[1]BARADEZ C, LISKA J, BRULLE-WOHLHUETER C, et al. Brief Digital Solutions in Behavior Change Interventions for Type 2 Diabetes Mellitus: A Literature Review. Diabetes Ther. 2022 Apr;13(4):635-649.
[2]ALQUNAI M S, ALRASHID F F. Bariatric surgery for the management of type 2 diabetes mellitus-current trends and challenges: a review article. Am J Transl Res. 2022 Feb 15;14(2):1160-1171.
[3]CHEN Y T, LIN W D, LIAO W L, et al. NT5C2 methylation regulatory interplay between DNMT1 and insulin receptor in type 2 diabetes. Sci Rep. 2020 Sep 30;10(1):16087.
[4]WU B, FU Z, WANG X, et al. A narrative review of diabetic bone disease: Characteristics, pathogenesis, and treatment. Front Endocrinol (Lausanne). 2022 Dec 14;13:1052592.
[5]PAN Y, XU J. Association between muscle mass, bone mineral density and osteoporosis in type 2 diabetes. J Diabetes Investig. 2022 Feb;13(2):351-358.
[6]LEE H S, HWANG J S. Impact of Type 2 Diabetes Mellitus and Antidiabetic Medications on Bone Metabolism. Curr Diab Rep. 2020 Nov 27;20(12):78.
[7]ELLER-VAINICHER C, CAIROLI E, GRASSI G, et al. Pathophysiology and Management of Type 2 Diabetes Mellitus Bone Fragility. J Diabetes Res. 2020 May 22;2020:7608964.
[8]ZHAO M, JIANG J, ZHAO M, et al. The Application of Single-Cell RNA Sequencing in Studies of Autoimmune Diseases: a Comprehensive Review. Clin Rev Allergy Immunol. 2021 Feb;60(1):68-86.
[9]LAMBRECHTS D, WAUTERS E, BOECKX B, et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 2018 Aug;24(8):1277-1289.
[10]巴黎根·达列力汗, 常铤晋, 汪富文, 等.单细胞转录组测序技术及其应用研究进展[J].家畜生态学报,2021,42(11):1-5.
[11]KHAN S, KAIHARA K A. Single-Cell RNA-Sequencing of Peripheral Blood Mononuclear Cells with ddSEQ. Methods Mol Biol. 2019;1979:155-176.
[12]RAMILO O, ALLMAN W, CHUNG W, et al. Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood. 2007 Mar 1;109(5):2066-77.
[13]BERRY MP, GRAHAM CM, MCNAB FW, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature. 2010 Aug 19;466(7309):973-7.
[14]NAMAYANDEH S M, KARIMI A, FALLAHZADEH H, et al. The incidence rate of diabetes mellitus (type II) and its related risk factors: A 10-year longitudinal study of Yazd Healthy Heart Cohort (YHHC), Iran. Diabetes Metab Syndr. 2019 Mar-Apr;13(2):1437-1441.
[15]崔新雯, 李丽凤, 杨星雅, 等.急性高强度间歇运动和中等强度持续运动对2型糖尿病患者餐后血糖、胰岛素和炎症因子的影响[J].体育科学,2022,42(3):72-76,84.
[16]刘筱威, 许桂红.个性化护理对2型糖尿病伴慢性牙周炎患者临床疗效及生活质量的影响[J].西部中医药,2018,31(10):124-127.
[17]崔祥, 尚尔鑫, 江曙, 等.基于响应曲面法对黄芩-黄连配伍改善2型糖尿病糖脂代谢紊乱的相互作用研究[J].药学学报,2018,53(04):630-635.
[18]王庆霞.2型糖尿病的临床治疗进展[J].中国城乡企业卫生,2021,36(09):64-66.
[19]魏军平.中西医结合防治糖尿病临床研究现状及发展趋势[J].中国中西医结合杂志,2021,41(01):13-15.
[20]中华医学会糖尿病学分会.中国2型糖尿病防治指南(2017年版)[J].中华糖尿病杂志,2018,10(1):4-67.
[21]MARTÍNEZ-CASTELAO A, NAVARRO-GONZÁLEZ JF, GÓRRIZ JL, et al. The Concept and the Epidemiology of Diabetic Nephropathy Have Changed in Recent Years. J Clin Med. 2015 May 28;4(6):1207-16.
[22]JANGHORBANI M, FESKANICH D, WILLETT W C, et al. Prospective study of diabetes and risk of hip fracture: the Nurses' Health Study. Diabetes Care. 2006 Jul;29(7):1573-8.
[23]KHOSLA S, SAMAKKARNTHAI P, MONROE D G, et al. Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus. Nat Rev Endocrinol. 2021 Nov;17(11):685-697.
[24]JIA P, BAO L, CHEN H, et al. Risk of low-energy fracture in type 2 diabetes patients: a meta-analysis of observational studies. Osteoporos Int. 2017 Nov;28(11):3113-3121.
[25]MURRAY C E, COLEMAN C M. Impact of Diabetes Mellitus on Bone Health. Int J Mol Sci. 2019 Sep 30;20(19):4873.
[26]WINER D A, WINER S, SHEN L, et al. 2011. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies[J]. Nature Medicine, 17(5): 610-U134.
[27]VAN BEEK L, LIPS M A, VISSER A, et al. 2014. Increased systemic and adipose tissue inflammation differentiates obese women with T2DM from obese women with normal glucose tolerance[J]. Metabolism-Clinical and Experimental, 63(4): 492-501.
[28]GUO H, XU B C, GAO L C, et al. 2012. High frequency of activated natural killer and natural killer T-cells in patients with new onset of type 2 diabetes mellitus[J]. Experimental Biology and Medicine, 237(5): 556-562.
[29]MCLAUGHLIN T, LIU L F, LAMENDOLA C, et al. 2014. T-Cell Profile in Adipose Tissue Is Associated With Insulin Resistance and Systemic Inflammation in Humans[J]. Arteriosclerosis Thrombosis and Vascular Biology, 34(12): 2637-2643.
[30]NEKOUA M P, FACHINAN R, ATCHAMOU A K, et al. 2016. Modulation of immune cells and Th1/Th2 cytokines in insulin-treated type 2 diabetes mellitus[J]. African Health Sciences, 16(3): 712-724.
[31]YUAN N, ZHANG H F, WEI Q, et al. 2018. Expression of CD4+CD25+Foxp3+ Regulatory T Cells, Interleukin 10 and Transforming Growth Factor beta in Newly Diagnosed Type 2 Diabetic Patients[J]. Exp Clin Endocrinol Diabetes, 126(2): 96-101.
[32]QIAO Y C, SHEN J, HE L, et al. 2016. Changes of Regulatory T Cells and of Proinflammatory and Immunosuppressive Cytokines in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis[J]. Journal of Diabetes Research, 2016.
[33]HINKMANN C, KNERR I, HAHN E G, et al. 2008. Reduced frequency of peripheral plasmacytoid dendritic cells in type 1 diabetes[J]. Horm Metab Res, 40(11): 767-771.
[34]SEIFARTH C C, HINKMANN C, HAHN E G, et al. 2008. Reduced frequency of peripheral dendritic cells in type 2 diabetes[J]. Exp Clin Endocrinol Diabetes, 116(3): 162-166.
[35]TESCH G H. 2007. Role of macrophages in complications of type 2 diabetes[J]. Clin Exp Pharmacol Physiol, 34(10): 1016-1019.
[36]GORDON S, MARTINEZ F O. 2010. Alternative activation of macrophages: mechanism and functions[J]. Immunity, 32(5): 593-604.
[37]WANG X, YAO B, WANG Y, et al. 2017. Macrophage Cyclooxygenase-2 Protects Against Development of Diabetic Nephropathy[J]. Diabetes, 66(2): 494-504.
[38]SWIRSKI F K, LIBBY P, AIKAWA E, et al. 2007. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata[J]. J Clin Invest, 117(1): 195-205.
[39]LANDHUIS E. Technologies to watch in 2020. Nature. 2020 Jan;577(7791):585-587.
[40]SHALEK AK, SATIJA R, SHUGA J, et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014 Jun 19;510(7505):363-9
[41]LI RY, GUAN J, ZHOU S. Boosting scRNA-seq data clustering by cluster-aware feature weighting. BMC Bioinformatics. 2021 Jun 2;22(Suppl 6):130.
[42]HEDLUND E, DENG Q. Single-cell RNA sequencing: Technical advancements and biological applications. Mol Aspects Med. 2018 Feb;59:36-46.
[43]BRENNECKE P, ANDERS S, KIM J K, et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods. 2013 Nov;10(11):1093-5.
[44]GUO W, HU Y, QIAN J, et al. Laser capture microdissection for biomedical research: towards high-throughput, multi-omics, and single-cell resolution. J Genet Genomics. 2023 Sep;50(9):641-651.
[45]GUO M T, ROTEM A, HEYMAN J A, et al. Droplet microfluidics for high-throughput biological assays. Lab Chip. 2012 Jun 21;12(12):2146-55.
[46]KULKARNI A, ANDERSON A G, MERULLO D P, et al. Beyond bulk: a review of single cell transcriptomics methodologies and applications. Curr Opin Biotechnol. 2019 Aug;58:129-136
[47]SAVIANO A, HENDERSON N C, BAUMERT T F. Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology. J Hepatol. 2020 Nov;73(5):1219-1230.
[48]丁宁, 张然然, 刘欣, 等.单细胞转录组测序技术及其在骨发育中的应用研究进展与展望[J/OL].特产研究:1-6.
[49]XU G, LIU Y, LI H, et al. Dissecting the human immune system with single cell RNA sequencing technology. J Leukoc Biol. 2020 Apr;107(4):613-623.
[50]KISELEV V Y, ANDREWS T S, HEMBERG M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet. 2019 May;20(5):273-282.
[51]TANG F, BARBACIORU C, WANG Y, et al. m RNA-Seq whole-transcriptome analysis of a single cell [J]. Nat Methods, 2009, 6(5): 377-82.
[52]GAUBLOMME J T, YOSEF N, LEE Y, et al. Single-Cell Genomics Unveils Critical Regulators of Th17 Cell Pathogenicity [J]. Cell, 2015, 163(6): 1400-12.
[53]WILK A J, RUSTAGI A, ZHAO N Q, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19 [J]. Nat Med, 2020, 26(7): 1070-6.
[54]WANG R, DANG M, HARADA K, et al. Single-cell dissection of intratumoral heterogeneity and lineage diversity in metastatic gastric adenocarcinoma [J]. Nat Med, 2021, 27(1): 141-51.
[55]WANG Z, XIE L, DING G, et al. Single-cell RNA sequencing of peripheral blood mononuclear cells from acute Kawasaki disease patients [J]. Nat Commun, 2021, 12(1): 5444.
[56]SCHULZ C, GOMEZ PERDIGUERO E, CHORRO L, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells[J]. Science (New York, N.Y.), 2012, 336(6077): 86-90
[57]MACPARLAND S A, LIU J C, MA X Z, et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations[J]. Nature communications, 2018, 9(1): 4383
[58]GRUBMAN A, CHEW G, OUYANG J F, et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer's disease reveals cell-type-specific gene expression regulation[J]. Nature neuroscience, 2019, 22(12): 2087-2097
[59]WILSON P C, WU H, KIRITA Y, et al. The single-cell transcriptomic landscape of early human diabetic nephropathy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(39): 19619-19625
[60]AFZAL M, ALGHAMDI S S, MIGDADI H H, et al. Legume genomics and transcriptomics: From classic breeding to modern technologies. Saudi J Biol Sci. 2020 Jan;27(1):543-555.
[61]ECKHARDT B A, ROWSEY J L, THICKE B S, et al. Accelerated osteocyte senescence and skeletal fragility in mice with type 2 diabetes. JCI Insight. 2020 May 7;5(9):e135236.
[62]DOBIN A, DAVIS C A, SCHLESINGER F, et al. STAR: ultrafast universal RNA-seq aligner[J]. Bioinformatics, 2013, 29(1): 15-21.
[63]BUTLER A, HOFFMAN P, SMIBERT P, et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species[J]. Nat Biotechnol, 2018, 36(5): 411-420.
[64]DO V H, CANZAR S. A generalization of t-SNE and UMAP to single-cell multimodal omics. Genome Biol. 2021 May 3;22(1):130.
[65]ARAN D, LOONEY A P, LIU L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage[J]. Nat Immunol, 2019, 20(2): 163-172.
[66]TRAPNELL C, CACCHIARELLI D, GRIMSBY J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[J]. Nat Biotechnol, 2014, 32(4): 381-386.
[67]VENTO-TORMO R, EFREMOVA M, BOTTING R A, et al. Single-cell reconstruction of the early maternal-fetal interface in humans[J]. Nature, 2018, 563(7731): 347-353.
[68]JIN S, GUERRERO-JUAREZ C F, ZHANG L, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021 Feb 17;12(1):1088.
[69]XU X, JIANG X, SHI M, et al.. Mass spectrometry-based techniques for single-cell analysis. Analyst. 2023 Aug 7;148(16):3690-3707.
[70]ZHENG G X, TERRY J M, BELGRADER P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017 Jan 16;8:14049.
[71]SATIJA R, FARRELL J A, GENNERT D, et al. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015 May;33(5):495-502.
[72]KALUCKA J, DE ROOIJ LPMH, GOVEIA J, et al. Single-Cell Transcriptome Atlas of Murine Endothelial Cells. Cell. 2020 Feb 20;180(4):764-779.e20.
[73]GARIANI K, PHAM T T, KRESSMANN B, et al. Three Weeks Versus Six Weeks of Antibiotic Therapy for Diabetic Foot Osteomyelitis: A Prospective, Randomized, Noninferiority Pilot Trial. Clin Infect Dis. 2021 Oct 5;73(7):e1539-e1545.
[74]MARINO S, AKEL N, LI S, et al. Reversal of the diabetic bone signature with anabolic therapies in mice. Bone Res. 2023 Apr 19;11(1):19.
[75]HUANG Y H, CHEN C J, SHAO S C, et al. Comparison of the Diagnostic Accuracies of Monocyte Distribution Width, Procalcitonin, and C-Reactive Protein for Sepsis: A Systematic Review and Meta-Analysis. Crit Care Med. 2023 May 1;51(5):e106-e114.
[76]MOKGALABONI K, DLUDLA P V, NYAMBUYA T M, et al. Monocyte-mediated inflammation and cardiovascular risk factors in type 2 diabetes mellitus: A systematic review and meta-analysis of pre-clinical and clinical studies. JRSM Cardiovasc Dis. 2020 Jan 14.
[77]RESTREPO B I, TWAHIRWA M, RAHBAR M H, et al. Phagocytosis via complement or Fc-gamma receptors is compromised in monocytes from type 2 diabetes patients with chronic hyperglycemia. PLoS One. 2014 Mar 26;9(3):e92977.
[78]GAO L, YANG T T, ZHANG J S, et al. THBS1/CD47 Modulates the Interaction of γ-Catenin With E-Cadherin and Participates in Epithelial-Mesenchymal Transformation in Lipid Nephrotoxicity. Front Cell Dev Biol. 2021 Feb 18;8:601521.
[79]ZHANG H, CHEN X, XUE P, et al. FN1 promotes chondrocyte differentiation and collagen production via TGF-β/PI3K/Akt pathway in mice with femoral fracture. Gene. 2021 Feb 15;769:145253.
[80]MÄRKL F, HUYNH D, ENDRES S, et al. Utilizing chemokines in cancer immunotherapy. Trends Cancer. 2022 Aug;8(8):670-682.
[81]MATSUDA S, MATSUDA Y, D'ADAMIO L. CD74 interacts with APP and suppresses the production of Abeta. Mol Neurodegener. 2009 Oct 22;4:41.
[82]PACE N P, VASSALLO J. Association Between Neutrophil-Lymphocyte Ratio and Gestational Diabetes-A Systematic Review and Meta-Analysis. J Endocr Soc. 2021 Mar 23;5(7):bvab051.
[83]ADANE T, MELKU M, WORKU Y B, et al. The Association between Neutrophil-to-Lymphocyte Ratio and Glycemic Control in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. J Diabetes Res. 2023 Jun 3;2023:3117396.
[84]KOH H M, LEE H J, KIM D C. High expression of S100A8 and S100A9 is associated with poor disease-free survival in patients with cancer: a systematic review and meta-analysis. Transl Cancer Res. 2021 Jul;10(7):3225-3235.
[85]RIGIRACCIOLO D C, NOHATA N, LAPPANO R, et al. Focal Adhesion Kinase (FAK)-Hippo/YAP transduction signaling mediates the stimulatory effects exerted by S100A8/A9-RAGE system in triple-negative breast cancer (TNBC). J Exp Clin Cancer Res. 2022 Jun 3;41(1):193.
[86]URSINO G, RAMADORI G, HÖFLER A, et al. Hepatic non-parenchymal S100A9-TLR4-mTORC1 axis normalizes diabetic ketogenesis. Nat Commun. 2022 Jul 15;13(1):4107.
[87]SUN Y, LIU W Z, LIU T, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015;35(6):600-4.
[88]WAGNER E F, MATSUO K. Signalling in osteoclasts and the role of Fos/AP1 proteins. Ann Rheum Dis. 2003 Nov;62 Suppl 2(Suppl 2):ii83-5.
[89]ZENZ R, EFERL R, SCHEINECKER C, et al. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. Arthritis Res Ther. 2008;10(1):201.
[90]HOFBAUER L C, BUSSE B, EASTELL R, et al. Bone fragility in diabetes: novel concepts and clinical implications. Lancet Diabetes Endocrinol. 2022 Mar;10(3):207-220.
[91]PONZETTI M, RUCCI N. Updates on Osteoimmunology: What's New on the Cross-Talk Between Bone and Immune System. Front Endocrinol (Lausanne). 2019 Apr 18;10:236.
[92]GUDER C, GRAVIUS S, BURGER C, et al. Osteoimmunology: A Current Update of the Interplay Between Bone and the Immune System. Front Immunol. 2020 Jan 31;11:58.
[93]GAO Y, CHEN N, FU Z, et al. Progress of Wnt Signaling Pathway in Osteoporosis. Biomolecules. 2023 Mar 6;13(3):483.
[94]AAMIR K, KHAN H U, SETHI G, et al. Wnt signaling mediates TLR pathway and promote unrestrained adipogenesis and metaflammation: Therapeutic targets for obesity and type 2 diabetes. Pharmacol Res. 2020 Feb;152:104602.
修改评论