[1] 吴和龙. 多旋翼无人机的低成本 Inertial/GNSS/Vision 组合导航关键技术研究[D]. 中国科学院大学 (中国科学院长春光学精密机械与物理研究所), 2020.
[2] 杨兴帮, 梁建宏, 文力, 等. 水空两栖跨介质无人飞行器研究现状[J]. 机器人, 2018, 40(102-114).
[3] 张军, 曹耀初, 高德宝, 等. 水下-空中跨介质航行器研究进展[C]//协同创新砥砺奋进——船舶力学学术委员会第九次全体会议文集. 2018: 114-119.
[4] 周林, 张忠海, 王建辉, 等. 扑翼飞行器的研究现状与发展[J]. 兵器装备工程学报, 2022, 43(44-54).
[5] IZRAELEVITZ J S, TRIANTAFYLLOU M S. A novel degree of freedom in flapping wings shows promise for a dual aerial/aquatic vehicle propulsor[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015: 5830-5837.
[6] STEWART W, WEISLER W, MACLEOD M, et al. Design and demonstration of a seabird-inspired fixed-wing hybrid UAV-UUV system[J]. Bioinspiration & biomimetics, 2018, 13(5):056013.
[7] ARMANINI S F, SIDDALL R, KOVAC M. Modelling and simulation of a bioinspired aquaticmicro aerial vehicle[C]//AIAA Aviation 2019 Forum. 2019: 3115.
[8] PENA I, BILLINGSLEY E, ZIMMERMAN S, et al. Comprehensive sizing process, actuation mechanism selection, and development of gannet-inspired amphibious drones[C]//AIAA AVIATION 2020 FORUM. 2020: 2764.
[9] MATHAIYAN V, MURUGESAN R, MADASAMY S K, et al. Conceptual Design and Numerical analysis of an Unmanned Amphibious Vehicle[C]//AIAA Scitech 2021 Forum. 2021:1285.
[10] YANG X, LIANG J, WANG T, et al. Computational simulation of a submersible unmanned aerial vehicle impacting with water[C]//2013 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2013: 1138-1143.
[11] YANG X, WANG T, LIANG J, et al. Submersible unmanned aerial vehicle concept design study [C]//2013 Aviation Technology, Integration, and Operations Conference. 2013: 4422.
[12] WEBB P W. Form and function in fish swimming[J]. Scientific American, 1984, 251(1): 72-83.
[13] SFAKIOTAKIS M, LANE D, DAVIES J. Review of fish swimming modes for aquatic locomotion[J]. IEEE Journal of Oceanic Engineering, 1999, 24(2): 237-252.
[14] ZHOU C, LOW K H. Better endurance and load capacity: an improved design of manta ray robot (RoMan-II)[J]. Journal of Bionic Engineering, 2010, 7: S137-S144.
[15] ZHOU C, LOW K H. Design and Locomotion Control of a Biomimetic Underwater Vehicle With Fin Propulsion[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(1): 25-35.
[16] 蔡月日, 张利格, 毕树生. 一种摆动扭转复合胸鳍仿生机器鱼[P]. 2006.
[17] LIU H, CURET O. Swimming performance of a bio-inspired robotic vessel with undulating fin propulsion[J]. Bioinspiration & biomimetics, 2018, 13(5): 056006.
[18] 朱宝星. 水下机器人的柔性鳍波形运动研究[D]. 山东建筑大学, 2021.
[19] 邢国强, 李东兵, 隋毅, 等. 国外水下导航技术发展现状分析[J]. 飞航导弹, 2021, No.437(80-84).
[20] 许昭霞, 王泽元. 国外水下导航技术发展现状及趋势[J]. 舰船科学技术, 2013, 35(154-157).
[21] WANG J, GAO Y. The aiding of MEMS INS/GPS integration using artificial intelligence for land vehicle navigation[J]. IAENG International journal of computer science, 2007, 33(1): 61-67.
[22] FAULKNER N, COOPER S, JEARY P. Integrated MEMS/GPS navigation systems[C]//2002 IEEE Position Location and Navigation Symposium (IEEE Cat. No. 02CH37284). IEEE, 2002:306-313.
[23] 房 建 成, 张 海 鹏, 冯 浩 楠, 等. 一 种 MEMS 陀 螺 仪 的 差 分 测 量 方 法: 中 国,CN200710176338.2[P]. 2007.
[24] 吴风喜, 刘海颖, 华冰. 斜装冗余传感器的分布式导航系统研究[J]. 宇航学报, 2015, 36(173-178).
[25] 吴风喜. 基于传感器网络的分布式导航系统研究[D]. 南京航空航天大学, 2015.
[26] 张超华, 唐国元. 基于力矩陀螺的水下航行体姿态控制器研究[C]//聚焦应用支撑创新——船舶力学学术委员会测试技术学组 2016 年学术会议论文集. 船舶力学学术委员会测试技术学组、《船舶力学》编辑部, 2016: 13-23.
[27] MADGWICK S O H, HARRISON A J L, VAIDYANATHAN R. Estimation of IMU and MARGorientation using a gradient descent algorithm[C]//2011 IEEE International Conference on Rehabilitation Robotics. 2011: 1-7.
[28] WANG L, ZHANG Z, SUN P. Quaternion-based Kalman filter for AHRS using an adaptive-step gradient descent algorithm[J]. International Journal of Advanced Robotic Systems, 2015,12(9): 131.
[29] ALLOTTA B, COSTANZI R, FANELLI F, et al. Single axis FOG aided attitude estimation algorithm for mobile robots[J]. Mechatronics, 2015, 30: 158-173.
[30] ZHOU S, SHAN S, ZHANG H, et al. Progressive Kalman Filter and Its Application in Magnetic Target Tracking[C]//2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). 2019: 355-3558.
[31] LI W, WANG J. Effective adaptive Kalman filter for MEMS-IMU/magnetometers integrated attitude and heading reference systems[J]. The Journal of Navigation, 2013, 66(1): 99-113.
[32] 孙守林, 张光临, 宋宏斌, 等. 基于卡尔曼互补滤波的水下机器人的姿态解算研究[C]//2019航空装备服务保障与维修技术论坛暨中国航空工业技术装备工程协会年会论文集. 2019:745-748.
[33] SUH Y S, CONG D D. Quaternion-based attitude estimation reducing magnetic sensor effects on pitch and roll estimation[C]//2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). 2018:400-402.
[34] 唐军, 王子梦, 罗瑞智. 基于乘性扩展卡尔曼滤波的水下机器人姿态估计[J]. 传感器与微系统, 2022, 41(126-129).
[35] 冯俊均. 新型水空两栖无人飞行器研究[D]. 南方科技大学, 2023.
[36] 黎石胜. 水空两栖扑翼无人飞行器设计与动力学特性研究[D]. 南方科技大学, 2022.
[37] 李文宝. 仿生水空两栖扑翼飞行器研究[D]. 南方科技大学, 2021.
[38] 盛湛博. 水空两栖无人飞行器水下扑翼推进技术研究[D]. 哈尔滨工业大学, 2020.
[39] 闫秋飞, 王聪. 舰载雷达侦察系统坐标系转换方法[J]. 舰船电子对抗, 2017, 40(05): 34-39.
[40] 程烺, 俞家勇, 马龙称, 等. 单位四元数、罗德里格转换模型与欧拉角的映射关系[J]. 北京测绘, 2020, 34(01): 44-50.
[41] LI J. Relative pose measurement of moving rigid bodies based on binocular vision[J]. Optik,2019, 180: 159-165.
[42] 刘公绪, 蔚保国, 史凌峰, 等. 一种压缩型全姿态角四元数的表示方法[J]. 西安电子科技大学学报, 2019, 46(04): 115-121.
[43] LIU H, WANG X, ZHONG Y. Quaternion-based robust attitude control for uncertain robotic quadrotors[J]. IEEE Transactions on Industrial Informatics, 2015, 11(2): 406-415.
[44] LIU G X, SHI L F, XUN J H, et al. An orientation estimation algorithm based on multi-source information fusion[J]. Measurement Science and Technology, 2018, 29(11): 115101.
[45] KALMAN R E. An introduction to Kalman filter[J]. University of North Carolina at Chapel Hill, Department of Computer Science, TR, 1995: 41-95.
[46] 江文. 小型无人机 MIMU/GNSS 组合导航技术研究[D]. 哈尔滨工业大学, 2020.
[47] MARKLEY F L. Attitude error representations for Kalman filtering[J]. Journal of guidance, control, and dynamics, 2003, 26(2): 311-317.
[48] TRAWNY N, ROUMELIOTIS S I. Indirect Kalman filter for 3D attitude estimation[J]. University of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep, 2005, 2: 2005.
[49] MARKLEY F L. Attitude estimation or quaternion estimation?[C]//Flight Mechanics Symposium 2003: NASA/CP-2003-212246. National Aeronautics and Space Administration, 2003.
[50] MARKLEY F L. Multiplicative versus additive filtering for spacecraft attitude determination[C]//6th International Conference on Control of Systems and Structures in Space. 2003.
[51] SOLA J. Quaternion kinematics for the error-state Kalman filter[A]. 2017.
[52] LEISHMAN R C, MCLAIN T W. Multiplicative extended Kalman filter for relative rotorcraft navigation[J]. Journal of Aerospace Information Systems, 2015, 12(12): 728-744.
修改评论