中文版 | English
题名

A FUNCTIONAL STUDY OF THE PARABRACHIAL PDYN-EXPRESSING NEURONS IN MICE

其他题名
小鼠臂旁核 Pdyn 神经元的功能研究
姓名
姓名拼音
XIONG Tianchu
学号
12133071
学位类型
硕士
学位专业
071006 神经生物学
学科门类/专业学位类别
07 理学
导师
宋昆
导师单位
神经生物学系
论文答辩日期
2024-05-10
论文提交日期
2024-07-02
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

体温调节对哺乳动物的生存至关重要,即关乎产热和散热之间的平衡,从而 维持生理上有利的核心体温,让动物更好地适应寒冷或炎热的外部环境。在野生 型小鼠中,中枢神经系统当中的外侧臂旁核已被确定为输入温度相关信息的关键 脑区,该脑区会把这些信息传递到位于下丘脑视前区的体温调节中枢。在我们的 研究中,通过钙信号光纤记录法,我们在小鼠外侧臂旁核中发现负责热防御机制 的且向视前区投射的强啡肽原 (Pdyn) 阳性神经元,同时对多种类型的刺激做出 响应,包括非痛的冷和热刺激以及产生痛觉的冷、热和机械力刺激。此外,利用 化学遗传学抑制外侧臂旁核 Pdyn 阳性神经元,导致了 Pdyn-Cre 小鼠核心体温升 高且其恢复正常所需时间延长的现象。这可能暗示外侧臂旁核 Pdyn 阳性神经元 参与了调节压力引起的体温变化的过程,其中机制有待进一步研究。总的来说, 我们的研究揭示了外侧臂旁核 Pdyn 阳性神经元的功能不仅能在热环境下维持个 体的核心体温稳态,而且可能参与了压力诱发的体温调节。

关键词
语种
英语
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] MCKECHNIE A E, WOLF B O. The Physiology of Heat Tolerance in Small Endotherms[J/OL]. Physiology, 2019, 34(5): 302-313. DOI:10.1152/physiol.00011.2019.
[2] REZENDE E L, BACIGALUPE L D. Thermoregulation in endotherms: physiological principles and ecological consequences[J/OL]. Journal of Comparative Physiology B, 2015, 185(7): 709-727. DOI:10.1007/s00360-015-0909-5.
[3] GERSON A R, SMITH E K, SMIT B, et al. The Impact of Humidity on Evaporative Cooling in Small Desert Birds Exposed to High Air Temperatures[J/OL]. Physiological and Biochemical Zoology, 2014, 87(6): 782-795. DOI:10.1086/678956.
[4] MIZZEN L A, WELCH W J. Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression.[J/OL]. The Journal of cell biology, 1988, 106(4): 1105-1116. DOI:10.1083/jcb.106.4.1105.
[5] XIE S, TEARLE R, MCWHORTER T J. Heat Shock Protein Expression is Upregulated after Acute Heat Exposure in Three Species of Australian Desert Birds[J/OL]. Avian Biology Research, 2018, 11(4): 263-273. DOI:10.3184/175815618X15366607700458.
[6] LEON L R, BOUCHAMA A. Heat Stroke[M/OL]//Comprehensive Physiology. Wiley, 2015: 611-647. DOI:10.1002/cphy.c140017.
[7] EWART S L. Thermoregulation[M/OL]//Cunningham’s Textbook of Veterinary Physiology. 6th edition. Elsevier, 2020: 596-607. DOI:10.1016/B978-0-323-55227-1.00053-3.
[8] VAN SOMEREN E J W. Age-Related Changes in Thermoreception and Thermoregulation[M/OL]//Handbook of the Biology of Aging. 7th edition. Elsevier, 2011: 463-478. DOI:10.1016/B978-0-12-378638-8.00022-1.
[9] BARTNESS T J, VAUGHAN C H, SONG C K. Sympathetic and sensory innervation of brown adipose tissue[J/OL]. International Journal of Obesity, 2010, 34(S1): S36-S42. DOI:10.1038/ijo.2010.182.
[10] DUONG H, PATEL G. Hypothermia[M]. StatPearls, 2024.
[11] EPSTEIN E, ANNA K. Accidental hypothermia[J/OL]. BMJ, 2006, 332(7543): 706-709. DOI:10.1136/bmj.332.7543.706.
[12] CHESHIRE W P. Thermoregulatory disorders and illness related to heat and cold stress[J/OL]. Autonomic Neuroscience, 2016, 196: 91-104. DOI:10.1016/j.autneu.2016.01.001.
[13] MOZAFARI N, TALAIE H, SHOAEI S D, et al. Survey on Hypothermia and Hyperthermia in Poisoned Patients in a Unique Referral Hospital, Tehran, Iran[J/OL]. Iranian Red Crescent Medical Journal, 2016, 18(4). DOI:10.5812/ircmj.35483.
[14] JASTROCH M, GIROUD S, BARRETT P, et al. Seasonal Control of Mammalian Energy Balance: Recent Advances in the Understanding of Daily Torpor and Hibernation[J/OL]. Journal of Neuroendocrinology, 2016, 28(11). DOI:10.1111/jne.12437.
[15] HRVATIN S, SUN S, WILCOX O F, et al. Neurons that regulate mouse torpor[J/OL]. Nature, 2020, 583(7814): 115-121. DOI:10.1038/s41586-020-2387-5.
[16] TAKAHASHI T M, SUNAGAWA G A, SOYA S, et al. A discrete neuronal circuit induces a hibernation-like state in rodents[J/OL]. Nature, 2020, 583(7814): 109-114. DOI:10.1038/s41586-020-2163-6.
[17] ZETHOF T J J, VAN DER HEYDEN J A M, TOLBOOM J T B M, et al. Stress-induced hyperthermia in mice: A methodological study[J/OL]. Physiology & Behavior, 1994, 55(1): 109-115. DOI:10.1016/0031-9384(94)90017-5.
[18] COOPER K E. Some historical perspectives on thermoregulation[J/OL]. Journal of Applied Physiology, 2002, 92(4): 1717-1724. DOI:10.1152/japplphysiol.01051.2001.
[19] MOORHOUSE V H K. EFFECT OF INCREASED TEMPERATURE OF THE CAROTID BLOOD[J/OL]. American Journal of Physiology-Legacy Content, 1911, 28(4): 223-234. DOI:10.1152/ajplegacy.1911.28.4.223.
[20] HAMMOUDA M. The central and the reflex mechanism of panting[J/OL]. The Journal of Physiology, 1933, 77(4): 319-336. DOI:10.1113/jphysiol.1933.sp002972.
[21] BARBOUR H G. Die Wirkung unmittelbarer Erwärmung und Abkühlung der Wärmezentra auf die Körpertemperatur[J/OL]. Archiv für Experimentelle Pathologie und Pharmakologie, 1912, 70(1): 1-26. DOI:10.1007/BF01865333.
[22] BAZETT H C. PHYSIOLOGICAL RESPONSES TO HEAT[J/OL]. Physiological Reviews, 1927, 7(4): 531-599. DOI:10.1152/physrev.1927.7.4.531.
[23] MAGOUN H W, HARRISON F, BROBECK J R, et al. ACTIVATION OF HEAT LOSS MECHANISMS BY LOCAL HEATING OF THE BRAIN[J/OL]. Journal of Neurophysiology, 1938, 1(2): 101-114. DOI:10.1152/jn.1938.1.2.101.
[24] SATINOFF E. Behavioral thermoregulation in response to local cooling of the rat brain[J/OL]. American Journal of Physiology-Legacy Content, 1964, 206(6): 1389-1394. DOI:10.1152/ajplegacy.1964.206.6.1389.
[25] ELMQUIST J K, SCAMMELL T E, JACOBSON C D, et al. Distribution of fos-like immunoreactivity in the rat brain following intravenous lipopolysaccharide administration[J/OL]. The Journal of Comparative Neurology, 1996, 371(1): 85-103. DOI:10.1002/(SICI)1096-9861(19960715)371:1<85::AID-CNE5>3.0.CO;2-H.
[26] SATINOFF E, VALENTINO D, TEITELBAUM P. Thermoregulatory cold-defense deficits in rats with preoptic/anterior hypothalamic lesions[J/OL]. Brain Research Bulletin, 1976, 1(6): 553-565. DOI:10.1016/0361-9230(76)90082-4.
[27] LIPTON J. Effects of preoptic lesions on heat-escape responding and colonic temperature in the rat☆[J/OL]. Physiology & Behavior, 1968, 3(1): 165-169. DOI:10.1016/0031-9384(68)90049-8.
[28] KNOX G V, CAMPBELL C, LOMAX P. Cutaneous temperature and unit activity in the hypothalamic thermoregulatory centers[J/OL]. Experimental Neurology, 1973, 40(3): 717-730. DOI:10.1016/0014-4886(73)90106-4.
[29] HELLON R F. The stimulation of hypothalamic neurones by changes in ambient temperature[J/OL]. Pflugers Archiv European Journal of Physiology, 1970, 321(1): 56-66. DOI:10.1007/BF00594122.
[30] NAKAYAMA T, HAMMEL H T, HARDY J D, et al. Thermal stimulation of electrical activity of single units of the preoptic region[J/OL]. American Journal of Physiology-Legacy Content, 1963, 204(6): 1122-1126. DOI:10.1152/ajplegacy.1963.204.6.1122.
[31] MORRISON S F. 2010 Carl Ludwig Distinguished Lectureship of the APS Neural Control and Autonomic Regulation Section: Central neural pathways for thermoregulatory cold defense[J/OL]. Journal of Applied Physiology, 2011, 110(5): 1137-1149. DOI:10.1152/japplphysiol.01227.2010.
[32] CHEN W G, SCHLOESSER D, ARENSDORF A M, et al. The Emerging Science of Interoception: Sensing, Integrating, Interpreting, and Regulating Signals within the Self[J/OL]. Trends in Neurosciences, 2021, 44(1): 3-16. DOI:10.1016/j.tins.2020.10.007.
[33] CRAIG A D. How do you feel? Interoception: the sense of the physiological condition of the body[J/OL]. Nature Reviews Neuroscience, 2002, 3(8): 655-666. DOI:10.1038/nrn894.
[34] SAPER C B. The Central Autonomic Nervous System: Conscious Visceral Perception and Autonomic Pattern Generation[J/OL]. Annual Review of Neuroscience, 2002, 25(1): 433-469. DOI:10.1146/annurev.neuro.25.032502.111311.
[35] NAKAMURA K, MORRISON S F. A thermosensory pathway that controls body temperature[J/OL]. Nature Neuroscience, 2008, 11(1): 62-71. DOI:10.1038/nn2027.
[36] SONG K, WANG H, KAMM G B, et al. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia[J/OL]. Science, 2016, 353(6306): 1393-1398. DOI:10.1126/science.aaf7537.
[37] TAN C L, COOKE E K, LEIB D E, et al. Warm-Sensitive Neurons that Control Body Temperature[J/OL]. Cell, 2016, 167(1): 47-59.e15. DOI:10.1016/j.cell.2016.08.028.
[38] YU S, QUALLS-CREEKMORE E, REZAI-ZADEH K, et al. Glutamatergic Preoptic Area Neurons That Express Leptin Receptors Drive Temperature-Dependent Body Weight Homeostasis[J/OL]. The Journal of Neuroscience, 2016, 36(18): 5034-5046. DOI:10.1523/JNEUROSCI.0213-16.2016.
[39] HARDING E C, YU X, MIAO A, et al. A Neuronal Hub Binding Sleep Initiation and Body Cooling in Response to a Warm External Stimulus[J/OL]. Current Biology, 2018, 28(14): 2263-2273.e4. DOI:10.1016/j.cub.2018.05.054.
[40] WANG T A, TEO C F, ÅKERBLOM M, et al. Thermoregulation via Temperature-Dependent PGD2 Production in Mouse Preoptic Area[J/OL]. Neuron, 2019, 103(2): 349. DOI:10.1016/j.neuron.2019.06.026.
[41] REIMÚNDEZ A, FERNÁNDEZ-PEÑA C, GARCÍA G, et al. Deletion of the Cold Thermoreceptor TRPM8 Increases Heat Loss and Food Intake Leading to Reduced Body Temperature and Obesity in Mice[J/OL]. The Journal of Neuroscience, 2018, 38(15): 3643-3656. DOI:10.1523/JNEUROSCI.3002-17.2018.
[42] ZIMMERMANN K, LENNERZ J K, HEIN A, et al. Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system[J/OL]. Proceedings of the National Academy of Sciences, 2011, 108(44): 18114-18119. DOI:10.1073/pnas.1115387108.
[43] PIÑOL R A, MOGUL A S, HADLEY C K, et al. Preoptic BRS3 neurons increase body temperature and heart rate via multiple pathways[J/OL]. Cell Metabolism, 2021, 33(7): 1389-1403.e6. DOI:10.1016/j.cmet.2021.05.001.
[44] RAHMAN M, TADI P. Neuroanatomy, Pons[M]. StatPearls, 2024.
[45] PAULI J L, CHEN J Y, BASIRI M L, et al. Molecular and anatomical characterization of parabrachial neurons and their axonal projections[J/OL]. eLife, 2022, 11. DOI:10.7554/eLife.81868.
[46] LANÇA A J, VAN DER KOOY D. A serotonin-containing pathway from the area postrema to the parabrachial nucleus in the rat[J/OL]. Neuroscience, 1985, 14(4): 1117-1126. DOI:10.1016/0306-4522(85)90281-7.
[47] DAVERN P J. A role for the lateral parabrachial nucleus in cardiovascular function and fluid homeostasis[J/OL]. Frontiers in Physiology, 2014, 5. DOI:10.3389/fphys.2014.00436.
[48] SPYER K M. Neural organisation and control of the baroreceptor reflex[M/OL]//Rev. Physiol. Biochem. Pharmacol. 1981: 23-124. DOI:10.1007/BFb0034536.
[49] KIM D Y, HEO G, KIM M, et al. A neural circuit mechanism for mechanosensory feedback control of ingestion[J/OL]. Nature, 2020, 580(7803): 376-380. DOI:10.1038/s41586-020-2167-2.
[50] SUN L, LIU R, GUO F, et al. Parabrachial nucleus circuit governs neuropathic pain-like behavior[J/OL]. Nature Communications, 2020, 11(1): 5974. DOI:10.1038/s41467-020-19767-w.
[51] SATO M, ITO M, NAGASE M, et al. The lateral parabrachial nucleus is actively involved in the acquisition of fear memory in mice[J/OL]. Molecular Brain, 2015, 8(1): 22. DOI:10.1186/s13041-015-0108-z.
[52] SOLECKI W, ZIOLKOWSKA B, KROWKA T, et al. Alterations of prodynorphin gene expression in the rat mesocorticolimbic system during heroin self-administration[J/OL]. Brain Research, 2009, 1255: 113-121. DOI:10.1016/j.brainres.2008.12.002.
[53] WATSON S J, AKIL H, GHAZAROSSIAN V E, et al. Dynorphin immunocytochemical localization in brain and peripheral nervous system: preliminary studies.[J/OL]. Proceedings of the National Academy of Sciences, 1981, 78(2): 1260-1263. DOI:10.1073/pnas.78.2.1260.
[54] KHACHATURIAN H, LEWIS M E, HABER S N, et al. Prodynorphin peptide immunocytochemistry in rhesus monkey brain[J/OL]. Peptides, 1985, 6: 155-166. DOI:10.1016/0196-9781(85)90149-4.
[55] YANG W Z, DU X, ZHANG W, et al. Parabrachial neuron types categorically encode thermoregulation variables during heat defense[J/OL]. Science Advances, 2020, 6(36). DOI:10.1126/sciadv.abb9414.
[56] SHENG M, GREENBERG M E. The regulation and function of c-fos and other immediate early genes in the nervous system[J/OL]. Neuron, 1990, 4(4): 477-485. DOI:10.1016/0896-6273(90)90106-P.
[57] SINGEWALD N. Altered brain activity processing in high-anxiety rodents revealed by challenge paradigms and functional mapping[J/OL]. Neuroscience & Biobehavioral Reviews, 2007, 31(1): 18-40. DOI:10.1016/j.neubiorev.2006.02.003.
[58] VEYRAC A, BESNARD A, CABOCHE J, et al. The Transcription Factor Zif268/Egr1, Brain Plasticity, and Memory[M/OL]. 2014: 89-129. DOI:10.1016/B978-0-12-420170-5.00004-0.
[59] FARIVAR R, ZANGENEHPOUR S, CHAUDHURI A. Cellular-resolution activity mapping of the brain using immediate-early gene expression[J/OL]. Frontiers in Bioscience, 2004, 9(1-3): 104. DOI:10.2741/1198.
[60] BRAMHAM C R, WORLEY P F, MOORE M J, et al. The Immediate Early Gene Arc/Arg3.1: Regulation, Mechanisms, and Function[J/OL]. The Journal of Neuroscience, 2008, 28(46): 11760-11767. DOI:10.1523/JNEUROSCI.3864-08.2008.
[61] STAIGER J F, MASANNECK C, BISLER S, et al. Excitatory and inhibitory neurons express c-Fos in barrel-related columns after exploration of a novel environment[J/OL]. Neuroscience, 2002, 109(4): 687-699. DOI:10.1016/S0306-4522(01)00501-2.
[62] STEFANELLI T, BERTOLLINI C, LÜSCHER C, et al. Hippocampal Somatostatin Interneurons Control the Size of Neuronal Memory Ensembles[J/OL]. Neuron, 2016, 89(5): 1074-1085. DOI:10.1016/j.neuron.2016.01.024.
[63] CHUNG L. A Brief Introduction to the Transduction of Neural Activity into Fos Signal[J/OL]. Development & Reproduction, 2015, 19(2): 61-67. DOI:10.12717/DR.2015.19.2.061.
[64] NAKAI J, OHKURA M, IMOTO K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein[J/OL]. Nature Biotechnology, 2001, 19(2): 137-141. DOI:10.1038/84397.
[65] AKERBOOM J, RIVERA J D V, GUILBE M M R, et al. Crystal Structures of the GCaMP Calcium Sensor Reveal the Mechanism of Fluorescence Signal Change and Aid Rational Design[J/OL]. Journal of Biological Chemistry, 2009, 284(10): 6455-6464. DOI:10.1074/jbc.M807657200.
[66] WANG Q, SHUI B, KOTLIKOFF M I, et al. Structural Basis for Calcium Sensing by GCaMP2[J/OL]. Structure, 2008, 16(12): 1817-1827. DOI:10.1016/j.str.2008.10.008.
[67] SAENGSAWANG W, CHUKAEW P, RASENICK M M. G-Protein Coupled Receptors[M/OL]//Encyclopedia of Cell Biology. Elsevier, 2023: 62-69. DOI:10.1016/B978-0-12-821618-7.00123-1.
[68] VLASOV K, VAN DORT C J, SOLT K. Optogenetics and Chemogenetics[M/OL]//Methods Enzymol.: volume 603. 2018: 181-196. DOI:10.1016/bs.mie.2018.01.022.
[69] VAN DUYNE G D. A Structural View of Cre- loxP Site-Specific Recombination[J/OL]. Annual Review of Biophysics and Biomolecular Structure, 2001, 30(1): 87-104. DOI:10.1146/annurev.biophys.30.1.87.
[70] NAGY A. Cre recombinase: The universal reagent for genome tailoring[J/OL]. genesis, 2000, 26(2): 99-109. DOI:10.1002/(SICI)1526-968X(200002)26:2<99::AID-GENE1>3.0.CO;2-B.
[71] YANG W Z, XIE H, DU X, et al. A parabrachial-hypothalamic parallel circuit governs cold defense in mice[J/OL]. Nature Communications, 2023, 14(1): 4924. DOI:10.1038/s41467-023-40504-6.
[72] VRIENS J, NILIUS B, VOETS T. Peripheral thermosensation in mammals[J/OL]. Nature Reviews Neuroscience, 2014, 15(9): 573-589. DOI:10.1038/nrn3784.
[73] KWAN K Y, COREY D P. Burning Cold: Involvement of TRPA1 in Noxious Cold Sensation[J/OL]. Journal of General Physiology, 2009, 133(3): 251-256. DOI:10.1085/jgp.200810146.
[74] DENG J, ZHOU H, LIN J K, et al. The Parabrachial Nucleus Directly Channels Spinal Nociceptive Signals to the Intralaminar Thalamic Nuclei, but Not the Amygdala[J/OL]. Neuron, 2020, 107(5): 909-923.e6. DOI:10.1016/j.neuron.2020.06.017.
[75] CHIANG M C, NGUYEN E K, CANTO-BUSTOS M, et al. Divergent Neural Pathways Emanating from the Lateral Parabrachial Nucleus Mediate Distinct Components of the Pain Response[J/OL]. Neuron, 2020, 106(6): 927-939.e5. DOI:10.1016/j.neuron.2020.03.014.
[76] MAXWELL D J, SOTEROPOULOS D S. The mammalian spinal commissural system: properties and functions[J/OL]. Journal of Neurophysiology, 2020, 123(1): 4-21. DOI:10.1152/jn.00347.2019.
[77] ULRICH-LAI Y M, HERMAN J P. Neural regulation of endocrine and autonomic stress responses[J/OL]. Nature Reviews Neuroscience, 2009, 10(6): 397-409. DOI:10.1038/nrn2647.
[78] SOSZYŃSKI D. [Stressful increase in body temperature--hyperthermia or fever].[J]. Postepy higieny i medycyny doswiadczalnej, 1999, 53(6): 855-870.
[79] GURFEIN B T, STAMM A W, BACCHETTI P, et al. The Calm Mouse: An Animal Model of Stress Reduction[J/OL]. Molecular Medicine, 2012, 18(4): 606-617. DOI:10.2119/molmed.2012.00053.
[80] GERRETT N, OUZZAHRA Y, HAVENITH G. Distribution of Skin Thermal Sensitivity[M/OL]//Agache’s Measuring the Skin. Cham: Springer International Publishing, 2017: 1285-1301. DOI:10.1007/978-3-319-32383-1_72.
[81] PARICIO-MONTESINOS R, SCHWALLER F, UDHAYACHANDRAN A, et al. The Sensory Coding of Warm Perception[J/OL]. Neuron, 2020, 106(5): 830-841.e3. DOI:10.1016/j.neuron.2020.02.035.
[82] GOLD M S, GEBHART G F. Nociceptor sensitization in pain pathogenesis[J/OL]. Nature Medicine, 2010, 16(11): 1248-1257. DOI:10.1038/nm.2235.
[83] FERGER R, PAWLOWSKY K, SINGHEISER M, et al. Response adaptation in the barn owl’s auditory space map[J/OL]. Journal of Neurophysiology, 2018, 119(3): 1235-1247. DOI:10.1152/jn.00769.2017.
[84] SANDKÜHLER J. Models and Mechanisms of Hyperalgesia and Allodynia[J/OL]. Physiological Reviews, 2009, 89(2): 707-758. DOI:10.1152/physrev.00025.2008.
[85] PRICE D D, HAYES R L, RUDA M, et al. Spatial and temporal transformations of input to spinothalamic tract neurons and their relation to somatic sensations[J/OL]. Journal of Neurophysiology, 1978, 41(4): 933-947. DOI:10.1152/jn.1978.41.4.933.
[86] COGHILL R C. The Distributed Nociceptive System: A Framework for Understanding Pain[J/OL]. Trends in Neurosciences, 2020, 43(10): 780-794. DOI:10.1016/j.tins.2020.07.004.
[87] NORRIS A J, SHAKER J R, CONE A L, et al. Parabrachial opioidergic projections to preoptic hypothalamus mediate behavioral and physiological thermal defenses[J/OL]. eLife, 2021, 10. DOI:10.7554/eLife.60779.
[88] ŠKOP V, LIU N, GUO J, et al. The contribution of the mouse tail to thermoregulation is modest[J/OL]. American Journal of Physiology-Endocrinology and Metabolism, 2020, 319(2): E438-E446. DOI:10.1152/ajpendo.00133.2020.
[89] CISSOM C, J. PARIS J, SHARIAT-MADAR Z. Dynorphins in Development and Disease: Implications for Cardiovascular Disease[J/OL]. Current Molecular Medicine, 2020, 20(4): 259-274. DOI:10.2174/1566524019666191028122559.
[90] ALSHAK M N, M DAS J. Neuroanatomy, Sympathetic Nervous System[M]. StatPearls, 2024.
[91] ABEL E D. Free fatty acid oxidation in insulin resistance and obesity.[J]. Heart and metabolism : management of the coronary patient, 2010, 48: 5-10.
[92] DEPAOLI A M, HURLEY K M, YASADA K, et al. Distribution of κ Opioid Receptor mRNA in Adult Mouse Brain: An in Situ Hybridization Histochemistry Study[J/OL]. Molecular and Cellular Neuroscience, 1994, 5(4): 327-335. DOI:10.1006/mcne.1994.1039.
[93] SCHWARZER C. 30 years of dynorphins — New insights on their functions in neuropsychiatric diseases[J/OL]. Pharmacology & Therapeutics, 2009, 123(3): 353-370. DOI:10.1016/j.pharmthera.2009.05.006.
[94] MORRISON S F, MADDEN C J, TUPONE D. Central Control of Brown Adipose Tissue Thermogenesis[J/OL]. Frontiers in Endocrinology, 2012, 3. DOI:10.3389/fendo.2012.00005.
[95] MCCULLOUGH L, ARORA S. Diagnosis and treatment of hypothermia.[J]. American family physician, 2004, 70(12): 2325-2332.
[96] NGUYEN J P, SHIPLEY F B, LINDER A N, et al. Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans[J/OL]. Proceedings of the National Academy of Sciences, 2016, 113(8). DOI:10.1073/pnas.1507110112.
[97] HUDETZ A G. General Anesthesia and Human Brain Connectivity[J/OL]. Brain Connectivity, 2012, 2(6): 291-302. DOI:10.1089/brain.2012.0107.
[98] MOODY O A, ZHANG E R, VINCENT K F, et al. The Neural Circuits Underlying General Anesthesia and Sleep[J/OL]. Anesthesia & Analgesia, 2021, 132(5): 1254-1264. DOI:10.1213/ANE.0000000000005361.
[99] CREAMER M S, CHEN K S, LEIFER A M, et al. Correcting motion induced fluorescence artifacts in two-channel neural imaging[J/OL]. PLOS Computational Biology, 2022, 18(9): e1010421. DOI:10.1371/journal.pcbi.1010421.

所在学位评定分委会
生物学
国内图书分类号
Q189
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778797
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
Xiong TC. A FUNCTIONAL STUDY OF THE PARABRACHIAL PDYN-EXPRESSING NEURONS IN MICE[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12133071-熊天楚-生物系.pdf(3506KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[熊天楚]的文章
百度学术
百度学术中相似的文章
[熊天楚]的文章
必应学术
必应学术中相似的文章
[熊天楚]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。