[1] LUO Y, ABIDIAN M R, AHN J H, et al. Technology roadmap for flexible sensors[J]. ACSnano, 2023, 17(6): 5211-5295.
[2] WANG Y, ADAM M L, ZHAO Y, et al. Machine learning-enhanced flexible mechanical sensing[J]. Nano-Micro Letters, 2023, 15(1): 55.
[3] LUO J, GAO W, WANG Z L. The triboelectric nanogenerator as an innovative technologytoward intelligent sports[J]. Advanced materials, 2021, 33(17): 2004178.
[4] HAN S T, PENG H, SUN Q, et al. An overview of the development of flexible sensors[J].Advanced materials, 2017, 29(33): 1700375.
[5] ATES H C, NGUYEN P Q, GONZALEZ-MACIA L, et al. End-to-end design of wearablesensors[J]. Nature Reviews Materials, 2022, 7(11): 887-907.
[6] BANDODKAR A J, JEERAPAN I, WANG J. Wearable chemical sensors: Present challenges and future prospects[J]. Acs Sensors, 2016, 1(5): 464-482.
[7] SOMEYA T, SEKITANI T, IBA S, et al. A large-area, flexible pressure sensor matrix withorganic field-effect transistors for artificial skin applications[J]. Proceedings of the National Academy of Sciences, 2004, 101(27): 9966-9970.
[8] JIANG C, CHENG X, NATHAN A. Flexible ultralow-power sensor interfaces for e-skin[J].Proceedings of the IEEE, 2019, 107(10): 2084-2105.
[9] YOUSEFI H, SU H M, IMANI S M, et al. Intelligent food packaging: A review of smart sensing technologies for monitoring food quality[J]. ACS sensors, 2019, 4(4): 808-821.
[10] WANG H, ZHOU D, CAO J. Development of a skin-like tactile sensor array for curved surface [J]. IEEE Sensors Journal, 2013, 14(1): 55-61.
[11] HUANG W, DAI K, ZHAI Y, et al. Flexible and lightweight pressure sensor based on carbon nanotube/thermoplastic polyurethane-aligned conductive foam with superior compressibility and stability[J]. ACS applied materials & interfaces, 2017, 9(48): 42266-42277.
[12] ZHANG J, CAO Y, QIAO M, et al. Human motion monitoring in sports using wearablegraphene-coated fiber sensors[J]. Sensors and Actuators A: Physical, 2018, 274: 132-140.
[13] CHENG I C, WAGNER S. Overview of flexible electronics technology[J]. Flexible electronics:materials and applications, 2009: 1-28.
[14] WANG Y, YIN L, BAI Y, et al. Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale[J]. Science advances, 2020, 6(43): eabd0996.
[15] KHAN Y, THIELENS A, MUIN S, et al. A new frontier of printed electronics: flexible hybrid electronics[J]. Advanced Materials, 2020, 32(15): 1905279.
[16] STADLOBER B, ZIRKL M, IRIMIA-VLADU M. Route towards sustainable smart sensors:ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics[J]. Chemical Society Reviews, 2019, 48(6): 1787-1825.57
[17] PIERRE CLAVER U, ZHAO G. Recent progress in flexible pressure sensors based electronic skin[J]. Advanced Engineering Materials, 2021, 23(5): 2001187.
[18] DAHIYA R, YOGESWARAN N, LIU F, et al. Large-area soft e-skin: The challenges beyond sensor designs[J]. Proceedings of the IEEE, 2019, 107(10): 2016-2033.
[19] KIM D I, QUANG TRUNG T, HWANG B U, et al. A sensor array using multi-functionalfield-effect transistors with ultrahigh sensitivity and precision for bio-monitoring[J]. Scientific reports, 2015, 5(1): 12705.
[20] LEE J S, SHIN K Y, CHEONG O J, et al. Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring[J]. Scientific reports, 2015, 5(1): 7887.
[21] WANG H, ZHOU D, CAO J. Development of a stretchable conductor array with embedded metal nanowires[J]. IEEE transactions on nanotechnology, 2013, 12(4): 561-565.
[22] YOGESWARAN N, TINKU S, KHAN S, et al. Stretchable resistive pressure sensor based on CNT-PDMS nanocomposites[C]//2015 11th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME). IEEE, 2015: 326-329.
[23] JUNG H C, MOON J H, BAEK D H, et al. CNT/PDMS composite flexible dry electrodesfor long-term ECG monitoring[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(5): 1472-1479.
[24] GAO Y, OTA H, SCHALER E W, et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring[J]. Advanced Materials, 2017, 29(39): 1701985.
[25] LUAN Y, ZHANG S, NGUYEN T H, et al. Polyurethane sponges decorated with reducedgraphene oxide and silver nanowires for highly stretchable gas sensors[J]. Sensors and Actuators B: Chemical, 2018, 265: 609-616.
[26] DUAN Y, HE S, WU J, et al. Recent progress in flexible pressure sensor arrays[J]. Nanomaterials, 2022, 12(14): 2495.
[27] GAO Y, XIAO T, LI Q, et al. Flexible microstructured pressure sensors: design, fabrication and applications[J]. Nanotechnology, 2022, 33(32): 322002.
[28] GUAN X, WANG Z, ZHAO W, et al. Flexible piezoresistive sensors with wide-range pressure measurements based on a graded nest-like architecture[J]. ACS applied materials & interfaces, 2020, 12(23): 26137-26144.
[29] LUO Z, CHEN J, ZHU Z, et al. High-resolution and high-sensitivity flexible capacitive pressure sensors enhanced by a transferable electrode array and a micropillar–PVDF film[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7635-7649.
[30] XIONG Y, SHEN Y, TIAN L, et al. A flexible, ultra-highly sensitive and stable capacitivepressure sensor with convex microarrays for motion and health monitoring[J]. Nano energy,2020, 70: 104436.
[31] HUANG H, ZHONG J, YE Y, et al. Research Progresses in Microstructure Designs of Flexible Pressure Sensors[J]. Polymers, 2022, 14(17): 3670.
[32] WANG D, ZHOU X, SONG R, et al. Freestanding silver/polypyrrole composite film for multifunctional sensor with biomimetic micropattern for physiological signals monitoring[J]. Chemical Engineering Journal, 2021, 404: 126940.58
[33] PARK J, LEE Y, HONG J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins[J]. ACS nano,2014, 8(5): 4689-4697.
[34] QIN Y, ZHANG X, ZHENG A, et al. Bioinspired Design of Hill-Ridge Architecture-BasedIontronic Sensor with High Sensibility and Piecewise Linearity[J]. Advanced Materials Technologies, 2022, 7(1): 2100510.
[35] DU Q, LIU L, TANG R, et al. High-performance flexible pressure sensor based on controllable hierarchical microstructures by laser scribing for wearable electronics[J]. Advanced Materials Technologies, 2021, 6(9): 2100122.
[36] ZHANG C, CHEN R, XIAO C, et al. Laser Direct Writing of Highly Ordered Two-LevelHierarchical Microstructures for Flexible Piezoresistive Sensor with Enhanced Sensitivity[J].Advanced Materials Interfaces, 2022, 9(1): 2101596.
[37] TAY R Y, LI H, LIN J, et al. Lightweight, superelastic boron nitride/polydimethylsiloxanefoam as air dielectric substitute for multifunctional capacitive sensor applications[J]. Advanced Functional Materials, 2020, 30(10): 1909604.
[38] METZGER C, FLEISCH E, MEYER J, et al. Flexible-foam-based capacitive sensor arrays for object detection at low cost[J]. Applied Physics Letters, 2008, 92(1).
[39] BAI N, WANG L, WANG Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity[J]. Nature communications, 2020, 11(1): 209.
[40] BISRI S Z, SHIMIZU S, NAKANO M, et al. Endeavor of iontronics: from fundamentals toapplications of ion-controlled electronics[J]. Advanced Materials, 2017, 29(25): 1607054.
[41] CHHETRY A, YOON H, PARK J Y. A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics[J]. Journal of Materials Chemistry C, 2017, 5(38): 10068-10076.
[42] LEE J, KWON H, SEO J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics[J]. Advanced materials, 2015, 27(15): 2433-2439.
[43] ZANG Y, ZHANG F, DI C A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Materials Horizons, 2015, 2(2): 140-156.
[44] VATANI M, LU Y, ENGEBERG E D, et al. Combined 3D printing technologies and material for fabrication of tactile sensors[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16: 1375-1383.
[45] WANG L, LI Y. A review for conductive polymer piezoresistive composites and a development of a compliant pressure transducer[J]. IEEE transactions on instrumentation and measurement, 2012, 62(2): 495-502.
[46] KIM K H, HONG S K, JANG N S, et al. Wearable resistive pressure sensor based on highly flexible carbon composite conductors with irregular surface morphology[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17499-17507.
[47] CHEN Z, WANG Z, LI X, et al. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures[J]. Acs Nano, 2017, 11(5): 4507-4513.59
[48] WANG X, GU Y, XIONG Z, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J]. Advanced materials, 2014, 26(9):1336-1342.
[49] TRAN A V, ZHANG X, ZHU B. The development of a new piezoresistive pressure sensor for low pressures[J]. IEEE Transactions on industrial electronics, 2017, 65(8): 6487-6496.
[50] LEI K F, LEE K F, LEE M Y. Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement[J]. Microelectronic Engineering, 2012, 99: 1-5.
[51] KANG J, SON D, WANG G J N, et al. Tough and water-insensitive self-healing elastomer for robust electronic skin[J]. Advanced Materials, 2018, 30(13): 1706846.
[52] HUANG Y, YUAN H, KAN W, et al. A flexible three-axial capacitive tactile sensor withmultilayered dielectric for artificial skin applications[J]. Microsystem Technologies, 2017, 23:1847-1852.
[53] MANNSFELD S C, TEE B C, STOLTENBERG R M, et al. Highly sensitive flexible pressuresensors with microstructured rubber dielectric layers[J]. Nature materials, 2010, 9(10): 859-864.
[54] PENG P, RAJAMANI R, ERDMAN A G. Flexible tactile sensor for tissue elasticity measurements[J]. Journal of microelectromechanical systems, 2009, 18(6): 1226-1233.
[55] AKIYAMA M, MOROFUJI Y, KAMOHARA T, et al. Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films[J]. Journal of applied physics, 2006, 100(11).
[56] PERSANO L, DAGDEVIREN C, SU Y, et al. High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene)[J]. Naturecommunications, 2013, 4(1): 1633.
[57] LI R, ZHOU Q, BI Y, et al. Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches[J]. Sensors and Actuators A: Physical, 2021, 321: 112425.
[58] XIAO Y, WANG M, LI Y, et al. High-Adhesive Flexible Electrodes and Their Manufacture: A. Review[J]. Micromachines, 2021, 12(12): 1505.
[59] CHEN Y, ZHANG P, LI Y, et al. Flexible capacitive pressure sensor based on multi-walled carbon nanotubes microstructure electrodes[J]. Journal of Physics D: Applied Physics, 2021,54(15): 155101.
[60] WANG X, XIA Z, ZHAO C, et al. Microstructured flexible capacitive sensor with high sensitivity based on carbon fiber-filled conductive silicon rubber[J]. Sensors and Actuators A: Physical,2020, 312: 112147.
[61] LUO Z, DUAN J, XU H, et al. Flexible capacitive pressure sensor based on an embedded rib fabric with a bionic sloping petal structure[J]. IEEE Sensors Journal, 2021, 21(18): 20119-20128.
[62] SU Q, ZOU Q, LI Y, et al. A stretchable and strain-unperturbed pressure sensor for motion interference–free tactile monitoring on skins[J]. Science advances, 2021, 7(48): eabi4563.
[63] YIN M J, YIN Z, ZHANG Y, et al. Micropatterned elastic ionic polyacrylamide hydrogel for low-voltage capacitive and organic thin-film transistor pressure sensors[J]. Nano Energy, 2019,58: 96-104.60
[64] CHHETRY A, KIM J, YOON H, et al. Ultrasensitive interfacial capacitive pressure sensor based on a randomly distributed microstructured iontronic film for wearable applications[J].ACS applied materials & interfaces, 2018, 11(3): 3438-3449.
[65] BAI N, WANG L, XUE Y, et al. Graded interlocks for iontronic pressure sensors with high sensitivity and high linearity over a broad range[J]. Acs Nano, 2022, 16(3): 4338-4347.
[66] YANG X, CHEN S, SHI Y, et al. A flexible highly sensitive capacitive pressure sensor[J].Sensors and Actuators A: Physical, 2021, 324: 112629.
[67] XIAO Y, DUAN Y, LI N, et al. Multilayer double-sided microstructured flexible iontronicpressure sensor with a record-wide linear working range[J]. ACS sensors, 2021, 6(5): 1785-1795.
[68] SHI R, LOU Z, CHEN S, et al. Flexible and transparent capacitive pressure sensor with pat terned microstructured composite rubber dielectric for wearable touch keyboard application[J].Sci. China Mater, 2018, 61(12): 1587-1595.
[69] YANG J C, KIM J O, OH J, et al. Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature[J]. ACS applied materials & interfaces,2019, 11(21): 19472-19480.
[70] INKSON B J. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization[M]//Materials characterization using nondestructive eval uation (NDE) methods. Elsevier, 2016: 17-43.
[71] KIM S Y, JEE E, KIM J S, et al. Conformable and ionic textiles using sheath-core carbon nanotube microyarns for highly sensitive and reliable pressure sensors[J]. RSC advances, 2017,7(38): 23820-23826.
[72] YANG W, LI N W, ZHAO S, et al. A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins[J]. Advanced Materials Technologies, 2018, 3(2):1700241.
[73] WANG Z, SI Y, ZHAO C, et al. Flexible and washable poly (ionic liquid) nanofibrous membrane with moisture proof pressure sensing for real-life wearable electronics[J]. ACS applied materials & interfaces, 2019, 11(30): 27200-27209.
[74] LIN M F, XIONG J, WANG J, et al. Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications[J]. Nano Energy, 2018, 44: 248-255.
[75] JIN M L, PARK S, LEE Y, et al. Artificial Skin: An Ultrasensitive, Visco-Poroelastic Artificial Mechanotransducer Skin Inspired by Piezo2 Protein in Mammalian Merkel Cells (Adv. Mater.13/2017)[J]. Advanced Materials, 2017, 29(13)
修改评论