中文版 | English
题名

RACK1调控拟南芥侧根的分子机制

其他题名
MOLECULAR MECHANISMS OF RACK1 REGULATION ON THE DEVELOPMENT OF LATERAL ROOTS
姓名
姓名拼音
SU Yujing
学号
12133060
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
梁建生
导师单位
生命科学学院
论文答辩日期
2024-05-10
论文提交日期
2024-07-01
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

植物根系不仅是植物能够稳定地锚定在土壤中的基础,也是植物吸收水分 和营养物质,促进植物生长发育的基础。侧根发生增加了根系的表面积,从而增强了根系的吸水能力和锚定作用。植物侧根发生和发育过程是一个十分复杂的生物学过程,受遗传和外界环境因子的调控,其中,植物激素生长素在调节植物侧根发生和伸长中发挥着重要功能。

RACK1 蛋白在不同物种中具有较高的保守性,是一种高度保守的支架蛋白。RACK1 蛋白在植物生长发育中起着重要的调控作用,但 RACK1 在侧根发育中的调控机制还不清晰。拟南芥基因组中存在三个编码 RACK1 蛋白的同源基因,RACK1A、RACK1B 和 RACK1C。本研究的结果表明,与野生型 Col-0 相比,rack1a 突变体侧根数目和侧根密度显著减少,而突变体 rack1b、rack1c 的侧根数目和侧根密度降低程度不如 rack1a 的显著,rack1a/b/c 三突变体侧根数目和侧根密度降低最显著,明 RACK1 蛋白在侧根发育过程中虽存在功能冗余, 但 RACK1A 起关键作用。RACK1A 过表达转基因株系 Myc-RACK1A#1 和 MycRACK1A#2 的侧根数目及侧根密度显著高于 Col-0,进一步证明了 RACK1A 在侧根发育中的关键调控作用。重力性诱导实验显示 rack1a/b/c 突变体的侧根起始率低于 Col-0,表明 RACK1 蛋白影响了拟南芥侧根起始。基于生长素对侧根起始的重要性,我们通过外源生长素和生长素抑制剂处理拟南芥野生型 Col-0 和 rack1a/b/c 突变体,结果表明,RACK1 调控侧根的发育依赖生长素。实时荧光定量 PCR 结果显示,RACK1 影响了生长素介导的侧根发育关键转录因子LBDs 的表达。LCI、Y2H 和 BiFC 结果表明,RACK1A 与生长素运输相关蛋白PIN1、PID、Pin1At 及生长素受体 TIR1 蛋白发生相互作用。以上结果表明,RACK1 蛋白以一种生长素依赖型的调控模式参与了侧根发育过程。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] MOTTE H, VANNESTE S, BEECKMAN T. Molecular and environmental regulation of root development[J]. Annual review of plant biology, 2019, 70: 465-488.
[2] SANTOS TEIXEIRA J A, TEN TUSSCHER K H. The Systems Biology of Lateral Root Formation: Connecting the Dots[J]. Molecular plant, 2019, 12(6): 784-803.
[3] 张琳琳. 长期大风对霸王根系分布的影响[D]. 新疆师范大学.
[4] 沈铮, 徐军, 李学芹, 等. 促进烟草根系发育研究进展[J]. 安徽农业科学, 2023, 51(22): 1-5+15.
[5] ZHAN A, SCHNEIDER H, LYNCH J P. Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize[J]. Plant Physiology, 2015, 168(4): 1603-1615.
[6] MA J F, GOTO S, TAMAI K, et al. Role of root hairs and lateral roots in silicon uptake by rice[J]. Plant Physiology, 2001, 127(4): 1773-1780.
[7] MOTTE H, BEECKMAN T. The evolution of root branching: increasing the level of plasticity[J]. Journal of Experimental Botany, 2019, 70(3): 785-793.
[8] 付江涛, 李光莹, 虎啸天, 等. 植物固土护坡效应的研究现状及发展趋势[J]. 工程地质学报, 2014, 22(06): 1135-1146.
[9] 郑力文. 林木根系对土壤性质的影响研究[D]. 2015.
[10] ZHANG D, LI C, BING L, et al. The Scaffolding Protein RACK1: A Platform for Diverse Functions in the Plant Kingdom, F, 2013 [C].
[11] GUO J, CHEN J-G. RACK1 genes regulate plant development with unequal genetic redundancy in Arabidopsis[J]. BMC Plant Biology, 2008, 8(1): 1-11.
[12] ISLAS-FLORES T, GUILLÉN G, SÁNCHEZ F, et al. Changes in RACK1 expression induce defects in nodulation and development in Phaseolus vulgaris[J]. Plant Signaling & Behavior, 2012, 7(1): 132-134.
[13] SHI S, CHEN W, SUN W. Comparative proteomic analysis of the Arabidopsis cbl1 mutant in response to salt stress[J]. Proteomics, 2011, 11(24): 4712-4725.
[14] NAKASHIMA A, CHEN L, THAO N P, et al. RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex[J]. The Plant Cell, 2008, 20(8): 2265-2279.
[15] NAKASHIMA A, CHEN L, THAO N P, et al. RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex[J]. The Plant Cell, 2008, 20(8): 2265-2279.
[16] TORRES-MARTINEZ H H, NAPSUCIALY-MENDIVIL S, DUBROVSKY J G. Cellular and molecular bases of lateral root initiation and morphogenesis[J]. Current Opinion in Plant Biology, 2022, 65: 102115.
[17] 王家利, 刘冬成, 郭小丽, 等. 生长素合成途径的研究进展[J]. 植物学报, 2012, 47(03): 292-301.
[18] 张焕凯. 生长素响应因子 ARF3 通过组蛋白乙酰化修饰调控拟南芥顶端分生组织干细胞的维持[D]. 山东农业大学, 2021.参考文献54
[19] EVANS J S B T, OVER D E. Rationality and reasoning[M]. Oxford, England: Psychology/Erlbaum (Uk) Taylor & Fr, 1996.
[20] YU J, WEN C K. Arabidopsis aux1rcr1 mutation alters AUXIN RESISTANT1 targeting and prevents expression of the auxin reporter DR5:GUS in the root apex[J]. Journal of Experimental Botany, 2013, 64(4): 921-933.
[21] CHOI Y, LEE Y, KIM S Y, et al. Arabidopsis ROP-interactive CRIB motif-containing protein 1 (RIC1) positively regulates auxin signalling and negatively regulates abscisic acid (ABA) signalling during root development[J]. Plant Cell & Environment, 2013, 36(5): 945-955.
[22] 刘进平. 生长素受体与信号转导机制研究进展[J]. 生物技术通报, 2007(03): 22-30.
[23] PICKART C M. Mechanisms underlying ubiquitination[J]. Annual Review of Biochemistry, 2001, 70: 503-533.
[24] DHARMASIRI N, DHARMASIRI S, ESTELLE M. The F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435(7041): 441-445.
[25] KEPINSKI S, LEYSER O. Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex[J]. Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature, 2004, 101(33): 12381-12386.
[26] YU Y, TANG W, LIN W, et al. ABLs and TMKs are co-receptors for extracellular auxin[J]. Cell, 2023, 186(25): 5457-5471 e5417.
[27] KIRYUSHKIN A S, ILINA E L, PUCHKOVA V A, et al. Lateral Root Initiation in the Parental Root Meristem of Cucurbits: Old Players in a New Position[J]. Frontiers in Plant Science, 2019, 10: 365.
[28] ILINA E L, KIRYUSHKIN A S, SEMENOVA V A, et al. Lateral root initiation and formation within the parental root meristem of Cucurbita pepo: is auxin a key player?[J]. Annals of Botany, 2018, 122(5): 873-888.
[29] LI Y, WU Y, HAGEN G, et al. Expression of the Auxin-Inducible GH3 Promoter/GUS Fusion Gene as a Useful Molecular Marker for Auxin Physiology[J]. Plant and Cell Physiology, 1999, 40
[30] SABATINI S, BEIS D, WOLKENFELT H, et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root[J]. Cell, 1999, 99(5): 463-472.
[31] DE SMET I, TETSUMURA T, DE RYBEL B, et al. Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis[J]. Development, 2007, 134(4): 681-690.
[32] LASKOWSKI M J, WILLIAMS M E, NUSBAUM H C, et al. Formation of lateral root meristems is a two-stage process[J]. Development, 1995, 121(10): 3303-3310.
[33] DE RYBEL B, VASSILEVA V, PARIZOT B, et al. A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity[J]. Current Biology, 2010, 20(19): 1697-1706.
[34] CASIMIRO I, MARCHANT A, BHALERAO R P, et al. Auxin transport promotes Arabidopsis lateral root initiation[J]. The Plant Cell, 2001, 13(4): 843-852.参考文献55
[35] MALAMY J. Intrinsic and environmental response pathways that regulate root system architecture[J]. Plant, cell & environment, 2005, 28(1): 67-77.
[36] 刘大同, 荆彦平, 李栋梁, 等. 植物侧根发育的研究进展[J]. 植物生理学报, 2013, 49(11): 1127-1137.
[37] XUAN W, BAND L R, KUMPF R P, et al. Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis[J]. Science, 2016, 351(6271): 384-387.
[38] WACHSMAN G, ZHANG J, MORENO-RISUENO M A, et al. Cell wall remodeling and vesicle trafficking mediate the root clock in Arabidopsis[J]. Science, 2020, 370(6518): 819-823.
[39] ZHANG Y, MITSUDA N, YOSHIZUMI T, et al. Two types of bHLH transcription factor determine the competence of the pericycle for lateral root initiation[J]. Nature Plants, 2021, 7(5): 633-643.
[40] GOH T, JOI S, MIMURA T, et al. The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins[J]. Development, 2012, 139(5): 883-893.
[41] PEROTTI M F, RIBONE P A, CABELLO J V, et al. AtHB23 participates in the gene regulatory network controlling root branching, and reveals differences between secondary and tertiary roots[J]. Plant Journal, 2019, 100(6): 1224-1236.
[42] KIM S H, BAHK S, AN J, et al. A Gain-of-Function Mutant of IAA15 Inhibits Lateral Root Development by Transcriptional Repression of LBD Genes in Arabidopsis[J]. Frontiers in Plant Science, 2020, 11: 1239.
[43] YUAN T T, XU H H, LI J, et al. Auxin abolishes SHI-RELATED SEQUENCE5-mediated inhibition of lateral root development in Arabidopsis[J]. New Phytologist, 2020, 225(1): 297-309.
[44] OTVOS K, MISKOLCZI P, MARHAVY P, et al. Pickle Recruits Retinoblastoma Related 1 to Control Lateral Root Formation in Arabidopsis[J]. International Journal of Molecular Sciences, 2021, 22(8)
[45] FERNANDEZ A I, VANGHELUWE N, XU K, et al. GOLVEN peptide signalling through RGI receptors and MPK6 restricts asymmetric cell division during lateral root initiation[J]. Nature Plants, 2020, 6(5): 533-543.
[46] FERNANDEZ A, DROZDZECKI A, HOOGEWIJS K, et al. The GLV6/RGF8/CLEL2 peptide regulates early pericycle divisions during lateral root initiation[J]. Journal of Experimental Botany, 2015, 66(17): 5245-5256.
[47] DIDONATO R J, ARBUCKLE E, BUKER S, et al. Arabidopsis ALF4 encodes a nuclear￾localized protein required for lateral root formation[J]. Plant Journal, 2004, 37(3): 340-353.
[48] GALA H P, LANCTOT A, JEAN-BAPTISTE K, et al. A single-cell view of the transcriptome during lateral root initiation in Arabidopsis thaliana[J]. The Plant Cell, 2021, 33(7): 2197-2220.参考文献56
[49] TOYOKURA K, GOH T, SHINOHARA H, et al. Lateral Inhibition by a Peptide Hormone￾Receptor Cascade during Arabidopsis Lateral Root Founder Cell Formation[J]. Developmental Cell, 2019, 48(1): 64-75 e65.
[50] ZHU Q, SHAO Y, GE S, et al. A MAPK cascade downstream of IDA-HAE/HSL2 ligand￾receptor pair in lateral root emergence[J]. Nature Plants, 2019, 5(4): 414-423.
[51] KAKEI Y, YAMAZAKI C, SUZUKI M, et al. Small-molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function[J]. The Plant journal : for cell and molecular biology, 2015, 84 4: 827-837.
[52] RUEGGER M, DEWEY E, GRAY W M, et al. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p[J]. Current Opinion in Plant Biology, 1998, 12(2): 198-207.
[53] JING H, YANG X, ZHANG J, et al. Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling[J]. Nature communications, 2015, 6(1): 7395.
[54] PERIANEZ-RODRIGUEZ J, RODRIGUEZ M, MARCONI M, et al. An auxin-regulable oscillatory circuit drives the root clock in Arabidopsis[J]. Science Advances, 2021, 7(1): eabd4722.
[55] OKUSHIMA Y, FUKAKI H, ONODA M, et al. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis[J]. The Plant Cell, 2007, 19(1): 118-130.
[56] GOH T, KASAHARA H, MIMURA T, et al. Multiple AUX/IAA-ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3-mediated auxin signalling[J]. Philosophical Transactions of the Royal Society B, 2012, 367(1595): 1461-1468.
[57] HIMANEN K, BOUCHERON E, VANNESTE S, et al. Auxin-mediated cell cycle activation during early lateral root initiation[J]. The Plant Cell, 2002, 14(10): 2339-2351.
[58] JURADO S, ABRAHAM Z, MANZANO C, et al. The Arabidopsis cell cycle F-box protein SKP2A binds to auxin[J]. The Plant Cell, 2010, 22(12): 3891-3904.
[59] MANZANO C, RAMIREZ-PARRA E, CASIMIRO I, et al. Auxin and epigenetic regulation of SKP2B, an F-box that represses lateral root formation[J]. Plant Physiology, 2012, 160(2): 749-762.
[60] HUANG R, ZHENG R, HE J, et al. Noncanonical auxin signaling regulates cell division pattern during lateral root development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(42): 21285-21290.
[61] 徐文红. MPK3/6 调控侧根发育机理研究[D]. 2021.
[62] YU Z, QU X, LV B, et al. MAC3A and MAC3B mediate degradation of the transcription factor ERF13 and thus promote lateral root emergence[J]. The Plant Cell, 2024
[63] XUN Q, WU Y, LI H, et al. Two receptor-like protein kinases, MUSTACHES and MUSTACHES-LIKE, regulate lateral root development in Arabidopsis thaliana[J]. New Phytologist, 2020, 227(4): 1157-1173.参考文献57
[64] ZHOU J J, LUO J. The PIN-FORMED Auxin Efflux Carriers in Plants[J]. International Journal of Molecular Sciences, 2018, 19(9)
[65] OMELYANCHUK N A, KOVRIZHNYKH V V, OSHCHEPKOVA E A, et al. A detailed expression map of the PIN1 auxin transporter in Arabidopsis thaliana root[J]. BMC Plant Biology, 2016, 16 Suppl 1(Suppl 1): 5.
[66] CHRISTENSEN S K, DAGENAIS N, CHORY J, et al. Regulation of auxin response by the protein kinase PINOID[J]. Cell, 2000, 100(4): 469-478.
[67] MICHNIEWICZ M, ZAGO M K, ABAS L, et al. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux[J]. Cell, 2007, 130(6): 1044-1056.
[68] XI W, GONG X, YANG Q, et al. Pin1At regulates PIN1 polar localization and root gravitropism[J]. Nature communications, 2016, 7: 10430.
[69] MICHNIEWICZ M, HO C H, ENDERS T A, et al. TRANSPORTER OF IBA1 Links Auxin and Cytokinin to Influence Root Architecture[J]. Developmental Cell, 2019, 50(5): 599-609 e594.
[70] HOWE G A, MAJOR I T, KOO A J. Modularity in Jasmonate Signaling for Multistress Resilience[J]. Annual Review of Plant Biology, 2018, 69: 387-415.
[71] SHKOLNIK-INBAR D, BAR-ZVI D. ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis[J]. The Plant Cell, 2010, 22(11): 3560-3573.
[72] WANG Y, LI L, YE T, et al. Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression[J]. Plant Journal, 2011, 68(2): 249-261.
[73] IVANCHENKO M G, NAPSUCIALY-MENDIVIL S, DUBROVSKY J G. Auxin-induced inhibition of lateral root initiation contributes to root system shaping in Arabidopsis thaliana[J]. Plant Journal, 2010, 64(5): 740-752.
[74] MAYZLISH-GATI E, DE-CUYPER C, GOORMACHTIG S, et al. Strigolactones are involved in root response to low phosphate conditions in Arabidopsis[J]. Plant Physiology, 2012, 160(3): 1329-1341.
[75] GRUBER B D, GIEHL R F, FRIEDEL S, et al. Plasticity of the Arabidopsis root system under nutrient deficiencies[J]. Plant Physiology, 2013, 163(1): 161-179.
[76] KELLERMEIER F, ARMENGAUD P, SEDITAS T J, et al. Analysis of the Root System Architecture of Arabidopsis Provides a Quantitative Readout of Crosstalk between Nutritional Signals[J]. The Plant Cell, 2014, 26(4): 1480-1496.
[77] KELLERMEIER F, CHARDON F, AMTMANN A. Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation[J]. Plant Physiology, 2013, 161(3): 1421-1432.
[78] ORMAN-LIGEZA B, MORRIS E C, PARIZOT B, et al. The Xerobranching Response Represses Lateral Root Formation When Roots Are Not in Contact with Water[J]. Current Biology, 2018, 28(19): 3165-3173.e3165.参考文献58
[79] ZHAO Y, XING L, WANG X, et al. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes[J]. Science Signaling, 2014, 7(328): ra53.
[80] OROSA-PUENTE B, LEFTLEY N, VON WANGENHEIM D, et al. Root branching toward water involves posttranslational modification of transcription factor ARF7[J]. Science, 2018, 362(6421): 1407-1410.
[81] CHEN D, RICHARDSON T, CHAI S, et al. Drought-Up-Regulated TaNAC69-1 is a Transcriptional Repressor of TaSHY2 and TaIAA7, and Enhances Root Length and Biomass in Wheat[J]. Plant and Cell Physiology, 2016, 57(10): 2076-2090.
[82] 刘淑明, 孙佳乾, 邓振义, 等. 干旱胁迫对花椒不同品种根系生长及水分利用的影响[J]. 林业科学, 2013, 49(12): 30-35.
[83] PERET B, DESNOS T, JOST R, et al. Root architecture responses: in search of phosphate[J]. Plant Physiology, 2014, 166(4): 1713-1723.
[84] MULLER J, TOEV T, HEISTERS M, et al. Iron-dependent callose deposition adjusts root meristem maintenance to phosphate availability[J]. Developmental Cell, 2015, 33(2): 216-230.
[85] BUSTOS R, CASTRILLO G, LINHARES F, et al. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis[J]. PLoS Genetics, 2010, 6(9): e1001102.
[86] ZHANG Y, LI Y, DE ZEEUW T, et al. Root branching under high salinity requires auxin￾independent modulation of LATERAL ORGAN BOUNDARY DOMAIN 16 function[J]. The Plant Cell, 2023
[87] BURSSENS S, HIMANEN K, VAN DE COTTE B, et al. Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana[J]. Planta, 2000, 211(5): 632-640.
[88] ZHAO Y, WANG T, ZHANG W, et al. SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis[J]. New Phytologist, 2011, 189(4): 1122-1134.
[89] HAO Y J, WEI W, SONG Q X, et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. Plant Journal, 2011, 68(2): 302-313.
[90] SMITH T F, GAITATZES C, SAXENA K, et al. The WD repeat: a common architecture for diverse functions[J]. Trends in biochemical sciences, 1999, 24(5): 181-185.
[91] GUILLEMOT F, BILLAULT A, AUFFRAY C. Physical linkage of a guanine nucleotide￾binding protein-related gene to the chicken major histocompatibility complex[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(12): 4594-4598.
[92] ISHIDA S, TAKAHASHI Y, NAGATA T. Isolation of cDNA of an auxin-regulated gene encoding a G protein beta subunit-like protein from tobacco BY-2 cells[J]. Proceedings of the National Academy of Sciences, 1993, 90(23): 11152-11156.参考文献59
[93] ADAMS D R, RON D, KIELY P A. RACK1, A multifaceted scaffolding protein: Structure and function[J]. Cell Commun Signal, 2011, 9: 22.
[94] ROLLINS M G, JHA S, BARTOM E T, et al. RACK1 evolved species-specific multifunctionality in translational control through sequence plasticity within a loop domain[J]. Journal of Cell Science, 2019, 132(12)
[95] CHEN S, SPIEGELBERG B D, LIN F, et al. Interaction of Gbetagamma with RACK1 and other WD40 repeat proteins[J]. Journal of Molecular and Cellular Cardiology, 2004, 37(2): 399-406.
[96] THORNTON C, TANG K C, PHAMLUONG K, et al. Spatial and temporal regulation of RACK1 function and N-methyl-D-aspartate receptor activity through WD40 motif-mediated dimerization[J]. Journal of Biological Chemistry, 2004, 279(30): 31357-31364.
[97] LI J J, XIE D. RACK1, a versatile hub in cancer[J]. Oncogene, 2015, 34(15): 1890-1898.
[98] SHEN S, FENG H, LE Y, et al. RACK1 affects the progress of G2/M by regulating Aurora￾A[J]. Cell Cycle, 2019, 18(18): 2228-2238.
[99] GANDIN V, SENFT D, TOPISIROVIC I, et al. RACK1 Function in Cell Motility and Protein Synthesis[J]. Genes & Cancer, 2013, 4(9-10): 369-377.
[100] 邓丽娇. RACK1 调控造血干细胞功能和机制的研究[D]. 2022.
[101] 赵晓艳. DJ-1 通过 RACK1/AMPK/mTOR 途径参与保护性自噬对抗 H9c2 心肌细胞缺氧损伤的分子调控机制[D]. 2023.
[102] SHI S, DENG Y Z, ZHAO J S, et al. RACK1 promotes non-small-cell lung cancer tumorigenicity through activating sonic hedgehog signaling pathway[J]. Journal of Biological Chemistry, 2012, 287(11): 7845-7858.
[103] KONG Q, GAO L, NIU Y, et al. RACK1 is required for adipogenesis[J]. American Journal of Physiology-cell Physiology, 2016, 311(5): C831-c836.
[104] MCKHANN H I, FRUGIER F, PETROVICS G, et al. Cloning of a WD-repeat-containing gene from alfalfa (Medicago sativa): a role in hormone-mediated cell division?[J]. Frontiers in Plant Science, 1997, 34(5): 771-780.
[105] GUO J, LIANG J, CHEN J G. RACK1, a Versatile Scaffold Protein in Plants?, F, 2007 [C].
[106] GUO J, CHEN J G. RACK1 genes regulate plant development with unequal genetic redundancy in Arabidopsis[J]. BMC Plant Biol, 2008, 8: 108.
[107] CHEN J G. Phosphorylation of RACK1 in plants[J]. Plant Signaling & Behavior, 2015, 10(8): e1022013.
[108] HYODO K, SUZUKI N, OKUNO T. Hijacking a host scaffold protein, RACK 1, for replication of a plant RNA virus[J]. New Phytologist, 2019, 221(2): 935-945.
[109] 上官燕, 李娇爱, 王哲, 等. RACK1 依赖的 miRNA 途径参与调节植物叶绿素的生物合成[J]. 上海师范大学学报(自然科学版), 2018, 47(05): 600-609.
[110] ZHANG D, WANG Y, SHEN J, et al. OsRACK1A, encodes a circadian clock-regulated WD40 protein, negatively affect salt tolerance in rice[J]. Rice, 2018, 11(1): 45.参考文献60
[111] ISHIDA S, TAKAHASHI Y, NAGATA T. Isolation of cDNA of an auxin-regulated gene encoding a G protein beta subunit-like protein from tobacco BY-2 cells[J]. Proceedings of the National Academy of Sciences, 1993, 90(23): 11152-11156.
[112] CHEN J G, ULLAH H, TEMPLE B, et al. RACK1 mediates multiple hormone responsiveness and developmental processes in Arabidopsis[J]. Journal of Experimental Botany, 2006, 57(11): 2697-2708.
[113] 李鸿雁. 转 GmRACK1 基因大豆对非生物胁迫及 ABA 的响应[M].
[114] 刘卉. 水稻 RACK1 基因(OsRACK1)在干旱胁迫响应中的功能研究[D]. 扬州大学, 2008.
[115] 王伟. RACK1 与乙烯信号转导核心调控因子 EIN2 协同调控拟南芥的生长发育[D]. 2021.
[116] LI Z, FU Y, WANG Y, et al. Scaffold protein RACK1 regulates BR signaling by modulating the nuclear localization of BZR1[J]. New Phytologist, 2023, 239(5): 1804-1818.
[117] MASOOD J, ZHU W, FU Y, et al. Scaffold protein RACK1A positively regulates leaf senescence by coordinating the EIN3-miR164-ORE1 transcriptional cascade in Arabidopsis[J]. Journal of Integrative Plant Biology, 2023, 65(7): 1703-1716.
[118] ALSHAMMARI S O, DAKSHANAMURTHY S, ULLAH H. Small compounds targeting tyrosine phosphorylation of Scaffold Protein Receptor for Activated C Kinase1A (RACK1A) regulate auxin mediated lateral root development in Arabidopsis[J]. Plant Signaling & Behavior, 2021, 16(5): 1899488.
[119] 唐逸文. 拟南芥蛋白激酶 C 受体(RACK1)调控生长素信号机理的初步研究[D]. 南 京农业大学, 2021.
[120] MAMIDIPUDI V, ZHANG J, LEE K C, et al. RACK1 regulates G1/S progression by suppressing Src kinase activity[J]. Molecular and Cellular Biology, 2004, 24(15): 6788-6798.
[121] TIAN R, TIAN J, ZUO X, et al. RACK1 facilitates breast cancer progression by competitively inhibiting the binding of β-catenin to PSMD2 and enhancing the stability of β-catenin[J]. Cell Death & Disease, 2023, 14(10): 685.
[122] YOO S C, CHO S H, PAEK N C. Rice WUSCHEL-related homeobox 3A (OsWOX3A) modulates auxin-transport gene expression in lateral root and root hair development[J]. Plant Signaling & Behavior, 2013, 8(10): doi: 10.4161/psb.25929.

所在学位评定分委会
生物学
国内图书分类号
Q945.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778808
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
苏宇静. RACK1调控拟南芥侧根的分子机制[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12133060-苏宇静-生物系.pdf(19825KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[苏宇静]的文章
百度学术
百度学术中相似的文章
[苏宇静]的文章
必应学术
必应学术中相似的文章
[苏宇静]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。