[1] BREIVIK H, EISENBERG E, O'BRIEN T, et al. The individual and societal burden of chronic pain in Europe: the case for strategic prioritisation and action to improve knowledge and availability of appropriate care [J]. Bmc Public Health, 2013, 13.
[2] RENFREY S, DOWNTON C, FEATHERSTONE J. From the analyst's couch - The painful reality [J]. Nat Rev Drug Discov, 2003, 2(3): 175-6.
[3] MERCADANTE S, PORTENOY R K. Opioid poorly-responsive cancer pain. Part 2: Basic mechanisms that could shift dose response for analgesia [J]. J Pain Symptom Manag, 2001, 21(3): 255-64.
[4] KHANNA A K, BERGESE S D, JUNGQUIST C R, et al. Prediction of Opioid-Induced Respiratory Depression on Inpatient Wards Using Continuous Capnography and Oximetry: An International Prospective, Observational Trial [J]. Anesth Analg, 2020, 131(4): 1012-24.
[5] PRIELIPP R C, FULESDI B, BRULL S J. Postoperative Opioid-Induced Respiratory Depression: 3 Steps Forward [J]. Anesth Analg, 2020, 131(4): 1007-11.
[6] KUM E, BUCKLEY N, DE LEON-CASASOLA O, et al. Attitudes Towards and Management of Opioid-induced Hyperalgesia A Survey of Chronic Pain Practitioners [J]. Clin J Pain, 2020, 36(5): 359-64.
[7] GULUR P, WILLIAMS L, CHAUDHARY S, et al. Opioid Tolerance - A Predictor of Increased Length of Stay and Higher Readmission Rates [J]. Pain Physician, 2014, 17(4): E503-E7.
[8] MEHLER W R. Some Neurological Species Differences - a Posteriori [J]. Ann Ny Acad Sci, 1969, 167(A1): 424-+.
[9] WIBERG M, BLOMQVIST A. The Spinomesencephalic Tract in the Cat - Its Cells of Origin and Termination Pattern as Demonstrated by the Intraaxonal Transport Method [J]. Brain Res, 1984, 291(1): 1-18.
[10] HYLDEN J L K, HAYASHI H, BENNETT G J, et al. Spinal Lamina-I Neurons Projecting to the Parabrachial Area of the Cat Midbrain [J]. Brain Res, 1985, 336(1): 195-8.
[11] HUANG T W, LIN S H, MALEWICZ N M, et al. Identifying the pathways required for coping behaviours associated with sustained pain [J]. Nature, 2019, 565(7737): 86-+.
[12] CHOI S, HACHISUKA J, BRETT M A, et al. Parallel ascending spinal pathways for affective touch and pain [J]. Nature, 2020, 587(7833): 258-+.
[13] CAMERON D, POLGáR E, GUTIERREZ-MECINAS M, et al. The organisation of spinoparabrachial neurons in the mouse [J]. Pain, 2015, 156(10): 2061-71.
[14] ROOME R B, BOUROJENI F B, MONA B, et al. Phox2a Defines a Developmental Origin of the Anterolateral System in Mice and Humans [J]. Cell Rep, 2020, 33(8).
[15] CAVANAUGH D J, CHESLER A T, JACKSON A C, et al. Reporter Mice Reveal Highly Restricted Brain Distribution and Functional Expression in Arteriolar Smooth Muscle Cells [J]. J Neurosci, 2011, 31(13): 5067-77.
[16] ALHADEFF A L, SU Z W, HERNANDEZ E, et al. A Neural Circuit for the Suppression of Pain by a Competing Need State [J]. Cell, 2018, 173(1): 140-+.
[17] BARIK A, THOMPSON J H, SELTZER M, et al. A Brainstem-Spinal Circuit Controlling Nocifensive Behavior [J]. Neuron, 2018, 100(6): 1491-+.
[18] CAMPOS C A, BOWEN A J, ROMAN C W, et al. Encoding of danger by parabrachial CGRP neurons [J]. Nature, 2018, 555(7698): 617-+.
[19] CHIANG M C, BOWEN A, SCHIER L A, et al. Parabrachial Complex: A Hub for Pain and Aversion [J]. J Neurosci, 2019, 39(42): 8225-30.
[20] JOHNSON A C, GREENWOOD-VAN MEERVELD B. Central amygdala mechanisms regulating visceral pain [J]. Psychoneuroendocrino, 2015, 61: 8-.
[21] CHIANG M C, NGUYEN E K, CANTO-BUSTOS M, et al. Divergent Neural Pathways Emanating from the Lateral Parabrachial Nucleus Mediate Distinct Components of the Pain Response [J]. Neuron, 2020, 106(6): 927-+.
[22] DENG J, ZHOU H, LIN J K, et al. The Parabrachial Nucleus Directly Channels Spinal Nociceptive Signals to the Intralaminar Thalamic Nuclei, but Not the Amygdala [J]. Neuron, 2020, 107(5): 909-+.
[23] BARIK A, SATHYAMURTHY A, THOMPSON J, et al. A spinoparabrachial circuit defined by Tacr1 expression drives pain [J]. Elife, 2021, 10.
[24] PIGNATELLI M, BEYELER A. Valence coding in amygdala circuits [J]. Curr Opin Behav Sci, 2019, 26: 97-106.
[25] PESSOA L, ADOLPHS R. Emotion processing and the amygdala: from a 'low road' to 'many roads' of evaluating biological significance [J]. Nat Rev Neurosci, 2010, 11(11): 773-82.
[26] JANAK P H, TYE K M. From circuits to behaviour in the amygdala [J]. Nature, 2015, 517(7534): 284-92.
[27] LEDOUX J. The amygdala [J]. Curr Biol, 2007, 17(20): R868-R74.
[28] HAN S, SOLEIMAN M T, SODEN M E, et al. Elucidating an Affective Pain Circuit that Creates a Threat Memory [J]. Cell, 2015, 162(2): 363-74.
[29] PALMITER R D. The Parabrachial Nucleus: CGRP Neurons Function as a General Alarm [J]. Trends Neurosci, 2018, 41(5): 280-93.
[30] WILSON T D, VALDIVIA S, KHAN A, et al. Dual and Opposing Functions of the Central Amygdala in the Modulation of Pain [J]. Cell Rep, 2019, 29(2): 332-+.
[31] ADKE A P, KHAN A, AHN H S, et al. Cell-Type Specificity of Neuronal Excitability and Morphology in the Central Amygdala [J]. Eneuro, 2021, 8(1).
[32] NEUGEBAUER V, MAZZITELLI M, CRAGG B, et al. Amygdala, neuropeptides, and chronic pain-related affective behaviors [J]. Neuropharmacology, 2020, 170.
[33] RAVER C, UDDIN O, JI Y D, et al. An Amygdalo-Parabrachial Pathway Regulates Pain Perception and Chronic Pain [J]. J Neurosci, 2020, 40(17): 3424-42.
[34] NORRIS A J, SHAKER J R, CONE A L, et al. Parabrachial opioidergic projections to preoptic hypothalamus mediate behavioral and physiological thermal defenses [J]. Elife, 2021, 10.
[35] KROUT K E, BELZER R E, LOEWY A D. Brainstem projections to midline and intralaminar thalamic nuclei of the rat [J]. J Comp Neurol, 2002, 448(1): 53-101.
[36] KROUT K E, LOEWY A D. Parabrachial nucleus projections to midline and intralaminar thalamic nuclei of the rat [J]. J Comp Neurol, 2000, 428(3): 475-94.
[37] GROENEWEGEN H J, BERENDSE H W. The Specificity of the Nonspecific Midline and Intralaminar Thalamic Nuclei [J]. Trends Neurosci, 1994, 17(2): 52-7.
[38] BIRDSONG W T, JONGBLOETS B C, ENGELN K A, et al. Synapse-specific opioid modulation of thalamo-cortico-striatal circuits [J]. Elife, 2019, 8.
[39] MEDA K S, PATEL T, BRAZ J M, et al. Microcircuit Mechanisms through which Mediodorsal Thalamic Input to Anterior Cingulate Cortex Exacerbates Pain-Related Aversion [J]. Neuron, 2019, 102(5): 944-+.
[40] KURAMOTO E, PAN S X, FURUTA T, et al. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors [J]. J Comp Neurol, 2017, 525(1): 166-85.
[41] GABBOTT P L A, WARNER T A, JAYS P R L, et al. Prefrontal cortex in the rat: Projections to subcortical autonomic, motor, and limbic centers [J]. J Comp Neurol, 2005, 492(2): 145-77.
[42] TANG J S, QU C L, HUO F Q. The thalamic nucleus submedius and ventrolateral orbital cortex are involved in nociceptive modulation: A novel pain modulation pathway [J]. Prog Neurobiol, 2009, 89(4): 383-9.
[43] SUN Y, WANG J, LIANG S H, et al. Involvement of the Ventrolateral Periaqueductal Gray Matter-Central Medial Thalamic Nucleus-Basolateral Amygdala Pathway in Neuropathic Pain Regulation of Rats [J]. Front Neuroanat, 2020, 14.
[44] KAYYAL H, YIANNAKAS A, CHANDRAN S K, et al. Activity of Insula to Basolateral Amygdala Projecting Neurons is Necessary and Sufficient for Taste Valence Representation [J]. J Neurosci, 2019, 39(47): 9369-82.
[45] ALLSOP S A, WICHMANN R, MILLS F, et al. Corticoamygdala Transfer of Socially Derived Information Gates Observational Learning [J]. Cell, 2018, 173(6): 1329-+.
[46] YU W L, PATI D, PINA M M, et al. Periaqueductal gray/dorsal raphe dopamine neurons contribute to sex differences in pain-related behaviors [J]. Neuron, 2021, 109(8): 1365-+.
[47] CHEN T, TANIGUCHI W, CHEN Q Y, et al. Top-down descending facilitation of spinal sensory excitatory transmission from the anterior cingulate cortex [J]. Nat Commun, 2018, 9.
[48] LIU Y Y, LATREMOLIERE A, LI X J, et al. Touch and tactile neuropathic pain sensitivity are set by corticospinal projections [J]. Nature, 2018, 561(7724): 547-+.
[49] ZHANG Y, ZHAO S L, RODRIGUEZ E, et al. Identifying local and descending inputs for primary sensory neurons [J]. J Clin Invest, 2015, 125(10): 3782-94.
[50] FRANçOIS A, LOW S A, SYPEK E I, et al. A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins [J]. Neuron, 2017, 93(4): 822-+.
[51] HIRSCHBERG S, LI Y, RANDALL A, et al. Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats [J]. Elife, 2017, 6.
[52] JI R R, CHAMESSIAN A, ZHANG Y Q. Pain regulation by non-neuronal cells and inflammation [J]. Science, 2016, 354(6312): 572-7.
[53] ZELENKA M, SCHäFERS M, SOMMER C. Intraneural injection of interleukin-1β and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain [J]. Pain, 2005, 116(3): 257-63.
[54] BASBAUM A I, BAUTISTA D M, SCHERRER G, et al. Cellular and Molecular Mechanisms of Pain [J]. Cell, 2009, 139(2): 267-84.
[55] JI R R, XU Z Z, GAO Y J. Emerging targets in neuroinflammation-driven chronic pain [J]. Nat Rev Drug Discov, 2014, 13(7): 533-48.
[56] OLD E A, NADKARNI S, GRIST J, et al. Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain [J]. J Clin Invest, 2014, 124(5): 2023-36.
[57] VICUñA L, STROCHLIC D E, LATREMOLIERE A, et al. The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell-derived leukocyte elastase [J]. Nat Med, 2015, 21(5): 518-U298.
[58] COSTIGAN M, MOSS A, LATREMOLIERE A, et al. T-Cell Infiltration and Signaling in the Adult Dorsal Spinal Cord Is a Major Contributor to Neuropathic Pain-Like Hypersensitivity [J]. J Neurosci, 2009, 29(46): 14415-22.
[59] LIU X J, ZHANG Y L, LIU T, et al. Nociceptive neurons regulate innate and adaptive immunity and neuropathic pain through MyD88 adapter [J]. Cell Res, 2014, 24(11): 1374-7.
[60] CALVO M, DAWES J M, BENNETT D L H. The role of the immune system in the generation of neuropathic pain [J]. Lancet Neurol, 2012, 11(7): 629-42.
[61] BAUMBAUER K M, DEBERRY J J, ADELMAN P C, et al. Keratinocytes can modulate and directly initiate nociceptive responses [J]. Elife, 2015, 4.
[62] JI R R, BERTA T, NEDERGAARD M. Glia and pain: Is chronic pain a gliopathy? [J]. Pain, 2013, 154: S10-S28.
[63] GRACE P M, HUTCHINSON M R, MAIER S F, et al. Pathological pain and the neuroimmune interface [J]. Nat Rev Immunol, 2014, 14(4): 217-31.
[64] COULL J A M, BEGGS S, BOUDREAU D, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain [J]. Nature, 2005, 438(7070): 1017-21.
[65] KAWASAKI Y, ZHANG L, CHENG J K, et al. Cytokine mechanisms of central sensitization:: Distinct and overlapping role of interleukin-1β, interleukin-6, and tumor necrosis factor-β in regulating synaptic and neuronal activity in the superficial spinal cord [J]. J Neurosci, 2008, 28(20): 5189-94.
[66] FERRINI F, TRANG T, MATTIOLI T A M, et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl- homeostasis [J]. Nat Neurosci, 2013, 16(2): 183-92.
[67] CLARK A K, GRUBER-SCHOFFNEGGER D, DRDLA-SCHUTTING R, et al. Selective Activation of Microglia Facilitates Synaptic Strength [J]. J Neurosci, 2015, 35(11): 4552-70.
[68] CHEN G, PARK C K, XIE R G, et al. Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice [J]. Brain, 2014, 137: 2193-209.
[69] JIANG B C, CAO D L, ZHANG X, et al. CXCL13 drives spinal astrocyte activation and neuropathic pain via CXCR5 [J]. J Clin Invest, 2016, 126(2): 745-61.
[70] KIM D S, LI K W, BOROUJERDI A, et al. Thrombospondin-4 Contributes to Spinal Sensitization and Neuropathic Pain States [J]. J Neurosci, 2012, 32(26): 8977-87.
[71] KIM S K, HAYASHI H, ISHIKAWA T, et al. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain [J]. J Clin Invest, 2016, 126(5): 1983-97.
[72] ZARPELON A C, RODRIGUES F C, LOPES A H, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain [J]. Faseb J, 2016, 30(1): 54-65.
[73] SHI Y Q, SHU J H, LIANG Z S, et al. Oligodendrocytes in HIV-associated pain pathogenesis [J]. Mol Pain, 2016, 12.
[74] ZHANG X, CHEN Y, WANG C, et al. Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia [J]. P Natl Acad Sci USA, 2007, 104(23): 9864-9.
[75] CHEN Y, ZHANG X F, WANG C Y, et al. Activation of P2X7 receptors in glial satellite cells reduces pain through downregulation of P2X3 receptors in nociceptive neurons [J]. P Natl Acad Sci USA, 2008, 105(43): 16773-8.
[76] DU F, YIN G J, HAN L, et al. Targeting Peripheral μ-opioid Receptors or μ-opioid Receptor-Expressing Neurons Does not Prevent Morphine-induced Mechanical Allodynia and Anti-allodynic Tolerance [J]. Neurosci Bull, 2023, 39(8): 1210-28.
[77] VOLKOW N D, MCLELLAN A T. Opioid Abuse in Chronic Pain - Misconceptions and Mitigation Strategies [J]. New Engl J Med, 2016, 374(13): 1253-63.
[78] CHU L F, ANGST M S, CLARK D. Opioid-induced hyperalgesia in humans - Molecular mechanisms and clinical considerations [J]. Clin J Pain, 2008, 24(6): 479-96.
[79] MATTHES H W D, MALDONADO R, SIMONIN F, et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene [J]. Nature, 1996, 383(6603): 819-23.
[80] IPPOLITO D L, TEMKIN P A, ROGALSKI S L, et al. N-terminal tyrosine residues within the potassium channel Kir3 modulate GTPase activity of Gα. [J]. J Biol Chem, 2002, 277(36): 32692-6.
[81] MERCADANTE S, ARCURI E, SANTONI A. Opioid-Induced Tolerance and Hyperalgesia [J]. Cns Drugs, 2019, 33(10): 943-55.
[82] HULL L C, LLORENTE J, GABRA B H, et al. The Effect of Protein Kinase C and G Protein-Coupled Receptor Kinase Inhibition on Tolerance Induced by μ-Opioid Agonists of Different Efficacy [J]. J Pharmacol Exp Ther, 2010, 332(3): 1127-35.
[83] MELIEF E J, MIYATAKE M, BRUCHAS M R, et al. Ligand-directed c-Jun N-terminal kinase activation disrupts opioid receptor signaling [J]. P Natl Acad Sci USA, 2010, 107(25): 11608-13.
[84] BOBECK E N, INGRAM S L, HERMES S M, et al. Ligand-biased activation of extracellular signal-regulated kinase 1/2 leads to differences in opioid induced antinociception and tolerance [J]. Behav Brain Res, 2016, 298: 17-24.
[85] GRIS P, GAUTHIER J, CHENG P, et al. A novel alternatively spliced isoform of the mu-opioid receptor: functional antagonism [J]. Mol Pain, 2010, 6.
[86] CONVERTINO M, SAMOSHKIN A, GAUTHIER J, et al. μ-Opioid receptor 6-transmembrane isoform: A potential therapeutic target for new effective opioids [J]. Prog Neuro-Psychoph, 2015, 62: 61-7.
[87] OLADOSU F A, CONRAD M S, O'BUCKLEY S C, et al. Mu Opioid Splice Variant MOR-1K Contributes to the Development of Opioid-Induced Hyperalgesia [J]. Plos One, 2015, 10(8).
[88] SAMOSHKIN A, CONVERTINO M, VIET C T, et al. Structural and functional interactions between six-transmembrane μ-opioid receptors and β-adrenoreceptors modulate opioid signaling [J]. Sci Rep-Uk, 2015, 5.
[89] YAN X S, JIANG E S, GAO M, et al. Endogenous activation of presynaptic NMDA receptors enhances glutamate release from the primary afferents in the spinal dorsal horn in a rat model of neuropathic pain [J]. J Physiol-London, 2013, 591(7): 2001-19.
[90] MANN A, ILLING S, MIESS E, et al. Different mechanisms of homologous and heterologous μ-opioid receptor phosphorylation [J]. Brit J Pharmacol, 2015, 172(2): 311-6.
[91] LI T, WANG H Y, WANG J X, et al. Annexin 1 inhibits remifentanil-induced hyperalgesia and NMDA receptor phosphorylation via regulating spinal CXCL12/CXCR4 in rats [J]. Neurosci Res, 2019, 144: 48-55.
[92] DOVERTY M, WHITE J M, SOMOGYI A A, et al. Hyperalgesic responses in methadone maintenance patients [J]. Pain, 2001, 90(1-2): 91-6.
[93] LAULIN J P, MAURETTE P, CORCUFF J B, et al. The role of ketamine in preventing fentanyl-induced hyperalgesia and subsequent acute morphine tolerance [J]. Anesth Analg, 2002, 94(5): 1263-9.
[94] VANDERAH T W, SUENAGA N M H, OSSIPOV M H, et al. Tonic descending facilitation from the rostral ventromedial medulla mediates opioid-induced abnormal pain and antinociceptive tolerance [J]. J Neurosci, 2001, 21(1): 279-86.
[95] CéLèRIER E, LAULIN J P, CORCUFF J B, et al. Progressive enhancement of delayed hyperalgesia induced by repeated heroin administration:: A sensitization process [J]. J Neurosci, 2001, 21(11): 4074-80.
[96] MAO J R, SUNG B K, JI R R, et al. Chronic morphine induces downregulation of spinal glutamate transporters: Implications in morphine tolerance and abnormal pain sensitivity [J]. J Neurosci, 2002, 22(18): 8312-23.
[97] SANDKüHLER J, GRUBER-SCHOFFNEGGER D. Hyperalgesia by synaptic long-term potentiation (LTP): an update [J]. Curr Opin Pharmacol, 2012, 12(1): 18-27.
[98] KLEIN T, MAGERL W, NICKEL U, et al. Effects of the NMDA-receptor antagonist ketamine on perceptual correlates of long-term potentiation within the nociceptive system [J]. Neuropharmacology, 2007, 52(2): 655-61.
[99] WILSON-POE A R, LAU B K, VAUGHAN C W. Repeated morphine treatment alters cannabinoid modulation of GABAergic synaptic transmission within the rat periaqueductal grey [J]. Brit J Pharmacol, 2015, 172(2): 681-90.
[100]DOYLE T M, LARGENT-MILNES T M, CHEN Z M, et al. Chronic Morphine-Induced Changes in Signaling at the Adenosine Receptor Contribute to Morphine-Induced Hyperalgesia, Tolerance, and Withdrawal [J]. J Pharmacol Exp Ther, 2020, 374(2): 331-41.
[101]XU J T, ZHAO J Y, ZHAO X L, et al. Opioid receptor-triggered spinal mTORC1 activation contributes to morphine tolerance and hyperalgesia [J]. J Clin Invest, 2014, 124(2): 592-603.
[102]HARADA S, NAKAMOTO K, TOKUYAMA S. The involvement of midbrain astrocyte in the development of morphine tolerance [J]. Life Sci, 2013, 93(16): 573-8.
[103]COSTA A R, SOUSA M, WILSON S P, et al. Shift of μ-opioid Receptor Signaling in the Dorsal Reticular Nucleus Is Implicated in Morphine-induced Hyperalgesia in Male Rats [J]. Anesthesiology, 2020, 133(3): 628-44.
[104]ROTHMAN R B. A Review of the Role of Anti-Opioid Peptides in Morphine-Tolerance and Dependence [J]. Synapse, 1992, 12(2): 129-38.
[105]MCNALLY G P. Pain facilitatory circuits in the mammalian central nervous system: their behavioral significance and role in morphine analgesic tolerance [J]. Neurosci Biobehav R, 1999, 23(8): 1059-78.
[106]SIMONIN F, SCHMITT M, LAULIN J P, et al. RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid-induced tolerance associated with hyperalgesia [J]. Proc Natl Acad Sci USA, 2006, 103(2): 466-71.
[107]ELHABAZI K, TRIGO J M, MOLLEREAU C, et al. Involvement of neuropeptide FF receptors in neuroadaptive responses to acute and chronic opiate treatments [J]. Brit J Pharmacol, 2012, 165(2): 424-35.
[108]TUMATI S, LARGENT-MILNES T M, KERESZTES A I, et al. Tachykinin NK receptor antagonist co-administration attenuates opioid withdrawal-mediated spinal microglia and astrocyte activation [J]. Eur J Pharmacol, 2012, 684(1-3): 64-70.
[109]BEUTLER B, DU X, POLTORAK A. Identification of Toll-like receptor 4 (Tlr4) as the sole conduit for LPS signal transduction: genetic and evolutionary studies [J]. J Endotoxin Res, 2001, 7(4): 277-80.
[110]RAGHAVENDRA V, TANGA R Y, DELEO J A. Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS [J]. Eur J Neurosci, 2004, 20(2): 467-73.
[111]LEWIS S S, HUTCHINSON M R, REZVANI N, et al. EVIDENCE THAT INTRATHECAL MORPHINE-3-GLUCURONIDE MAY CAUSE PAIN ENHANCEMENT VIA TOLL-LIKE RECEPTOR 4/MD-2 AND INTERLEUKIN-1β [J]. Neuroscience, 2010, 165(2): 569-83.
[112]MUSCOLI C, DOYLE T, DAGOSTINO C, et al. Counter-Regulation of Opioid Analgesia by Glial-Derived Bioactive Sphingolipids [J]. J Neurosci, 2010, 30(46): 15400-8.
[113]LITTLE J W, CUZZOCREA S, BRYANT L, et al. Spinal mitochondrial-derived peroxynitrite enhances neuroimmune activation during morphine hyperalgesia and antinociceptive tolerance [J]. Pain, 2013, 154(7): 978-86.
[114]HUTCHINSON M R, ZHANG Y N, SHRIDHAR M, et al. Evidence that opioids may have toll-like receptor 4 and MD-2 effects [J]. Brain Behav Immun, 2010, 24(1): 83-95.
[115]EIDSON L N, INOUE K, YOUNG L J, et al. Toll-like Receptor 4 Mediates Morphine-Induced Neuroinflammation and Tolerance via Soluble Tumor Necrosis Factor Signaling [J]. Neuropsychopharmacol, 2017, 42(3): 661-70.
[116]WATKINS L R, HUTCHINSON M R, JOHNSTON I N, et al. Glia: novel counter-regulators of opioid analgesia [J]. Trends Neurosci, 2005, 28(12): 661-9.
[117]EIDSON L N, MURPHY A Z. Blockade of Toll-Like Receptor 4 Attenuates Morphine Tolerance and Facilitates the Pain Relieving Properties of Morphine [J]. J Neurosci, 2013, 33(40): 15952-63.
[118]HUTCHINSON M R, LEWIS S S, COATS B D, et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast) [J]. Brain Behav Immun, 2009, 23(2): 240-50.
[119]GRUBER-SCHOFFNEGGER D, DRDLA-SCHUTTING R, HöNIGSPERGER C, et al. Induction of Thermal Hyperalgesia and Synaptic Long-Term Potentiation in the Spinal Cord Lamina I by TNF-α and IL-1β is Mediated by Glial Cells [J]. J Neurosci, 2013, 33(15): 6540-U628.
[120]ZHANG N, ROGERS T J, CATERINA M, et al. Proinflammatory chemokines, such as C-C chemokine ligand 3, desensitize μ-opioid receptors on dorsal root ganglia neurons [J]. J Immunol, 2004, 173(1): 594-9.
[121]RIVAT C, SEBAIHI S, VAN STEENWINCKEL J, et al. Src family kinases involved in CXCL12-induced loss of acute morphine analgesia [J]. Brain Behav Immun, 2014, 38: 38-52.
[122]LIN C P, KANG K H, LIN T H, et al. Role of Spinal CXCL1 (GROα) in Opioid Tolerance - [J]. Anesthesiology, 2015, 122(3): 666-76.
[123]LIANG D Y, LI X Q, CLARK J D. Epigenetic Regulation of Opioid-Induced Hyperalgesia, Dependence, and Tolerance in Mice [J]. J Pain, 2013, 14(1): 36-47.
[124]CHAO Y C, XIE F, LI X Y, et al. Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats [J]. Neurochem Int, 2016, 97: 91-8.
[125]DOEHRING A, OERTEL B G, SITTL R, et al. Chronic opioid use is associated with increased DNA methylation correlating with increased clinical pain [J]. Pain, 2013, 154(1): 15-23.
[126]LIANG D Y, ZHENG M, SUN Y, et al. The Netrin-1 receptor DCC is a regulator of maladaptive responses to chronic morphine administration [J]. Bmc Genomics, 2014, 15.
[127]BIANCHI E, GALEOTTI N, MENICACCI C, et al. Contribution of G inhibitory protein alpha subunits in paradoxical hyperalgesia elicited by exceedingly low doses of morphine in mice [J]. Life Sci, 2011, 89(25-26): 918-25.
[128]JUNI A, KLEIN G, KOWALCZYK B, et al. Sex differences in hyperalgesia during morphine infusion: Effect of gonadectomy and estrogen treatment [J]. Neuropharmacology, 2008, 54(8): 1264-70.
[129]SORGE R E, MAPPLEBECK J C S, ROSEN S, et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice [J]. Nat Neurosci, 2015, 18(8): 1081-+.
[130]LöTSCH J. Pleiotropic Effects of Morphine-6β-glucuronide [J]. Anesthesiology, 2009, 110(6): 1209-10.
[131]KOMATSU T, SAKURADA S, KATSUYAMA S, et al. Mechanism of Allodynia Evoked by Intrathecal Morphine-3-Glucuronide in Mice [J]. Int Rev Neurobiol, 2009, 85: 207-19.
[132]CHENG L Z, DUAN B, HUANG T W, et al. Identification of spinal circuits involved in touch-evoked dynamic mechanical pain [J]. Nat Neurosci, 2017, 20(6): 804-+.
[133]DUAN B, CHENG L Z, BOURANE S, et al. Identification of Spinal Circuits Transmitting and Gating Mechanical Pain [J]. Cell, 2014, 159(6): 1417-32.
[134]MENDELL L M. Constructing and deconstructing the gate theory of pain [J]. Pain, 2014, 155(2): 210-6.
[135]MELZACK R, WALL P D. Pain Mechanisms - a New Theory [J]. Science, 1965, 150(3699): 971-+.
[136]TORSNEY C, MACDERMOTT A B. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord [J]. J Neurosci, 2006, 26(6): 1833-43.
[137]BABA H, JI R R, KOHNO T, et al. Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn [J]. Mol Cell Neurosci, 2003, 24(3): 818-30.
[138]KOCH S C, ACTON D, GOULDING M. Spinal Circuits for Touch, Pain, and Itch [J]. Annu Rev Physiol, 2018, 80: 189-+.
[139]JI R R, NACKLEY A, HUH Y, et al. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain [J]. Anesthesiology, 2018, 129(2): 343-66.
[140]PRICE T J, CERVERO F, GOLD M S, et al. Chloride regulation in the pain pathway [J]. Brain Res Rev, 2009, 60(1): 149-70.
[141]TODD A J. Neuronal circuitry for pain processing in the dorsal horn [J]. Nat Rev Neurosci, 2010, 11(12): 823-36.
[142]PEIRS C, DALLEL R, TODD A J. Recent advances in our understanding of the organization of dorsal horn neuron populations and their contribution to cutaneous mechanical allodynia [J]. J Neural Transm, 2020, 127(4): 505-25.
[143]DUAN B, CHENG L Z, MA Q F. Spinal Circuits Transmitting Mechanical Pain and Itch [J]. Neurosci Bull, 2018, 34(1): 186-93.
[144]FERNáNDEZ-DE-LAS-PEñAS C, DE LA LLAVE-RINCóN A I, FERNáNDEZ-CARNERO J, et al. Bilateral widespread mechanical pain sensitivity in carpal tunnel syndrome: evidence of central processing in unilateral neuropathy [J]. Brain, 2009, 132: 1472-9.
[145]KONOPKA K H, HARBERS M, HOUGHTON A, et al. Bilateral Sensory Abnormalities in Patients with Unilateral Neuropathic Pain; A Quantitative Sensory Testing (QST) Study [J]. Plos One, 2012, 7(5).
[146]GAO Y J, XU Z Z, LIU Y C, et al. The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition [J]. Pain, 2010, 148(2): 309-19.
[147]ROMMEL O, MALIN J P, ZENZ M, et al. Quantitative sensory testing, neurophysiological and psychological examination in patients with complex regional pain syndrome and hemisensory deficits [J]. Pain, 2001, 93(3): 279-93.
[148]KAYAOGLU G, EKICI M, ALTUNKAYNAK B. Mechanical Allodynia in Healthy Teeth Adjacent and Contralateral to Endodontically Diseased Teeth: A Clinical Study [J]. J Endodont, 2020, 46(5): 611-8.
[149]ENAX-KRUMOVA E K, POHL S, WESTERMANN A, et al. Ipsilateral and contralateral sensory changes in healthy subjects after experimentally induced concomitant sensitization and hypoesthesia [J]. Bmc Neurol, 2017, 17.
[150]CHRISTIDIS N, NILYSON A, KOPP S, et al. Intramuscular injection of granisetron into the masseter muscle increases the pressure pain threshold in healthy participants and patients with localized myalgia [J]. Clin J Pain, 2007, 23(6): 467-72.
[151]CICHON J, BLANCK T J J, GAN W B, et al. Activation of cortical somatostatin interneurons prevents the development of neuropathic pain [J]. Nat Neurosci, 2017, 20(8): 1122-+.
[152]KOLTZENBURG M, WALL P D, MCMAHON S B. Does the right side know what the left is doing? [J]. Trends Neurosci, 1999, 22(3): 122-7.
[153]ISHIKAWA T, ETO K, KIM S K, et al. Cortical astrocytes prime the induction of spine plasticity and mirror image pain [J]. Pain, 2018, 159(8): 1592-606.
[154]KIM Y S, CHU Y X, HAN L, et al. Central Terminal Sensitization of TRPV1 by Descending Serotonergic Facilitation Modulates Chronic Pain [J]. Neuron, 2014, 81(4): 873-87.
[155]TWINING C M, SLOANE E M, MILLIGAN E D, et al. Peri-sciatic proinflammatory cytokines, reactive oxygen species, and complement induce mirror-image neuropathic pain in rats [J]. Pain, 2004, 110(1-2): 299-309.
[156]CHENG C F, CHENG J K, CHEN C Y, et al. Mirror-image pain is mediated by nerve growth factor produced from tumor necrosis factor alpha-activated satellite glia after peripheral nerve injury [J]. Pain, 2014, 155(5): 906-20.
[157]HU S W, ZHANG Q, XIA S H, et al. Contralateral Projection of Anterior Cingulate Cortex Contributes to Mirror-Image Pain [J]. J Neurosci, 2021, 41(48): 9988-10003.
[158]SUGIMOTO M, TAKAHASHI Y, SUGIMURA Y K, et al. Active role of the central amygdala in widespread mechanical sensitization in rats with facial inflammatory pain [J]. Pain, 2021, 162(8): 2273-86.
[159]DECOSTERD I, WOOLF C J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain [J]. Pain, 2000, 87(2): 149-58.
[160]ZHANG Y, LIU S B, ZHANG Y Q, et al. Timing Mechanisms Underlying Gate Control by Feedforward Inhibition [J]. Neuron, 2018, 99(5): 941-+.
[161]KOHNO K, SHIRASAKA R, YOSHIHARA K, et al. A spinal microglia population involved in remitting and relapsing neuropathic pain [J]. Science, 2022, 376(6588): 86-+.
[162]CARROLL I R, ANGST M S, CLARK J D. Management of perioperative pain in patients chronically consuming opioids [J]. Region Anesth Pain M, 2004, 29(6): 576-91.
[163]COLVIN L A, BULL F, HALES T G. Perioperative opioid analgesia-when is enough too much? A review of opioid-induced tolerance and hyperalgesia [J]. Lancet, 2019, 393(10180): 1558-68.
[164]KALSO E, EDWARDS J E, MOORE R A, et al. Opioids in chronic non-cancer pain: systematic review of efficacy and safety [J]. Pain, 2004, 112(3): 372-80.
[165]MARTYN J A J, MAO J R, BITTNER E A. Opioid Tolerance in Critical Illness [J]. New Engl J Med, 2019, 380(4): 365-78.
[166]DUPEN A, SHEN D, ERSEK M. Mechanisms of opioid-induced tolerance and hyperalgesia [J]. Pain Manag Nurs, 2007, 8(3): 113-21.
[167]VERA-PORTOCARRERO L P, ZHANG E T, KING T, et al. Spinal NK-1 receptor expressing neurons mediate opioid-induced hyperalgesia and antinociceptive tolerance via activation of descending pathways [J]. Pain, 2007, 129(1-2): 35-45.
[168]MERCADANTE S, ARCURI E, FUSCO F, et al. Randomized double-blind, double-dummy crossover clinical trial of oral tramadol versus rectal tramadol administration in opioid-naive cancer patients with pain [J]. Support Care Cancer, 2005, 13(9): 702-7.
[169]CORDER G, TAWFIK V L, WANG D, et al. Loss of μ opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia [J]. Nat Med, 2017, 23(2): 164-73.
[170]CHANG G, CHEN L, MAO J R. Opioid tolerance and hyperalgesia [J]. Med Clin N Am, 2007, 91(2): 199-+.
[171]SASAKI M, KAMIYA Y, BAMBA K, et al. Serotonin Plays a Key Role in the Development of Opioid-Induced Hyperalgesia in Mice [J]. J Pain, 2021, 22(6): 715-29.
[172]KHOMULA E V, ARALDI D, LEVINE J D. Nociceptor Neuroplasticity Associated with Opioid-Induced Hyperalgesia [J]. J Neurosci, 2019, 39(36): 7061-73.
[173]CHEN S R, PRUNEAN A, PAN H M, et al. Resistance to morphine analgesic tolerance in rats with deleted transient receptor potential vanilloid type 1-expressing sensory neurons [J]. Neuroscience, 2007, 145(2): 676-85.
修改评论