中文版 | English
题名

下丘脑Dyn-脊髓KOR系统控制触诱发痛和吗啡诱导的机械痛觉敏化和镇痛耐受

其他题名
IDENTIFICATION OF HYPOTHALAMIC Dyn– SPINAL KOR OPIOIDERGIC SYSTEM CONTROLLING MECHANICAL ALLODYNIA AND OPIOID–INDUCED MECHANICAL HYPERSENSITIVITY AND TOLERANCE
姓名
姓名拼音
DUAN Kaifang
学号
11930715
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
程龙珍
导师单位
神经生物学系
论文答辩日期
2024-05-09
论文提交日期
2024-07-02
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  机械触诱发痛指的是由非痛的轻触刺激所诱发的异常疼痛现象,它是炎症性和神经病理性慢性疼痛的一个特征性症状。触诱发痛对吗啡等阿片类镇痛药相对不敏感,属于顽固性和难治性的异常疼痛。在少数患者中,局部炎症或神经损伤可能会引起长时程、全身性的机械痛觉敏化(触诱发痛),而对于大多数患者来说,疼痛可能是短暂的或局限于损伤侧。然而,其潜在神经控制机制,特别是侧性控制,目前仍知之甚少。

  论文的第一部分研究(第3章)旨在探究触诱发痛的时程和侧性控制机制。该研究工作主要在各种基因工程的小鼠上,应用行为学测试和脊髓及脑片电生理记录,结合病毒、光化学遗传学、脑立体定位、免疫组化和原位杂交等技术解析控制机械触诱发痛时空特征的的脑-脊髓下行调控机制。我们的研究发现,神经损伤或致炎剂导致投射到脊髓的下丘脑Pdyn阳性的神经元的兴奋性升高,通过下丘脑强啡肽(Dyn-脊髓κ阿片受体(KOR)轴抑制足底注射辣椒素引起的触诱发痛的时程和外周神经损伤(SNI 模型)引起的触诱发痛单侧变成双侧。当我们消融或抑制投射到脊髓的下丘脑Pdyn阳性的神经元,敲除投射到脊髓的下丘脑神经元的Pdyn基因或脊髓鞘内阻断KOR受体,能够导致持久的双侧机械触诱发痛。相反,激活投射到脊髓的下丘脑Pdyn神经元或脊髓鞘内激活KOR受体能够抑制持续的双侧触诱发痛。以上研究表明,下丘脑强啡肽(Dyn-脊髓κ 阿片受体(KOR),从时间和空间上控制外周炎症和或神经损伤引起的机械痛觉敏化(触诱发痛)的持续时间和扩散范围。

  当前,对于中重度慢性疼痛,吗啡等阿片类药物仍然是主要的镇痛手段。然而,长期反复使用阿片类镇痛药会引起镇痛耐受和痛觉敏化(OIH)等严重副作用。

  本论文的第二部分研究(第4章)聚焦探究阿片类引起的机械型痛觉敏化和镇痛耐受的中枢神经机制。本部分研究发现,“下丘脑强啡肽 Dyn-脊髓κ阿片受体(KOR)”抑制系统控制吗啡诱导的机械型痛觉敏化OIH)和相应的镇痛耐受。我们观察到,从下丘脑背内侧区投射到脊髓背角的Pdyn神经元(HSPPdyn)接收来自富含μ阿片受体(MOR)的多个疼痛相关脑区的直接投射,吗啡反复给药使 HSPPdyn 神经元发生了长时程抑制。采用化学遗传学激活HSPPdyn神经元轴突末梢,或鞘内注射KOR 激动剂Dyn A,可以挽救已经诱导完成的吗啡机械型OIH和镇痛耐受。相反,遗传学消融/沉默HSPPdyn神经元,选择性敲除表达在HSPPdyn神经元中的Pdyn基因,或鞘内注射KOR拮抗剂nor-BNI,可以延长吗啡反复给药导致的机械痛觉敏化的持续时间并引起吗啡镇痛抵抗。最后,我们的研究发现,采用化学遗传学激活HSPPdyn神经元轴突末梢,可以阻断阿片类反复给药引起的机械型OIH和镇痛耐受的发生。因此,靶向上述“下丘脑Dyn-脊髓KOR”轴可以逆转吗啡反复给药引起的机械型痛觉敏化和相应的镇痛耐受。

  下丘脑到脊髓的DYN-KOR下行系统功能减弱能延长神经损伤和炎症导致的机械触诱发痛的时程和范围,并且导致吗啡诱导的痛觉敏化和镇痛耐受的产生。激活DYN-KOR系统能够抑制机械触诱发痛的时程和范围,同时阻止吗啡诱导的痛觉敏化和镇痛耐受产生。本研究结果可以为临床前研究和/或临床试验提供一种基于机制的、模式特异性的策略,以解决临床上慢性疼痛的治疗。

 

 

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-07
参考文献列表

[1] BREIVIK H, EISENBERG E, O'BRIEN T, et al. The individual and societal burden of chronic pain in Europe: the case for strategic prioritisation and action to improve knowledge and availability of appropriate care [J]. Bmc Public Health, 2013, 13.
[2] RENFREY S, DOWNTON C, FEATHERSTONE J. From the analyst's couch - The painful reality [J]. Nat Rev Drug Discov, 2003, 2(3): 175-6.
[3] MERCADANTE S, PORTENOY R K. Opioid poorly-responsive cancer pain. Part 2: Basic mechanisms that could shift dose response for analgesia [J]. J Pain Symptom Manag, 2001, 21(3): 255-64.
[4] KHANNA A K, BERGESE S D, JUNGQUIST C R, et al. Prediction of Opioid-Induced Respiratory Depression on Inpatient Wards Using Continuous Capnography and Oximetry: An International Prospective, Observational Trial [J]. Anesth Analg, 2020, 131(4): 1012-24.
[5] PRIELIPP R C, FULESDI B, BRULL S J. Postoperative Opioid-Induced Respiratory Depression: 3 Steps Forward [J]. Anesth Analg, 2020, 131(4): 1007-11.
[6] KUM E, BUCKLEY N, DE LEON-CASASOLA O, et al. Attitudes Towards and Management of Opioid-induced Hyperalgesia A Survey of Chronic Pain Practitioners [J]. Clin J Pain, 2020, 36(5): 359-64.
[7] GULUR P, WILLIAMS L, CHAUDHARY S, et al. Opioid Tolerance - A Predictor of Increased Length of Stay and Higher Readmission Rates [J]. Pain Physician, 2014, 17(4): E503-E7.
[8] MEHLER W R. Some Neurological Species Differences - a Posteriori [J]. Ann Ny Acad Sci, 1969, 167(A1): 424-+.
[9] WIBERG M, BLOMQVIST A. The Spinomesencephalic Tract in the Cat - Its Cells of Origin and Termination Pattern as Demonstrated by the Intraaxonal Transport Method [J]. Brain Res, 1984, 291(1): 1-18.
[10] HYLDEN J L K, HAYASHI H, BENNETT G J, et al. Spinal Lamina-I Neurons Projecting to the Parabrachial Area of the Cat Midbrain [J]. Brain Res, 1985, 336(1): 195-8.
[11] HUANG T W, LIN S H, MALEWICZ N M, et al. Identifying the pathways required for coping behaviours associated with sustained pain [J]. Nature, 2019, 565(7737): 86-+.
[12] CHOI S, HACHISUKA J, BRETT M A, et al. Parallel ascending spinal pathways for affective touch and pain [J]. Nature, 2020, 587(7833): 258-+.
[13] CAMERON D, POLGáR E, GUTIERREZ-MECINAS M, et al. The organisation of spinoparabrachial neurons in the mouse [J]. Pain, 2015, 156(10): 2061-71.
[14] ROOME R B, BOUROJENI F B, MONA B, et al. Phox2a Defines a Developmental Origin of the Anterolateral System in Mice and Humans [J]. Cell Rep, 2020, 33(8).
[15] CAVANAUGH D J, CHESLER A T, JACKSON A C, et al. Reporter Mice Reveal Highly Restricted Brain Distribution and Functional Expression in Arteriolar Smooth Muscle Cells [J]. J Neurosci, 2011, 31(13): 5067-77.
[16] ALHADEFF A L, SU Z W, HERNANDEZ E, et al. A Neural Circuit for the Suppression of Pain by a Competing Need State [J]. Cell, 2018, 173(1): 140-+.
[17] BARIK A, THOMPSON J H, SELTZER M, et al. A Brainstem-Spinal Circuit Controlling Nocifensive Behavior [J]. Neuron, 2018, 100(6): 1491-+.
[18] CAMPOS C A, BOWEN A J, ROMAN C W, et al. Encoding of danger by parabrachial CGRP neurons [J]. Nature, 2018, 555(7698): 617-+.
[19] CHIANG M C, BOWEN A, SCHIER L A, et al. Parabrachial Complex: A Hub for Pain and Aversion [J]. J Neurosci, 2019, 39(42): 8225-30.
[20] JOHNSON A C, GREENWOOD-VAN MEERVELD B. Central amygdala mechanisms regulating visceral pain [J]. Psychoneuroendocrino, 2015, 61: 8-.
[21] CHIANG M C, NGUYEN E K, CANTO-BUSTOS M, et al. Divergent Neural Pathways Emanating from the Lateral Parabrachial Nucleus Mediate Distinct Components of the Pain Response [J]. Neuron, 2020, 106(6): 927-+.
[22] DENG J, ZHOU H, LIN J K, et al. The Parabrachial Nucleus Directly Channels Spinal Nociceptive Signals to the Intralaminar Thalamic Nuclei, but Not the Amygdala [J]. Neuron, 2020, 107(5): 909-+.
[23] BARIK A, SATHYAMURTHY A, THOMPSON J, et al. A spinoparabrachial circuit defined by Tacr1 expression drives pain [J]. Elife, 2021, 10.
[24] PIGNATELLI M, BEYELER A. Valence coding in amygdala circuits [J]. Curr Opin Behav Sci, 2019, 26: 97-106.
[25] PESSOA L, ADOLPHS R. Emotion processing and the amygdala: from a 'low road' to 'many roads' of evaluating biological significance [J]. Nat Rev Neurosci, 2010, 11(11): 773-82.
[26] JANAK P H, TYE K M. From circuits to behaviour in the amygdala [J]. Nature, 2015, 517(7534): 284-92.
[27] LEDOUX J. The amygdala [J]. Curr Biol, 2007, 17(20): R868-R74.
[28] HAN S, SOLEIMAN M T, SODEN M E, et al. Elucidating an Affective Pain Circuit that Creates a Threat Memory [J]. Cell, 2015, 162(2): 363-74.
[29] PALMITER R D. The Parabrachial Nucleus: CGRP Neurons Function as a General Alarm [J]. Trends Neurosci, 2018, 41(5): 280-93.
[30] WILSON T D, VALDIVIA S, KHAN A, et al. Dual and Opposing Functions of the Central Amygdala in the Modulation of Pain [J]. Cell Rep, 2019, 29(2): 332-+.
[31] ADKE A P, KHAN A, AHN H S, et al. Cell-Type Specificity of Neuronal Excitability and Morphology in the Central Amygdala [J]. Eneuro, 2021, 8(1).
[32] NEUGEBAUER V, MAZZITELLI M, CRAGG B, et al. Amygdala, neuropeptides, and chronic pain-related affective behaviors [J]. Neuropharmacology, 2020, 170.
[33] RAVER C, UDDIN O, JI Y D, et al. An Amygdalo-Parabrachial Pathway Regulates Pain Perception and Chronic Pain [J]. J Neurosci, 2020, 40(17): 3424-42.
[34] NORRIS A J, SHAKER J R, CONE A L, et al. Parabrachial opioidergic projections to preoptic hypothalamus mediate behavioral and physiological thermal defenses [J]. Elife, 2021, 10.
[35] KROUT K E, BELZER R E, LOEWY A D. Brainstem projections to midline and intralaminar thalamic nuclei of the rat [J]. J Comp Neurol, 2002, 448(1): 53-101.
[36] KROUT K E, LOEWY A D. Parabrachial nucleus projections to midline and intralaminar thalamic nuclei of the rat [J]. J Comp Neurol, 2000, 428(3): 475-94.
[37] GROENEWEGEN H J, BERENDSE H W. The Specificity of the Nonspecific Midline and Intralaminar Thalamic Nuclei [J]. Trends Neurosci, 1994, 17(2): 52-7.
[38] BIRDSONG W T, JONGBLOETS B C, ENGELN K A, et al. Synapse-specific opioid modulation of thalamo-cortico-striatal circuits [J]. Elife, 2019, 8.
[39] MEDA K S, PATEL T, BRAZ J M, et al. Microcircuit Mechanisms through which Mediodorsal Thalamic Input to Anterior Cingulate Cortex Exacerbates Pain-Related Aversion [J]. Neuron, 2019, 102(5): 944-+.
[40] KURAMOTO E, PAN S X, FURUTA T, et al. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors [J]. J Comp Neurol, 2017, 525(1): 166-85.
[41] GABBOTT P L A, WARNER T A, JAYS P R L, et al. Prefrontal cortex in the rat: Projections to subcortical autonomic, motor, and limbic centers [J]. J Comp Neurol, 2005, 492(2): 145-77.
[42] TANG J S, QU C L, HUO F Q. The thalamic nucleus submedius and ventrolateral orbital cortex are involved in nociceptive modulation: A novel pain modulation pathway [J]. Prog Neurobiol, 2009, 89(4): 383-9.
[43] SUN Y, WANG J, LIANG S H, et al. Involvement of the Ventrolateral Periaqueductal Gray Matter-Central Medial Thalamic Nucleus-Basolateral Amygdala Pathway in Neuropathic Pain Regulation of Rats [J]. Front Neuroanat, 2020, 14.
[44] KAYYAL H, YIANNAKAS A, CHANDRAN S K, et al. Activity of Insula to Basolateral Amygdala Projecting Neurons is Necessary and Sufficient for Taste Valence Representation [J]. J Neurosci, 2019, 39(47): 9369-82.
[45] ALLSOP S A, WICHMANN R, MILLS F, et al. Corticoamygdala Transfer of Socially Derived Information Gates Observational Learning [J]. Cell, 2018, 173(6): 1329-+.
[46] YU W L, PATI D, PINA M M, et al. Periaqueductal gray/dorsal raphe dopamine neurons contribute to sex differences in pain-related behaviors [J]. Neuron, 2021, 109(8): 1365-+.
[47] CHEN T, TANIGUCHI W, CHEN Q Y, et al. Top-down descending facilitation of spinal sensory excitatory transmission from the anterior cingulate cortex [J]. Nat Commun, 2018, 9.
[48] LIU Y Y, LATREMOLIERE A, LI X J, et al. Touch and tactile neuropathic pain sensitivity are set by corticospinal projections [J]. Nature, 2018, 561(7724): 547-+.
[49] ZHANG Y, ZHAO S L, RODRIGUEZ E, et al. Identifying local and descending inputs for primary sensory neurons [J]. J Clin Invest, 2015, 125(10): 3782-94.
[50] FRANçOIS A, LOW S A, SYPEK E I, et al. A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins [J]. Neuron, 2017, 93(4): 822-+.
[51] HIRSCHBERG S, LI Y, RANDALL A, et al. Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats [J]. Elife, 2017, 6.
[52] JI R R, CHAMESSIAN A, ZHANG Y Q. Pain regulation by non-neuronal cells and inflammation [J]. Science, 2016, 354(6312): 572-7.
[53] ZELENKA M, SCHäFERS M, SOMMER C. Intraneural injection of interleukin-1β and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain [J]. Pain, 2005, 116(3): 257-63.
[54] BASBAUM A I, BAUTISTA D M, SCHERRER G, et al. Cellular and Molecular Mechanisms of Pain [J]. Cell, 2009, 139(2): 267-84.
[55] JI R R, XU Z Z, GAO Y J. Emerging targets in neuroinflammation-driven chronic pain [J]. Nat Rev Drug Discov, 2014, 13(7): 533-48.
[56] OLD E A, NADKARNI S, GRIST J, et al. Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain [J]. J Clin Invest, 2014, 124(5): 2023-36.
[57] VICUñA L, STROCHLIC D E, LATREMOLIERE A, et al. The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell-derived leukocyte elastase [J]. Nat Med, 2015, 21(5): 518-U298.
[58] COSTIGAN M, MOSS A, LATREMOLIERE A, et al. T-Cell Infiltration and Signaling in the Adult Dorsal Spinal Cord Is a Major Contributor to Neuropathic Pain-Like Hypersensitivity [J]. J Neurosci, 2009, 29(46): 14415-22.
[59] LIU X J, ZHANG Y L, LIU T, et al. Nociceptive neurons regulate innate and adaptive immunity and neuropathic pain through MyD88 adapter [J]. Cell Res, 2014, 24(11): 1374-7.
[60] CALVO M, DAWES J M, BENNETT D L H. The role of the immune system in the generation of neuropathic pain [J]. Lancet Neurol, 2012, 11(7): 629-42.
[61] BAUMBAUER K M, DEBERRY J J, ADELMAN P C, et al. Keratinocytes can modulate and directly initiate nociceptive responses [J]. Elife, 2015, 4.
[62] JI R R, BERTA T, NEDERGAARD M. Glia and pain: Is chronic pain a gliopathy? [J]. Pain, 2013, 154: S10-S28.
[63] GRACE P M, HUTCHINSON M R, MAIER S F, et al. Pathological pain and the neuroimmune interface [J]. Nat Rev Immunol, 2014, 14(4): 217-31.
[64] COULL J A M, BEGGS S, BOUDREAU D, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain [J]. Nature, 2005, 438(7070): 1017-21.
[65] KAWASAKI Y, ZHANG L, CHENG J K, et al. Cytokine mechanisms of central sensitization:: Distinct and overlapping role of interleukin-1β, interleukin-6, and tumor necrosis factor-β in regulating synaptic and neuronal activity in the superficial spinal cord [J]. J Neurosci, 2008, 28(20): 5189-94.
[66] FERRINI F, TRANG T, MATTIOLI T A M, et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl- homeostasis [J]. Nat Neurosci, 2013, 16(2): 183-92.
[67] CLARK A K, GRUBER-SCHOFFNEGGER D, DRDLA-SCHUTTING R, et al. Selective Activation of Microglia Facilitates Synaptic Strength [J]. J Neurosci, 2015, 35(11): 4552-70.
[68] CHEN G, PARK C K, XIE R G, et al. Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice [J]. Brain, 2014, 137: 2193-209.
[69] JIANG B C, CAO D L, ZHANG X, et al. CXCL13 drives spinal astrocyte activation and neuropathic pain via CXCR5 [J]. J Clin Invest, 2016, 126(2): 745-61.
[70] KIM D S, LI K W, BOROUJERDI A, et al. Thrombospondin-4 Contributes to Spinal Sensitization and Neuropathic Pain States [J]. J Neurosci, 2012, 32(26): 8977-87.
[71] KIM S K, HAYASHI H, ISHIKAWA T, et al. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain [J]. J Clin Invest, 2016, 126(5): 1983-97.
[72] ZARPELON A C, RODRIGUES F C, LOPES A H, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain [J]. Faseb J, 2016, 30(1): 54-65.
[73] SHI Y Q, SHU J H, LIANG Z S, et al. Oligodendrocytes in HIV-associated pain pathogenesis [J]. Mol Pain, 2016, 12.
[74] ZHANG X, CHEN Y, WANG C, et al. Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia [J]. P Natl Acad Sci USA, 2007, 104(23): 9864-9.
[75] CHEN Y, ZHANG X F, WANG C Y, et al. Activation of P2X7 receptors in glial satellite cells reduces pain through downregulation of P2X3 receptors in nociceptive neurons [J]. P Natl Acad Sci USA, 2008, 105(43): 16773-8.
[76] DU F, YIN G J, HAN L, et al. Targeting Peripheral μ-opioid Receptors or μ-opioid Receptor-Expressing Neurons Does not Prevent Morphine-induced Mechanical Allodynia and Anti-allodynic Tolerance [J]. Neurosci Bull, 2023, 39(8): 1210-28.
[77] VOLKOW N D, MCLELLAN A T. Opioid Abuse in Chronic Pain - Misconceptions and Mitigation Strategies [J]. New Engl J Med, 2016, 374(13): 1253-63.
[78] CHU L F, ANGST M S, CLARK D. Opioid-induced hyperalgesia in humans - Molecular mechanisms and clinical considerations [J]. Clin J Pain, 2008, 24(6): 479-96.
[79] MATTHES H W D, MALDONADO R, SIMONIN F, et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene [J]. Nature, 1996, 383(6603): 819-23.
[80] IPPOLITO D L, TEMKIN P A, ROGALSKI S L, et al. N-terminal tyrosine residues within the potassium channel Kir3 modulate GTPase activity of Gα. [J]. J Biol Chem, 2002, 277(36): 32692-6.
[81] MERCADANTE S, ARCURI E, SANTONI A. Opioid-Induced Tolerance and Hyperalgesia [J]. Cns Drugs, 2019, 33(10): 943-55.
[82] HULL L C, LLORENTE J, GABRA B H, et al. The Effect of Protein Kinase C and G Protein-Coupled Receptor Kinase Inhibition on Tolerance Induced by μ-Opioid Agonists of Different Efficacy [J]. J Pharmacol Exp Ther, 2010, 332(3): 1127-35.
[83] MELIEF E J, MIYATAKE M, BRUCHAS M R, et al. Ligand-directed c-Jun N-terminal kinase activation disrupts opioid receptor signaling [J]. P Natl Acad Sci USA, 2010, 107(25): 11608-13.
[84] BOBECK E N, INGRAM S L, HERMES S M, et al. Ligand-biased activation of extracellular signal-regulated kinase 1/2 leads to differences in opioid induced antinociception and tolerance [J]. Behav Brain Res, 2016, 298: 17-24.
[85] GRIS P, GAUTHIER J, CHENG P, et al. A novel alternatively spliced isoform of the mu-opioid receptor: functional antagonism [J]. Mol Pain, 2010, 6.
[86] CONVERTINO M, SAMOSHKIN A, GAUTHIER J, et al. μ-Opioid receptor 6-transmembrane isoform: A potential therapeutic target for new effective opioids [J]. Prog Neuro-Psychoph, 2015, 62: 61-7.
[87] OLADOSU F A, CONRAD M S, O'BUCKLEY S C, et al. Mu Opioid Splice Variant MOR-1K Contributes to the Development of Opioid-Induced Hyperalgesia [J]. Plos One, 2015, 10(8).
[88] SAMOSHKIN A, CONVERTINO M, VIET C T, et al. Structural and functional interactions between six-transmembrane μ-opioid receptors and β-adrenoreceptors modulate opioid signaling [J]. Sci Rep-Uk, 2015, 5.
[89] YAN X S, JIANG E S, GAO M, et al. Endogenous activation of presynaptic NMDA receptors enhances glutamate release from the primary afferents in the spinal dorsal horn in a rat model of neuropathic pain [J]. J Physiol-London, 2013, 591(7): 2001-19.
[90] MANN A, ILLING S, MIESS E, et al. Different mechanisms of homologous and heterologous μ-opioid receptor phosphorylation [J]. Brit J Pharmacol, 2015, 172(2): 311-6.
[91] LI T, WANG H Y, WANG J X, et al. Annexin 1 inhibits remifentanil-induced hyperalgesia and NMDA receptor phosphorylation via regulating spinal CXCL12/CXCR4 in rats [J]. Neurosci Res, 2019, 144: 48-55.
[92] DOVERTY M, WHITE J M, SOMOGYI A A, et al. Hyperalgesic responses in methadone maintenance patients [J]. Pain, 2001, 90(1-2): 91-6.
[93] LAULIN J P, MAURETTE P, CORCUFF J B, et al. The role of ketamine in preventing fentanyl-induced hyperalgesia and subsequent acute morphine tolerance [J]. Anesth Analg, 2002, 94(5): 1263-9.
[94] VANDERAH T W, SUENAGA N M H, OSSIPOV M H, et al. Tonic descending facilitation from the rostral ventromedial medulla mediates opioid-induced abnormal pain and antinociceptive tolerance [J]. J Neurosci, 2001, 21(1): 279-86.
[95] CéLèRIER E, LAULIN J P, CORCUFF J B, et al. Progressive enhancement of delayed hyperalgesia induced by repeated heroin administration:: A sensitization process [J]. J Neurosci, 2001, 21(11): 4074-80.
[96] MAO J R, SUNG B K, JI R R, et al. Chronic morphine induces downregulation of spinal glutamate transporters: Implications in morphine tolerance and abnormal pain sensitivity [J]. J Neurosci, 2002, 22(18): 8312-23.
[97] SANDKüHLER J, GRUBER-SCHOFFNEGGER D. Hyperalgesia by synaptic long-term potentiation (LTP): an update [J]. Curr Opin Pharmacol, 2012, 12(1): 18-27.
[98] KLEIN T, MAGERL W, NICKEL U, et al. Effects of the NMDA-receptor antagonist ketamine on perceptual correlates of long-term potentiation within the nociceptive system [J]. Neuropharmacology, 2007, 52(2): 655-61.
[99] WILSON-POE A R, LAU B K, VAUGHAN C W. Repeated morphine treatment alters cannabinoid modulation of GABAergic synaptic transmission within the rat periaqueductal grey [J]. Brit J Pharmacol, 2015, 172(2): 681-90.
[100]DOYLE T M, LARGENT-MILNES T M, CHEN Z M, et al. Chronic Morphine-Induced Changes in Signaling at the Adenosine Receptor Contribute to Morphine-Induced Hyperalgesia, Tolerance, and Withdrawal [J]. J Pharmacol Exp Ther, 2020, 374(2): 331-41.
[101]XU J T, ZHAO J Y, ZHAO X L, et al. Opioid receptor-triggered spinal mTORC1 activation contributes to morphine tolerance and hyperalgesia [J]. J Clin Invest, 2014, 124(2): 592-603.
[102]HARADA S, NAKAMOTO K, TOKUYAMA S. The involvement of midbrain astrocyte in the development of morphine tolerance [J]. Life Sci, 2013, 93(16): 573-8.
[103]COSTA A R, SOUSA M, WILSON S P, et al. Shift of μ-opioid Receptor Signaling in the Dorsal Reticular Nucleus Is Implicated in Morphine-induced Hyperalgesia in Male Rats [J]. Anesthesiology, 2020, 133(3): 628-44.
[104]ROTHMAN R B. A Review of the Role of Anti-Opioid Peptides in Morphine-Tolerance and Dependence [J]. Synapse, 1992, 12(2): 129-38.
[105]MCNALLY G P. Pain facilitatory circuits in the mammalian central nervous system: their behavioral significance and role in morphine analgesic tolerance [J]. Neurosci Biobehav R, 1999, 23(8): 1059-78.
[106]SIMONIN F, SCHMITT M, LAULIN J P, et al. RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid-induced tolerance associated with hyperalgesia [J]. Proc Natl Acad Sci USA, 2006, 103(2): 466-71.
[107]ELHABAZI K, TRIGO J M, MOLLEREAU C, et al. Involvement of neuropeptide FF receptors in neuroadaptive responses to acute and chronic opiate treatments [J]. Brit J Pharmacol, 2012, 165(2): 424-35.
[108]TUMATI S, LARGENT-MILNES T M, KERESZTES A I, et al. Tachykinin NK receptor antagonist co-administration attenuates opioid withdrawal-mediated spinal microglia and astrocyte activation [J]. Eur J Pharmacol, 2012, 684(1-3): 64-70.
[109]BEUTLER B, DU X, POLTORAK A. Identification of Toll-like receptor 4 (Tlr4) as the sole conduit for LPS signal transduction: genetic and evolutionary studies [J]. J Endotoxin Res, 2001, 7(4): 277-80.
[110]RAGHAVENDRA V, TANGA R Y, DELEO J A. Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS [J]. Eur J Neurosci, 2004, 20(2): 467-73.
[111]LEWIS S S, HUTCHINSON M R, REZVANI N, et al. EVIDENCE THAT INTRATHECAL MORPHINE-3-GLUCURONIDE MAY CAUSE PAIN ENHANCEMENT VIA TOLL-LIKE RECEPTOR 4/MD-2 AND INTERLEUKIN-1β [J]. Neuroscience, 2010, 165(2): 569-83.
[112]MUSCOLI C, DOYLE T, DAGOSTINO C, et al. Counter-Regulation of Opioid Analgesia by Glial-Derived Bioactive Sphingolipids [J]. J Neurosci, 2010, 30(46): 15400-8.
[113]LITTLE J W, CUZZOCREA S, BRYANT L, et al. Spinal mitochondrial-derived peroxynitrite enhances neuroimmune activation during morphine hyperalgesia and antinociceptive tolerance [J]. Pain, 2013, 154(7): 978-86.
[114]HUTCHINSON M R, ZHANG Y N, SHRIDHAR M, et al. Evidence that opioids may have toll-like receptor 4 and MD-2 effects [J]. Brain Behav Immun, 2010, 24(1): 83-95.
[115]EIDSON L N, INOUE K, YOUNG L J, et al. Toll-like Receptor 4 Mediates Morphine-Induced Neuroinflammation and Tolerance via Soluble Tumor Necrosis Factor Signaling [J]. Neuropsychopharmacol, 2017, 42(3): 661-70.
[116]WATKINS L R, HUTCHINSON M R, JOHNSTON I N, et al. Glia: novel counter-regulators of opioid analgesia [J]. Trends Neurosci, 2005, 28(12): 661-9.
[117]EIDSON L N, MURPHY A Z. Blockade of Toll-Like Receptor 4 Attenuates Morphine Tolerance and Facilitates the Pain Relieving Properties of Morphine [J]. J Neurosci, 2013, 33(40): 15952-63.
[118]HUTCHINSON M R, LEWIS S S, COATS B D, et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast) [J]. Brain Behav Immun, 2009, 23(2): 240-50.
[119]GRUBER-SCHOFFNEGGER D, DRDLA-SCHUTTING R, HöNIGSPERGER C, et al. Induction of Thermal Hyperalgesia and Synaptic Long-Term Potentiation in the Spinal Cord Lamina I by TNF-α and IL-1β is Mediated by Glial Cells [J]. J Neurosci, 2013, 33(15): 6540-U628.
[120]ZHANG N, ROGERS T J, CATERINA M, et al. Proinflammatory chemokines, such as C-C chemokine ligand 3, desensitize μ-opioid receptors on dorsal root ganglia neurons [J]. J Immunol, 2004, 173(1): 594-9.
[121]RIVAT C, SEBAIHI S, VAN STEENWINCKEL J, et al. Src family kinases involved in CXCL12-induced loss of acute morphine analgesia [J]. Brain Behav Immun, 2014, 38: 38-52.
[122]LIN C P, KANG K H, LIN T H, et al. Role of Spinal CXCL1 (GROα) in Opioid Tolerance - [J]. Anesthesiology, 2015, 122(3): 666-76.
[123]LIANG D Y, LI X Q, CLARK J D. Epigenetic Regulation of Opioid-Induced Hyperalgesia, Dependence, and Tolerance in Mice [J]. J Pain, 2013, 14(1): 36-47.
[124]CHAO Y C, XIE F, LI X Y, et al. Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats [J]. Neurochem Int, 2016, 97: 91-8.
[125]DOEHRING A, OERTEL B G, SITTL R, et al. Chronic opioid use is associated with increased DNA methylation correlating with increased clinical pain [J]. Pain, 2013, 154(1): 15-23.
[126]LIANG D Y, ZHENG M, SUN Y, et al. The Netrin-1 receptor DCC is a regulator of maladaptive responses to chronic morphine administration [J]. Bmc Genomics, 2014, 15.
[127]BIANCHI E, GALEOTTI N, MENICACCI C, et al. Contribution of G inhibitory protein alpha subunits in paradoxical hyperalgesia elicited by exceedingly low doses of morphine in mice [J]. Life Sci, 2011, 89(25-26): 918-25.
[128]JUNI A, KLEIN G, KOWALCZYK B, et al. Sex differences in hyperalgesia during morphine infusion: Effect of gonadectomy and estrogen treatment [J]. Neuropharmacology, 2008, 54(8): 1264-70.
[129]SORGE R E, MAPPLEBECK J C S, ROSEN S, et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice [J]. Nat Neurosci, 2015, 18(8): 1081-+.
[130]LöTSCH J. Pleiotropic Effects of Morphine-6β-glucuronide [J]. Anesthesiology, 2009, 110(6): 1209-10.
[131]KOMATSU T, SAKURADA S, KATSUYAMA S, et al. Mechanism of Allodynia Evoked by Intrathecal Morphine-3-Glucuronide in Mice [J]. Int Rev Neurobiol, 2009, 85: 207-19.
[132]CHENG L Z, DUAN B, HUANG T W, et al. Identification of spinal circuits involved in touch-evoked dynamic mechanical pain [J]. Nat Neurosci, 2017, 20(6): 804-+.
[133]DUAN B, CHENG L Z, BOURANE S, et al. Identification of Spinal Circuits Transmitting and Gating Mechanical Pain [J]. Cell, 2014, 159(6): 1417-32.
[134]MENDELL L M. Constructing and deconstructing the gate theory of pain [J]. Pain, 2014, 155(2): 210-6.
[135]MELZACK R, WALL P D. Pain Mechanisms - a New Theory [J]. Science, 1965, 150(3699): 971-+.
[136]TORSNEY C, MACDERMOTT A B. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord [J]. J Neurosci, 2006, 26(6): 1833-43.
[137]BABA H, JI R R, KOHNO T, et al. Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn [J]. Mol Cell Neurosci, 2003, 24(3): 818-30.
[138]KOCH S C, ACTON D, GOULDING M. Spinal Circuits for Touch, Pain, and Itch [J]. Annu Rev Physiol, 2018, 80: 189-+.
[139]JI R R, NACKLEY A, HUH Y, et al. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain [J]. Anesthesiology, 2018, 129(2): 343-66.
[140]PRICE T J, CERVERO F, GOLD M S, et al. Chloride regulation in the pain pathway [J]. Brain Res Rev, 2009, 60(1): 149-70.
[141]TODD A J. Neuronal circuitry for pain processing in the dorsal horn [J]. Nat Rev Neurosci, 2010, 11(12): 823-36.
[142]PEIRS C, DALLEL R, TODD A J. Recent advances in our understanding of the organization of dorsal horn neuron populations and their contribution to cutaneous mechanical allodynia [J]. J Neural Transm, 2020, 127(4): 505-25.
[143]DUAN B, CHENG L Z, MA Q F. Spinal Circuits Transmitting Mechanical Pain and Itch [J]. Neurosci Bull, 2018, 34(1): 186-93.
[144]FERNáNDEZ-DE-LAS-PEñAS C, DE LA LLAVE-RINCóN A I, FERNáNDEZ-CARNERO J, et al. Bilateral widespread mechanical pain sensitivity in carpal tunnel syndrome: evidence of central processing in unilateral neuropathy [J]. Brain, 2009, 132: 1472-9.
[145]KONOPKA K H, HARBERS M, HOUGHTON A, et al. Bilateral Sensory Abnormalities in Patients with Unilateral Neuropathic Pain; A Quantitative Sensory Testing (QST) Study [J]. Plos One, 2012, 7(5).
[146]GAO Y J, XU Z Z, LIU Y C, et al. The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition [J]. Pain, 2010, 148(2): 309-19.
[147]ROMMEL O, MALIN J P, ZENZ M, et al. Quantitative sensory testing, neurophysiological and psychological examination in patients with complex regional pain syndrome and hemisensory deficits [J]. Pain, 2001, 93(3): 279-93.
[148]KAYAOGLU G, EKICI M, ALTUNKAYNAK B. Mechanical Allodynia in Healthy Teeth Adjacent and Contralateral to Endodontically Diseased Teeth: A Clinical Study [J]. J Endodont, 2020, 46(5): 611-8.
[149]ENAX-KRUMOVA E K, POHL S, WESTERMANN A, et al. Ipsilateral and contralateral sensory changes in healthy subjects after experimentally induced concomitant sensitization and hypoesthesia [J]. Bmc Neurol, 2017, 17.
[150]CHRISTIDIS N, NILYSON A, KOPP S, et al. Intramuscular injection of granisetron into the masseter muscle increases the pressure pain threshold in healthy participants and patients with localized myalgia [J]. Clin J Pain, 2007, 23(6): 467-72.
[151]CICHON J, BLANCK T J J, GAN W B, et al. Activation of cortical somatostatin interneurons prevents the development of neuropathic pain [J]. Nat Neurosci, 2017, 20(8): 1122-+.
[152]KOLTZENBURG M, WALL P D, MCMAHON S B. Does the right side know what the left is doing? [J]. Trends Neurosci, 1999, 22(3): 122-7.
[153]ISHIKAWA T, ETO K, KIM S K, et al. Cortical astrocytes prime the induction of spine plasticity and mirror image pain [J]. Pain, 2018, 159(8): 1592-606.
[154]KIM Y S, CHU Y X, HAN L, et al. Central Terminal Sensitization of TRPV1 by Descending Serotonergic Facilitation Modulates Chronic Pain [J]. Neuron, 2014, 81(4): 873-87.
[155]TWINING C M, SLOANE E M, MILLIGAN E D, et al. Peri-sciatic proinflammatory cytokines, reactive oxygen species, and complement induce mirror-image neuropathic pain in rats [J]. Pain, 2004, 110(1-2): 299-309.
[156]CHENG C F, CHENG J K, CHEN C Y, et al. Mirror-image pain is mediated by nerve growth factor produced from tumor necrosis factor alpha-activated satellite glia after peripheral nerve injury [J]. Pain, 2014, 155(5): 906-20.
[157]HU S W, ZHANG Q, XIA S H, et al. Contralateral Projection of Anterior Cingulate Cortex Contributes to Mirror-Image Pain [J]. J Neurosci, 2021, 41(48): 9988-10003.
[158]SUGIMOTO M, TAKAHASHI Y, SUGIMURA Y K, et al. Active role of the central amygdala in widespread mechanical sensitization in rats with facial inflammatory pain [J]. Pain, 2021, 162(8): 2273-86.
[159]DECOSTERD I, WOOLF C J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain [J]. Pain, 2000, 87(2): 149-58.
[160]ZHANG Y, LIU S B, ZHANG Y Q, et al. Timing Mechanisms Underlying Gate Control by Feedforward Inhibition [J]. Neuron, 2018, 99(5): 941-+.
[161]KOHNO K, SHIRASAKA R, YOSHIHARA K, et al. A spinal microglia population involved in remitting and relapsing neuropathic pain [J]. Science, 2022, 376(6588): 86-+.
[162]CARROLL I R, ANGST M S, CLARK J D. Management of perioperative pain in patients chronically consuming opioids [J]. Region Anesth Pain M, 2004, 29(6): 576-91.
[163]COLVIN L A, BULL F, HALES T G. Perioperative opioid analgesia-when is enough too much? A review of opioid-induced tolerance and hyperalgesia [J]. Lancet, 2019, 393(10180): 1558-68.
[164]KALSO E, EDWARDS J E, MOORE R A, et al. Opioids in chronic non-cancer pain: systematic review of efficacy and safety [J]. Pain, 2004, 112(3): 372-80.
[165]MARTYN J A J, MAO J R, BITTNER E A. Opioid Tolerance in Critical Illness [J]. New Engl J Med, 2019, 380(4): 365-78.
[166]DUPEN A, SHEN D, ERSEK M. Mechanisms of opioid-induced tolerance and hyperalgesia [J]. Pain Manag Nurs, 2007, 8(3): 113-21.
[167]VERA-PORTOCARRERO L P, ZHANG E T, KING T, et al. Spinal NK-1 receptor expressing neurons mediate opioid-induced hyperalgesia and antinociceptive tolerance via activation of descending pathways [J]. Pain, 2007, 129(1-2): 35-45.
[168]MERCADANTE S, ARCURI E, FUSCO F, et al. Randomized double-blind, double-dummy crossover clinical trial of oral tramadol versus rectal tramadol administration in opioid-naive cancer patients with pain [J]. Support Care Cancer, 2005, 13(9): 702-7.
[169]CORDER G, TAWFIK V L, WANG D, et al. Loss of μ opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia [J]. Nat Med, 2017, 23(2): 164-73.
[170]CHANG G, CHEN L, MAO J R. Opioid tolerance and hyperalgesia [J]. Med Clin N Am, 2007, 91(2): 199-+.
[171]SASAKI M, KAMIYA Y, BAMBA K, et al. Serotonin Plays a Key Role in the Development of Opioid-Induced Hyperalgesia in Mice [J]. J Pain, 2021, 22(6): 715-29.
[172]KHOMULA E V, ARALDI D, LEVINE J D. Nociceptor Neuroplasticity Associated with Opioid-Induced Hyperalgesia [J]. J Neurosci, 2019, 39(36): 7061-73.
[173]CHEN S R, PRUNEAN A, PAN H M, et al. Resistance to morphine analgesic tolerance in rats with deleted transient receptor potential vanilloid type 1-expressing sensory neurons [J]. Neuroscience, 2007, 145(2): 676-85.

所在学位评定分委会
生物学
国内图书分类号
Q189
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778815
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
段开放. 下丘脑Dyn-脊髓KOR系统控制触诱发痛和吗啡诱导的机械痛觉敏化和镇痛耐受[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930715-段开放-生物系.pdf(6908KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[段开放]的文章
百度学术
百度学术中相似的文章
[段开放]的文章
必应学术
必应学术中相似的文章
[段开放]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。