a mobile device. Tests including pulse measurement, fist clenching, compression, and overlay were conducted, observing clear, real-time motion signals, achieving real-time, continuous, accurate, and intuitive monitoring of daily physiological signals. Lastly, the paper introduces a 4x4 sensor array prepared from egg white hydrogel, which effectively identifies the placement, shape, and weight of objects. These results indicate that the sensors prepared in the experiment, compared to other biometric sensors, have higher preparation efficiency, lower cost, higher sensitivity, and better stability, providing a simple and effective new pathway for the preparation of microstructures in biomaterial sensor technology.
 
关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] LUO Y, ABIDIAN M R, AHN J H, et al. Technology roadmap for flexible sensors[J]. ACSnano, 2023, 17(6): 5211-5295.
[2] WANG Y, ADAM M L, ZHAO Y, et al. Machine learning-enhanced flexible mechanical sensing[J]. Nano-Micro Letters, 2023, 15(1): 55.
[3] LUO J, GAO W, WANG Z L. The triboelectric nanogenerator as an innovative technologytoward intelligent sports[J]. Advanced materials, 2021, 33(17): 2004178.
[4] HAN S T, PENG H, SUN Q, et al. An overview of the development of flexible sensors[J].Advanced materials, 2017, 29(33): 1700375.
[5] ATES H C, NGUYEN P Q, GONZALEZ-MACIA L, et al. End-to-end design of wearablesensors[J]. Nature Reviews Materials, 2022, 7(11): 887-907.
[6] BANDODKAR A J, JEERAPAN I, WANG J. Wearable chemical sensors: Present challenges and future prospects[J]. Acs Sensors, 2016, 1(5): 464-482.
[7] SOMEYA T, SEKITANI T, IBA S, et al. A large-area, flexible pressure sensor matrix withorganic field-effect transistors for artificial skin applications[J]. Proceedings of the National Academy of Sciences, 2004, 101(27): 9966-9970.
[8] JIANG C, CHENG X, NATHAN A. Flexible ultralow-power sensor interfaces for e-skin[J].Proceedings of the IEEE, 2019, 107(10): 2084-2105.
[9] YOUSEFI H, SU H M, IMANI S M, et al. Intelligent food packaging: A review of smart sensing technologies for monitoring food quality[J]. ACS sensors, 2019, 4(4): 808-821.
[10] WANG H, ZHOU D, CAO J. Development of a skin-like tactile sensor array for curved surface [J]. IEEE Sensors Journal, 2013, 14(1): 55-61.
[11] HUANG W, DAI K, ZHAI Y, et al. Flexible and lightweight pressure sensor based on carbon nanotube/thermoplastic polyurethane-aligned conductive foam with superior compressibility and stability[J]. ACS applied materials & interfaces, 2017, 9(48): 42266-42277.
[12] ZHANG J, CAO Y, QIAO M, et al. Human motion monitoring in sports using wearablegraphene-coated fiber sensors[J]. Sensors and Actuators A: Physical, 2018, 274: 132-140.
[13] CHENG I C, WAGNER S. Overview of flexible electronics technology[J]. Flexible electronics:materials and applications, 2009: 1-28.
[14] WANG Y, YIN L, BAI Y, et al. Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale[J]. Science advances, 2020, 6(43): eabd0996.
[15] KHAN Y, THIELENS A, MUIN S, et al. A new frontier of printed electronics: flexible hybrid electronics[J]. Advanced Materials, 2020, 32(15): 1905279.
[16] STADLOBER B, ZIRKL M, IRIMIA-VLADU M. Route towards sustainable smart sensors:ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics[J]. Chemical Society Reviews, 2019, 48(6): 1787-1825.57
[17] PIERRE CLAVER U, ZHAO G. Recent progress in flexible pressure sensors based electronic skin[J]. Advanced Engineering Materials, 2021, 23(5): 2001187.
[18] DAHIYA R, YOGESWARAN N, LIU F, et al. Large-area soft e-skin: The challenges beyond sensor designs[J]. Proceedings of the IEEE, 2019, 107(10): 2016-2033.
[19] KIM D I, QUANG TRUNG T, HWANG B U, et al. A sensor array using multi-functionalfield-effect transistors with ultrahigh sensitivity and precision for bio-monitoring[J]. Scientific reports, 2015, 5(1): 12705.
[20] LEE J S, SHIN K Y, CHEONG O J, et al. Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring[J]. Scientific reports, 2015, 5(1): 7887.
[21] WANG H, ZHOU D, CAO J. Development of a stretchable conductor array with embedded metal nanowires[J]. IEEE transactions on nanotechnology, 2013, 12(4): 561-565.
[22] YOGESWARAN N, TINKU S, KHAN S, et al. Stretchable resistive pressure sensor based on CNT-PDMS nanocomposites[C]//2015 11th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME). IEEE, 2015: 326-329.
[23] JUNG H C, MOON J H, BAEK D H, et al. CNT/PDMS composite flexible dry electrodesfor long-term ECG monitoring[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(5): 1472-1479.
[24] GAO Y, OTA H, SCHALER E W, et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring[J]. Advanced Materials, 2017, 29(39): 1701985.
[25] LUAN Y, ZHANG S, NGUYEN T H, et al. Polyurethane sponges decorated with reducedgraphene oxide and silver nanowires for highly stretchable gas sensors[J]. Sensors and Actuators B: Chemical, 2018, 265: 609-616.
[26] DUAN Y, HE S, WU J, et al. Recent progress in flexible pressure sensor arrays[J]. Nanomate￾rials, 2022, 12(14): 2495.
[27] GAO Y, XIAO T, LI Q, et al. Flexible microstructured pressure sensors: design, fabrication and applications[J]. Nanotechnology, 2022, 33(32): 322002.
[28] GUAN X, WANG Z, ZHAO W, et al. Flexible piezoresistive sensors with wide-range pressure measurements based on a graded nest-like architecture[J]. ACS applied materials & interfaces, 2020, 12(23): 26137-26144.
[29] LUO Z, CHEN J, ZHU Z, et al. High-resolution and high-sensitivity flexible capacitive pres￾sure sensors enhanced by a transferable electrode array and a micropillar–PVDF film[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7635-7649.
[30] XIONG Y, SHEN Y, TIAN L, et al. A flexible, ultra-highly sensitive and stable capacitivepressure sensor with convex microarrays for motion and health monitoring[J]. Nano energy,2020, 70: 104436.
[31] HUANG H, ZHONG J, YE Y, et al. Research Progresses in Microstructure Designs of Flexible Pressure Sensors[J]. Polymers, 2022, 14(17): 3670.
[32] WANG D, ZHOU X, SONG R, et al. Freestanding silver/polypyrrole composite film for multi￾functional sensor with biomimetic micropattern for physiological signals monitoring[J]. Chem￾ical Engineering Journal, 2021, 404: 126940.58
[33] PARK J, LEE Y, HONG J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins[J]. ACS nano,2014, 8(5): 4689-4697.
[34] QIN Y, ZHANG X, ZHENG A, et al. Bioinspired Design of Hill-Ridge Architecture-BasedIontronic Sensor with High Sensibility and Piecewise Linearity[J]. Advanced Materials Tech￾nologies, 2022, 7(1): 2100510.
[35] DU Q, LIU L, TANG R, et al. High-performance flexible pressure sensor based on controllable hierarchical microstructures by laser scribing for wearable electronics[J]. Advanced Materials Technologies, 2021, 6(9): 2100122.
[36] ZHANG C, CHEN R, XIAO C, et al. Laser Direct Writing of Highly Ordered Two-LevelHierarchical Microstructures for Flexible Piezoresistive Sensor with Enhanced Sensitivity[J].Advanced Materials Interfaces, 2022, 9(1): 2101596.
[37] TAY R Y, LI H, LIN J, et al. Lightweight, superelastic boron nitride/polydimethylsiloxanefoam as air dielectric substitute for multifunctional capacitive sensor applications[J]. Advanced Functional Materials, 2020, 30(10): 1909604.
[38] METZGER C, FLEISCH E, MEYER J, et al. Flexible-foam-based capacitive sensor arrays for object detection at low cost[J]. Applied Physics Letters, 2008, 92(1).
[39] BAI N, WANG L, WANG Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity[J]. Nature communications, 2020, 11(1): 209.
[40] BISRI S Z, SHIMIZU S, NAKANO M, et al. Endeavor of iontronics: from fundamentals toapplications of ion-controlled electronics[J]. Advanced Materials, 2017, 29(25): 1607054.
[41] CHHETRY A, YOON H, PARK J Y. A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics[J]. Journal of Materials Chemistry C, 2017, 5(38): 10068-10076.
[42] LEE J, KWON H, SEO J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics[J]. Advanced materials, 2015, 27(15): 2433-2439.
[43] ZANG Y, ZHANG F, DI C A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Materials Horizons, 2015, 2(2): 140-156.
[44] VATANI M, LU Y, ENGEBERG E D, et al. Combined 3D printing technologies and material for fabrication of tactile sensors[J]. International Journal of Precision Engineering and Manu￾facturing, 2015, 16: 1375-1383.
[45] WANG L, LI Y. A review for conductive polymer piezoresistive composites and a development of a compliant pressure transducer[J]. IEEE transactions on instrumentation and measurement, 2012, 62(2): 495-502.
[46] KIM K H, HONG S K, JANG N S, et al. Wearable resistive pressure sensor based on highly flexible carbon composite conductors with irregular surface morphology[J]. ACS Applied Ma￾terials & Interfaces, 2017, 9(20): 17499-17507.
[47] CHEN Z, WANG Z, LI X, et al. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures[J]. Acs Nano, 2017, 11(5): 4507-4513.59
[48] WANG X, GU Y, XIONG Z, et al. Silk-molded flexible, ultrasensitive, and highly stable elec￾tronic skin for monitoring human physiological signals[J]. Advanced materials, 2014, 26(9):1336-1342.
[49] TRAN A V, ZHANG X, ZHU B. The development of a new piezoresistive pressure sensor for low pressures[J]. IEEE Transactions on industrial electronics, 2017, 65(8): 6487-6496.
[50] LEI K F, LEE K F, LEE M Y. Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement[J]. Microelectronic Engineering, 2012, 99: 1-5.
[51] KANG J, SON D, WANG G J N, et al. Tough and water-insensitive self-healing elastomer for robust electronic skin[J]. Advanced Materials, 2018, 30(13): 1706846.
[52] HUANG Y, YUAN H, KAN W, et al. A flexible three-axial capacitive tactile sensor withmultilayered dielectric for artificial skin applications[J]. Microsystem Technologies, 2017, 23:1847-1852.
[53] MANNSFELD S C, TEE B C, STOLTENBERG R M, et al. Highly sensitive flexible pressuresensors with microstructured rubber dielectric layers[J]. Nature materials, 2010, 9(10): 859-864.
[54] PENG P, RAJAMANI R, ERDMAN A G. Flexible tactile sensor for tissue elasticity measure￾ments[J]. Journal of microelectromechanical systems, 2009, 18(6): 1226-1233.
[55] AKIYAMA M, MOROFUJI Y, KAMOHARA T, et al. Flexible piezoelectric pressure sen￾sors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films[J]. Journal of applied physics, 2006, 100(11).
[56] PERSANO L, DAGDEVIREN C, SU Y, et al. High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene)[J]. Naturecommunications, 2013, 4(1): 1633.
[57] LI R, ZHOU Q, BI Y, et al. Research progress of flexible capacitive pressure sensor for sensi￾tivity enhancement approaches[J]. Sensors and Actuators A: Physical, 2021, 321: 112425.
[58] XIAO Y, WANG M, LI Y, et al. High-Adhesive Flexible Electrodes and Their Manufacture: A. Review[J]. Micromachines, 2021, 12(12): 1505.
[59] CHEN Y, ZHANG P, LI Y, et al. Flexible capacitive pressure sensor based on multi-walled carbon nanotubes microstructure electrodes[J]. Journal of Physics D: Applied Physics, 2021,54(15): 155101.
[60] WANG X, XIA Z, ZHAO C, et al. Microstructured flexible capacitive sensor with high sensitiv￾ity based on carbon fiber-filled conductive silicon rubber[J]. Sensors and Actuators A: Physical,2020, 312: 112147.
[61] LUO Z, DUAN J, XU H, et al. Flexible capacitive pressure sensor based on an embedded rib fabric with a bionic sloping petal structure[J]. IEEE Sensors Journal, 2021, 21(18): 20119-20128.
[62] SU Q, ZOU Q, LI Y, et al. A stretchable and strain-unperturbed pressure sensor for motion interference–free tactile monitoring on skins[J]. Science advances, 2021, 7(48): eabi4563.
[63] YIN M J, YIN Z, ZHANG Y, et al. Micropatterned elastic ionic polyacrylamide hydrogel for low-voltage capacitive and organic thin-film transistor pressure sensors[J]. Nano Energy, 2019,58: 96-104.60
[64] CHHETRY A, KIM J, YOON H, et al. Ultrasensitive interfacial capacitive pressure sensor based on a randomly distributed microstructured iontronic film for wearable applications[J].ACS applied materials & interfaces, 2018, 11(3): 3438-3449.
[65] BAI N, WANG L, XUE Y, et al. Graded interlocks for iontronic pressure sensors with high sensitivity and high linearity over a broad range[J]. Acs Nano, 2022, 16(3): 4338-4347.
[66] YANG X, CHEN S, SHI Y, et al. A flexible highly sensitive capacitive pressure sensor[J].Sensors and Actuators A: Physical, 2021, 324: 112629.
[67] XIAO Y, DUAN Y, LI N, et al. Multilayer double-sided microstructured flexible iontronicpressure sensor with a record-wide linear working range[J]. ACS sensors, 2021, 6(5): 1785-1795.
[68] SHI R, LOU Z, CHEN S, et al. Flexible and transparent capacitive pressure sensor with pat terned microstructured composite rubber dielectric for wearable touch keyboard application[J].Sci. China Mater, 2018, 61(12): 1587-1595.
[69] YANG J C, KIM J O, OH J, et al. Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature[J]. ACS applied materials & interfaces,2019, 11(21): 19472-19480.
[70] INKSON B J. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization[M]//Materials characterization using nondestructive eval uation (NDE) methods. Elsevier, 2016: 17-43.
[71] KIM S Y, JEE E, KIM J S, et al. Conformable and ionic textiles using sheath-core carbon nanotube microyarns for highly sensitive and reliable pressure sensors[J]. RSC advances, 2017,7(38): 23820-23826.
[72] YANG W, LI N W, ZHAO S, et al. A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins[J]. Advanced Materials Technologies, 2018, 3(2):1700241.
[73] WANG Z, SI Y, ZHAO C, et al. Flexible and washable poly (ionic liquid) nanofibrous membrane with moisture proof pressure sensing for real-life wearable electronics[J]. ACS applied materials & interfaces, 2019, 11(30): 27200-27209.
[74] LIN M F, XIONG J, WANG J, et al. Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications[J]. Nano Energy, 2018, 44: 248-255.
[75] JIN M L, PARK S, LEE Y, et al. Artificial Skin: An Ultrasensitive, Visco-Poroelastic Artificial Mechanotransducer Skin Inspired by Piezo2 Protein in Mammalian Merkel Cells (Adv. Mater.13/2017)[J]. Advanced Materials, 2017, 29(13)

所在学位评定分委会
电子科学与技术
国内图书分类号
TP212
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778796
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
唐毓蔚. 基于气泡辅助技术的柔性蛋白凝胶触觉传感器制备研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
基于气泡辅助技术的柔性蛋白凝胶触觉传感.(32872KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[唐毓蔚]的文章
百度学术
百度学术中相似的文章
[唐毓蔚]的文章
必应学术
必应学术中相似的文章
[唐毓蔚]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。