中文版 | English
题名

电驱动废水中氮磷回收与抗生素同步降解的机制研究

其他题名
ELECTROCHEMICALLY-DRIVEN NUTRIENT RECOVERY AND ANTIBIOTICS DEGRADATION FROM WASTEWATER: EFFICIENCY AND MECHANISM
姓名
姓名拼音
WANG Runhua
学号
12132221
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
雷洋
导师单位
环境科学与工程学院
论文答辩日期
2024-05-07
论文提交日期
2024-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

面对日益加剧的磷资源危机和水体氮(N)磷(P)污染,回收废水中的氮磷不仅可以有效减缓资源短缺现状,同时保护水生态环境。在众多氮磷污染源中,禽畜废水因含有丰富养分,十分适合进行氮磷资源回收。此外,抗生素被广泛用于畜牧养殖,随动物代谢进入禽畜废水。通过化学鸟粪石沉淀法(CSP)从畜禽废水中回收氮磷得到的产品往往会掺杂大量抗生素。使用此类产品会引起抗生素及抗性基因在食物链中传播,威胁生态健康。在磷回收技术的发展中,电驱动鸟粪石沉淀法因无需调节pH、无需添加碱性试剂等优势被认为是十分有前景的方法,然而,抗生素在电驱动系统中的迁移转化机制鲜有研究。综上,本研究探究典型抗生素(磺胺嘧啶,SD)在电驱动鸟粪石沉淀系统中的迁移转化机制,阐明电化学参数及共存离子对系统处理效果的影响,并从微观作用力及流体传质的角度分析粒子的行为。最后,我们发展了优化的电驱动系统,提出了调控抗生素在鸟粪石中富集及同步氮磷回收与抗生素降解的策略。

本研究首先探究SD在亚氧化钛阳极系统(EMSP-Ti4O7)进行鸟粪石沉淀时的迁移转化机制。结果表明该系统通过惰性阳极表面产生的羟基自由基可氧化降解85.0%SD,高于CSP系统吸附去除的SD20.0%),且调节电化学参数可将SD的降解提高至100.0%。然而,EMSP-Ti4O7系统的磷回收速率较低(0.18 mg P/min)。随后,我们在镁阳极系统(EMSP-Mg)的研究中发现,该系统因阳极快速释放Mg2+,且溶液pH升高,在溶液和电极表面同时发生鸟粪石的均相或非均相沉淀,使磷回收速率得到提高(1.18 mg P/min)。然而,该系统无 OH生成,仅通过吸附作用去除5.0%SD。最后,结合EMSP-Ti4O7系统高SD降解率及EMSP-Mg系统高磷回收速率的优势,我们构建了双阳极系统处理模拟废水。结果表明该系统可实现氮磷回收及抗生素同步降解,磷回收率和SD降解率通过调节电流强度可分别达到100.0%93.0%。此外,我们还可通过分步进行氧化与沉淀以减少抗生素在回收产物上的富集,从而回收清洁产品,降低抗生素带来的环境健康风险,助力生态环境可持续发展。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] KIELA P R, RADHAKRISHNAN V M, GHISHAN F K. Chapter 34 - Phosphorus: basic nutritional aspects [M]//COLLINS J F. Molecular, genetic, and nutritional aspects of major and trace minerals. Boston; Academic Press. 2017: 413-27.
[2] 何敏, 许秋月, 夏允, 等. 植物磷获取机制及其对全球变化的响应 [J]. 植物生态学报, 2023, 47(03): 291-305.
[3] 赵玉芬. 磷与生活; 中国化学会第26届学术年会化学与社会论坛, 中国天津, F, 2008 [C].
[4] KIM A H, YU A C, EL ABBADI S H, et al. More than a fertilizer: wastewater-derived struvite as a high value, sustainable fire retardant [J]. Green Chem, 2021, 23(12): 4510-23.
[5] Mineral commodity summaries 2024 [R]. Reston, VA, 2024.
[6] 陈雨然, 陈敏鹏. 全球磷产品贸易格局演变及中国磷安全 [J]. 资源科学, 2024, 46(01): 85-99.
[7] 郝晓地, 郭小媛, 刘杰, 等. 磷危机下的磷回收策略与立法 [J]. 环境污染与防治, 2021, 43(09): 1196-200.
[8] RITCHIE H, RODéS-GUIRAO L, MATHIEU E, et al. Population growth [J]. Our World in Data, 2023.
[9] HA T-H, MAHASTI N N N, LU M-C, et al. Ammonium-nitrogen recovery as struvite from swine wastewater using various magnesium sources [J]. Sep Purif Technol, 2023, 308: 122870.
[10] SENGUPTA S, NAWAZ T, BEAUDRY J. Nitrogen and phosphorus recovery from wastewater [J]. Curr Pollut Rep, 2015, 1(3): 155-66.
[11] SMIL V. Nitrogen and food production: proteins for human diets [J]. Ambio, 2002, 31(2): 126-31.
[12] LI X, XU W, SONG S, et al. Sources and spatiotemporal distribution characteristics of nitrogen and phosphorus loads in the Haihe River Basin, China [J]. Mar Pollut, 2023, 189: 114756.
[13] 王林. 生态环境保护工程中的污水处理问题探析 [J]. 黑龙江环境通报, 2023, 36(09): 98-100.
[14] 2022年生态环境状况公报 [R]: 中华人民共和国生态环境部, 2022.
[15] 聂菊芬, 冯海涛, 和弦, 等. 滇池富营养化的应对策略 [J]. 低碳世界, 2023, 13(12): 13-5.
[16] 2022年生态环境统计年报 [R]: 中华人民共和国生态环境部, 2022.
[17] 张华, 陈晓东, 常文越, 等. 畜禽养殖污水生态处理及资源化利用方式的探讨 [J]. 环境保护科学, 2007, (03): 38-40.
[18] 贺舒敏, 王海曼. 高级氧化法处理养猪废水研究进展 [J]. 辽宁化工, 2022, 51(06): 773-5+89.
[19] CHENG D L, NGO H H, GUO W S, et al. Bioprocessing for elimination antibiotics and hormones from swine wastewater [J]. Sci Total Environ, 2018, 621: 1664-82.
[20] CAI J S, YE Z L, YE C S, et al. Struvite crystallization induced the discrepant transports of antibiotics and antibiotic resistance genes in phosphorus recovery from swine wastewater [J]. Environ Pollut, 2020, 266.
[21] CHENG D, NGO H H, GUO W, et al. Removal process of antibiotics during anaerobic treatment of swine wastewater [J]. Bioresour Technol, 2020, 300: 122707.
[22] ZHOU L J, YING G G, ZHANG R Q, et al. Use patterns, excretion masses and contamination profiles of antibiotics in a typical swine farm, south China [J]. Environ Sci-Process Impacts, 2013, 15(4): 802-13.
[23] GONZáLEZ-GARCíA I, RIAñO B, MOLINUEVO-SALCES B, et al. Improved anaerobic digestion of swine manure by simultaneous ammonia recovery using gas-permeable membranes [J]. Water Res, 2021, 190: 116789.
[24] HE X, WANG Y, ZHANG Y, et al. The potential for livestock manure valorization and phosphorus recovery by hydrothermal technology - a critical review [J]. Materials Science for Energy Technologies, 2023, 6: 94-104.
[25] 郝晓地, 衣兰凯, 王崇臣, 等. 磷回收技术的研发现状及发展趋势 [J]. 环境科学学报, 2010, 30(05): 897-907.
[26] KRISHNAMOORTHY N, DEY B, UNPAPROM Y, et al. Engineering principles and process designs for phosphorus recovery as struvite: a comprehensive review [J]. J Environ Chem Eng, 2021, 9(5): 105579.
[27] CHENG H, QIN H, LIANG L, et al. Towards advanced simultaneous nitrogen removal and phosphorus recovery from digestion effluent based on anammox-hydroxyapatite (HAP) process: focusing on a solution perspective [J]. Bioresour Technol, 2023, 381: 129117.
[28] ZHANG J, CHEN Z, LIU Y, et al. Phosphorus recovery from wastewater and sewage sludge as vivianite [J]. J Clean Prod, 2022, 370: 133439.
[29] 柳后起, 朱勇坤. 污水磷资源回收 [J]. 资源节约与环保, 2022, (08): 92-5.
[30] YETILMEZSOY K, KOCAK E, AKBIN H M, et al. Utilization of struvite recovered from high-strength ammonium-containing simulated wastewater as slow-release fertilizer and fire-retardant barrier [J]. Environ Technol, 2020, 41(2): 153-70.
[31] 陈惟希, 杜尧, 谢先军, 等. 基于鸟粪石沉淀法的富磷地下水磷回收的可行性与影响因素探究 [J]. 地质科技通报: 1-12.
[32] LI B, BOIARKINA I, YU W, et al. Phosphorous recovery through struvite crystallization: challenges for future design [J]. Sci Total Environ, 2019, 648: 1244-56.
[33] LE CORRE K S, VALSAMI-JONES E, HOBBS P, et al. Phosphorus recovery from wastewater by struvite crystallization: a review [J]. Crit Rev Environ Sci Technol, 2009, 39(6): 433-77.
[34] OHLINGER K N, YOUNG T M, SCHROEDER E D. Kinetics effects on preferential struvite accumulation in wastewater [J]. J Environ Eng-ASCE, 1999, 125(8): 730-7.
[35] LE CORRE K S, VALSAMI-JONES E, HOBBS P, et al. Impact of reactor operation on success of struvite precipitation from synthetic liquors [J]. Environ Technol, 2007, 28(11): 1245-56.
[36] MATYNIA A, KORALEWSKA J, WIERZBOWSKA B, et al. The influence of process parameters on struvite continuous crystallization kinetics [J]. Chem Eng Commun, 2006, 193(2): 160-76.
[37] JONES A G. 9 - Design of crystallization process systems [M]//JONES A G. Crystallization process systems. Oxford; Butterworth-Heinemann. 2002: 261-98.
[38] LE CORRE K S, VALSAMI-JONES E, HOBBS P, et al. Impact of calcium on struvite crystal size, shape and purity [J]. J Cryst Growth, 2005, 283(3-4): 514-22.
[39] 蔡佳盛, 叶欣, 叶志隆, 等. 鸟粪石结晶流化床结构优化 [J]. 环境工程学报, 2019, 13(09): 2092-101.
[40] GUAN Q, ZENG G, SONG J, et al. Highly efficient phosphorus and potassium recovery from urine via crystallization process in a fluidized bed reactor system [J]. J Environ Chem Eng, 2021, 9(4): 105623.
[41] ADNAN A, DASTUR M, MAVINIC D S, et al. Preliminary investigation into factors affecting controlled struvite crystallization at the bench scale [J]. J Environ Eng Sci, 2004, 3(3): 195-202.
[42] YE X, YE Z-L, LOU Y, et al. A comprehensive understanding of saturation index and upflow velocity in a pilot-scale fluidized bed reactor for struvite recovery from swine wastewater [J]. Powder Technol, 2016, 295: 16-26.
[43] 李翠翠, 郑文禹. 污水除磷及磷回收技术研究进展 [J]. 广东化工, 2018, 45(09): 150-3.
[44] CHEN B, LI Y, LUO Z, et al. Enhanced phosphorus removal from biological secondary effluent using denitrifying phosphorus-removal granular sludge [J]. J Water Process Eng, 2024, 57: 104584.
[45] XU N, LI Y, ZHENG L, et al. Synthesis and application of magnesium amorphous calcium carbonate for removal of high concentration of phosphate [J]. Chem Eng J, 2014, 251: 102-10.
[46] BACELO H, PINTOR A M A, SANTOS S C R, et al. Performance and prospects of different adsorbents for phosphorus uptake and recovery from water [J]. Chem Eng J, 2020, 381: 122566.
[47] LIBERTI L, LIMONI N, LOPEZ A, et al. The 10 m3/h rim-nut demonstration plant at west bari for removing and recovering N and P from wastewater [J]. Water Res, 1986, 20(6): 735-9.
[48] LEI Y, SONG B N, VAN DER WEIJDEN R D, et al. Electrochemical induced calcium phosphate precipitation: importance of local pH [J]. Environ Sci Technol, 2017, 51(19): 11156-64.
[49] LEI Y, NARSING S, SAAKES M, et al. Calcium carbonate packed electrochemical precipitation column: new concept of phosphate removal and recovery [J]. Environ Sci Technol, 2019, 53(18): 10774-80.
[50] KEKEDY-NAGY L, TEYMOURI A, HERRING A M, et al. Electrochemical removal and recovery of phosphorus as struvite in an acidic environment using pure magnesium vs. the AZ31 magnesium alloy as the anode [J]. Chem Eng J, 2020, 380.
[51] CHEN Q-L, AN X-L, ZHU Y-G, et al. Application of struvite alters the antibiotic resistome in soil, rhizosphere, and phyllosphere [J]. Environ Sci Technol, 2017, 51(14): 8149-57.
[52] BASAKçILARDAN-KABAKCI S, THOMPSON A, CARTMELL E, et al. Adsorption and precipitation of tetracycline with struvite [J]. Water Environ Res, 2007, 79(13): 2551-6.
[53] GAO D, LI B, HUANG X, et al. A review of the migration mechanism of antibiotics during struvite recovery from wastewater [J]. Chem Eng J, 2023, 466: 142983.
[54] LOU Y, YE Z L, CHEN S, et al. Influences of dissolved organic matters on tetracyclines transport in the process of struvite recovery from swine wastewater [J]. Water Res, 2018, 134: 311-26.
[55] YE Z L, DENG Y J, LOU Y Y, et al. Adsorption behavior of tetracyclines by struvite particles in the process of phosphorus recovery from synthetic swine wastewater [J]. Chem Eng J, 2017, 313: 1633-8.
[56] HUANG X, YE Z-L, CAI J, et al. Quantification of DOM effects on tetracyclines transport during struvite recovery from swine wastewater [J]. Water Res, 2021, 206: 117756.
[57] ABEL-DENEE M, ABBOTT T, ESKICIOGLU C. Using mass struvite precipitation to remove recalcitrant nutrients and micropollutants from anaerobic digestion dewatering centrate [J]. Water Res, 2018, 132: 292-300.
[58] JING L, XUEJIANG W, YUAN W, et al. Insight into the co-adsorption behaviors and interface interactions mechanism of chlortetracycline and lead onto struvite loaded diatomite [J]. J Hazard Mater, 2021, 405: 124210.
[59] WANG Y, WANG X J, LI J, et al. Adsorption and precipitation behaviors of zinc, copper and tetracycline with struvite products obtained by phosphorus recovery from swine wastewater [J]. J Environ Chem Eng, 2020, 8(6).
[60] HUANG Y H, CAI J S, YE Z L, et al. Morphological crystal adsorbing tetracyclines and its interaction with magnesium ion in the process of struvite crystallization by using synthetic wastewater [J]. Water Res, 2022, 215.
[61] GAO D G, LI B, HUANG X W, et al. A review of the migration mechanism of antibiotics during struvite recovery from wastewater [J]. Chem Eng J, 2023, 466.
[62] LIU Z, XIE S, ZHOU H, et al. Organic contaminants removal and carbon sequestration using pig manure solid residue-derived biochar: a novel closed-loop strategy for anaerobic liquid digestate [J]. Chem Eng J, 2023, 471: 144601.
[63] 王振楠, 白默涵, 李晓晶, 等. 微生物降解四环素类抗生素的研究进展 [J]. 农业环境科学学报, 2022, 41(12): 2779-86.
[64] LI C, ZHU X, HE H, et al. Adsorption of two antibiotics on biochar prepared in air-containing atmosphere: influence of biochar porosity and molecular size of antibiotics [J]. J Mol Liq, 2019, 274: 353-61.
[65] NASROLLAHI N, VATANPOUR V, KHATAEE A. Removal of antibiotics from wastewaters by membrane technology: limitations, successes, and future improvements [J]. Sci Total Environ, 2022, 838: 156010.
[66] 赵丹荻, 何亚鹏, 翟重渊, 等. 电催化氧化技术降解水中抗生素类污染物研究进展 [J]. 环境化学: 1-13.
[67] GU H B, XIE W H, DU A I, et al. Overview of electrocatalytic treatment of antibiotic pollutants in wastewater [J]. Catal Rev, 2023, 65(2): 569-619.
[68] OTURAN N, GANIYU S O, RAFFY S, et al. Sub-stoichiometric titanium oxide as a new anode material for electro-Fenton process: application to electrocatalytic destruction of antibiotic amoxicillin [J]. Applied Catalysis B: Environmental, 2017, 217: 214-23.
[69] DIRANY A, SIRéS I, OTURAN N, et al. Electrochemical treatment of the antibiotic sulfachloropyridazine: kinetics, reaction pathways, and toxicity evolution [J]. Environ Sci Technol, 2012, 46(7): 4074-82.
[70] WANG J, ZHI D, ZHOU H, et al. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode [J]. Water Res, 2018, 137: 324-34.
[71] 王浩楠, 李烨, 傅志强, 等. 抗生素解离形态对其植物富集及人体暴露的影响 [J]. 生态毒理学报, 2022, 17(05): 43-53.
[72] WANG B C, LILJA M, MA T R, et al. Theoretical and experimental study of the incorporation of tobramycin and strontium-ions into hydroxyapatite by means of co-precipitation [J]. Appl Surf Sci, 2014, 314: 376-83.
[73] BEN MOUSSA S, MAURIN G, GABRIELLI C, et al. Electrochemical precipitation of struvite [J]. Electrochem Solid St, 2006, 9(6): C97-C101.
[74] WANG R, ZHAN Z, SONG B, et al. Electrochemical route outperforms chemical struvite precipitation in mitigating heavy metal contamination [J]. J Hazard Mater, 2024, 465: 133418.
[75] PENG L H, DAI H L, WU Y F, et al. A comprehensive review of phosphorus recovery from wastewater by crystallization processes [J]. Chemosphere, 2018, 197: 768-81.
[76] YE Z-L, DENG Y, LOU Y, et al. Occurrence of veterinary antibiotics in struvite recovery from swine wastewater by using a fluidized bed [J]. Front Env Sci Eng, 2018, 12(3): 7.
[77] NELSON N O, MIKKELSEN R L, HESTERBERG D L. Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg:P ratio and determination of rate constant [J]. Bioresour Technol, 2003, 89(3): 229-36.
[78] STRATFUL I, SCRIMSHAW M D, LESTER J N. Conditions influencing the precipitation of magnesium ammonium phosphate [J]. Water Res, 2001, 35(17): 4191-9.
[79] SHEN Y, YE Z L, YE X, et al. Phosphorus recovery from swine wastewater by struvite precipitation: compositions and heavy metals in the precipitates [J]. Desalin Water Treat, 2016, 57(22): 10361-9.
[80] 王博, 张长安, 赵利民, 等. 基于掺硼金刚石电极的工业废水处理研究进展 [J]. 化工进展, 2024, 43(01): 501-13.
[81] LIU G, ZHANG C, ZHOU Y, et al. Insight into the overpotential and thermodynamic mechanism of hydroxyl radical formation on diamond anode [J]. Appl Surf Sci, 2021, 565: 150559.
[82] HAO Y, MA P, MA H, et al. Electrochemical treatment of synthetic wastewaters contaminated by organic pollutants at Ti4O7 Anode. Study of the role of operative parameters by experimental results and theoretical modelling [J]. ChemElectroChem, 2022, 9(6): e202101720.
[83] COMNINELLIS C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment [J]. Electrochim Acta, 1994, 39(11): 1857-62.
[84] YANG J, HAN Y, LUO J, et al. Synthesis and characterization of amorphous magnesium carbonate nanoparticles [J]. Materials Chemistry and Physics, 2019, 224: 301-7.
[85] LI W, DING X, LIU M, et al. Optimization of process parameters for mature landfill leachate pretreatment using MAP precipitation [J]. Front Env Sci Eng, 2012, 6(6): 892-900.
[86] NI T, FENG H, TANG J, et al. A novel electrocatalytic system with high reactive chlorine species utilization capacity to degrade tetracycline in marine aquaculture wastewater [J]. Chemosphere, 2022, 300: 134449.
[87] KRUK D J, ELEKTOROWICZ M, OLESZKIEWICZ J A. Struvite precipitation and phosphorus removal using magnesium sacrificial anode [J]. Chemosphere, 2014, 101: 28-33.
[88] CAI Y, HAN Z, LIN X, et al. Mechanisms of releasing magnesium ions from a magnesium anode in an electrolysis reactor with struvite precipitation [J]. J Environ Chem Eng, 2022, 10(1): 106661.

所在学位评定分委会
力学
国内图书分类号
X506
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778806
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
王润华. 电驱动废水中氮磷回收与抗生素同步降解的机制研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132221-王润华-环境科学与工程(11214KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王润华]的文章
百度学术
百度学术中相似的文章
[王润华]的文章
必应学术
必应学术中相似的文章
[王润华]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。