中文版 | English
题名

非对称超薄电解质膜在固液混合电池中的应用及其界面机理研究

其他题名
APPLICATION OF ASYMMETRIC ULTRA- THIN ELECTROLYTE SEPARATOR IN SOLID-LIQUID HYBRID BATTERIES AND ITS INTERFACIAL MECHANISM
姓名
姓名拼音
ZENG Huipeng
学号
12132026
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
邓永红
导师单位
材料科学与工程系
论文答辩日期
2024-05-06
论文提交日期
2024-07-02
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

作为电池的重要组成部分,隔膜起着分隔正、负极并为锂离子提供自由传输通道的作用,其物理和化学性能对电池的性能有着显著影响。通过改性隔膜,可以有效提高隔膜的热稳定性、电化学稳定性、电解液润湿性,增强隔膜中锂离子的迁移动力学,实现隔膜更优异的电化学性能。但是基于固态电解质的隔膜改性工作研究还不够深入完善,特别是固态电解质涂层的界面作用机制及其对电极界面的影响机理亟需深入研究。

本文基于锂镧锆钽氧(LLZTO)和磷酸钛铝锂(LATP)固态电解质的优点, 设计了一种适用于固液混合锂电池的超薄非对称固态电解质膜(SWS@PE),主要通过简单的刮刀涂覆法在超薄9 μm PE 隔膜的两侧分别均匀涂覆2 μm 的LLZTO 层和1 μm 的LATP 层,最终制备出厚度约12 μm 的超薄固态电解质膜。SWS@PE 不仅具有出色的物理性能,还具有优异的电化学性能。涂覆的固态电解质涂层可以参与锂离子的传输,增强锂离子的迁移动力学,最终SWS@PE  Li||NCM811 全电池中实现了更好的倍率性能和更优异的长循环性能。通过对电解质涂层的作用机理研究发现,LLZTO 涂层可以有效吸附FSI−,在负极侧实现阴离子的富集,LATP 涂层则可以有效吸附溶出的过渡金属离子,从而减少其在锂负极上的沉积。得益于电解质涂层的界面作用,在负极上形成了更富含LiF 的固体电解质界面相(SEI),正极上形成了薄且均匀的CEI。

本文设计的SWS@PE,制备方法简单,兼具优异的物理和电化学性能,具有投入实际应用的潜力。此外,对LATP 和LLZTO 电解质涂层的界面作用和对电极界面的影响进行了深入研究,为后续使用固态电解质材料进行隔膜改性以定制功能化隔膜提供了一定的理论基础和方法指导。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] LIU C, LI F, MA L P, et al. Advanced Materials for Energy Storage[J]. Advanced Materials, 2010, 22(8): E28-62.
[2] 陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(05): 1516-1552.
[3] TARASCON J M, ARMAND M. Issues and Challenges Facing Rechargeable Lithium Batteries[J]. Nature, 2001, 414(6861): 359-367.
[4] ZENG X Q, LI M, ABD EL-HADY D, et al. Commercialization of Lithium Battery Technologies for Electric Vehicles[J]. Advanced Energy Materials, 2019, 9(27): 1900161.
[5] WU F, MAIER J, YU Y. Guidelines and Trends for Next-Generation Rechargeable Lithium and Lithium-Ion Batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614.
[6] FRITH J T, LACEY M J, ULISSI U. A Non-Academic Perspective on the Future of Lithium-Based Batteries[J]. Nature Communications, 2023, 14(1): 420.
[7] SCHMUCH R, WAGNER R, HORPEL G, et al. Performance and Cost of Materials for Lithium-Based Rechargeable Automotive Batteries[J]. Nature Energy, 2018, 3(4): 267-278.
[8] SUN P, BISSCHOP R, NIU H, et al. A Review of Battery Fires in Electric Vehicles[J]. Fire Technology, 2020, 56(4): 1361-1410.
[9] XU K. Navigating the Minefield of Battery Literature[J]. Communications Materials, 2022, 3(1): 31.
[10] ALBERTUS P, BABINEC S, LITZELMAN S, et al. Status and Challenges in Enabling the Lithium Metal Electrode for High-Energy and Low-Cost Rechargeable Batteries[J]. Nature Energy, 2017, 3(1): 16-21.
[11] LIU J, BAO Z N, CUI Y, et al. Pathways for Practical High-Energy Long-Cycling Lithium Metal Batteries[J]. Nature Energy, 2019, 4(3): 180-186.
[12] ZHAO Q, STALIN S, ZHAO C Z, et al. Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252.
[13] YANG K, ZHAO L, AN X, et al. Determining the Role of Ion Transport Throughput in Solid-State Lithium Batteries[J]. Angew Chem Int Ed Engl, 2023, 62(24): e202302586.
[14] 李泓, 许晓雄. 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(05): 607-614.
[15] FAN L Z, HE H C, NAN C W. Tailoring Inorganic-Polymer Composites for the Mass Production of Solid-State Batteries[J]. Nature Reviews Materials, 2021, 6(11): 1003-1019.
[16] WU J, LIU S, HAN F, et al. Lithium/Sulfide All-Solid-State Batteries Using Sulfide Electrolytes[J]. Advanced Materials, 2021, 33(6): 2000751.
[17] CHEN W P, DUAN H, SHI J L, et al. Bridging Interparticle Li+ Conduction in a Soft Ceramic Oxide Electrolyte[J]. Journal of the American Chemical Society, 2021, 143(15): 5717-5726.
[18] HE B, ZHANG F, XIN Y, et al. Halogen Chemistry of Solid Electrolytes in All-Solid-State Batteries[J]. Nature Reviews Chemistry, 2023, 7(12): 826-842.
[19] WU D X, CHEN L Q, LI H, et al. Solid-State Lithium Batteries-from Fundamental Research to Industrial Progress[J]. Progress in Materials Science, 2023, 139: 101182.
[20] WANG C, FU K, KAMMAMPATA S P, et al. Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries[J]. Chemical Reviews, 2020, 120(10): 4257-4300.
[21] HAN F, ZHU Y, HE X, et al. Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes[J]. Advanced Energy Materials, 2016, 6(8): 1501590.
[22] WU P, ZHOU W, SU X, et al. Recent Advances in Conduction Mechanisms, Synthesis Methods, and Improvement Strategies for Li1+xAlxTi2−x(PO4)3 Solid Electrolyte for All‐Solid‐State Lithium Batteries[J]. Advanced Energy Materials, 2022, 13(4): 2203440.
[23] XU S J, SUN Z H, SUN C G, et al. Homogeneous and Fast Ion Conduction of PEO-Based Solid-State Electrolyte at Low Temperature[J]. Advanced Functional Materials, 2020, 30(51): 2007172.
[24] CHEN Y T, CHUANG Y C, SU J H, et al. High Discharge Capacity Solid Composite Polymer Electrolyte Lithium Battery[J]. Journal of Power Sources, 2011, 196(5): 2802-2809.
[25] MIAO R Y, LIU B W, ZHU Z Z, et al. PVDF-HFP-Based Porous Polymer Electrolyte Membranes for Lithium-Ion Batteries[J]. Journal of Power Sources, 2008, 184(2): 420-426.
[26] WEI Y Q, LI Z L, CHEN Z C, et al. A Wide Temperature 10 V Solid-State Electrolyte with a Critical Current Density of Over 20 mA cm-2[J]. Energy & Environmental Science, 2023, 16(10): 4679-4692.
[27] LU X, WANG Y M, XU X Y, et al. Polymer-Based Solid-State Electrolytes for High-Energy-Density Lithium-Ion Batteries - Review[J]. Advanced Energy Materials, 2023, 13(38): 2301746.
[28] CHEN L, LI Y T, LI S P, et al. PEO/Garnet Composite Electrolytes for Solid-State Lithium Batteries: from "Ceramic-in-Polymer" to "Polymer-in-Ceramic"[J]. Nano Energy, 2018, 46: 176-184.
[29] HUANG Y L, CAO B W, GENG Z, et al. Advanced Electrolytes for Rechargeable Lithium Metal Batteries with High Safety and Cycling Stability[J]. Accounts of Materials Research, 2024, 5(2): 184-193.
[30] XU P, SHUANG Z Y, ZHAO C Z, et al. A Review of Solid-State Lithium Metal Batteries through In-Suit Solidification[J]. Science China-Chemistry, 2023, 67(1): 67-86.
[31] WANG C H, LIANG J W, JIANG M, et al. Interface-Assisted In-Situ Growth of Halide Electrolytes Eliminating Interfacial Challenges of All-Inorganic Solid-State Batteries[J]. Nano Energy, 2020, 76: 105015.
[32] LEE K, KAZYAK E, WANG M J, et al. Analyzing Void Formation and Rewetting of Thin In Suit-Formed Li Anodes on LLZO[J]. Joule, 2022, 6(11): 2547-2565.
[33] BI Z J, ZHAO N, MA L N, et al. Surface Coating of LiMn2O4 Cathodes with Garnet Electrolytes for Improving Cycling Stability of Solid Lithium Batteries[J]. Journal of Materials Chemistry A, 2020, 8(8): 4252-4256.
[34] BI Z J, MU S, ZHAO N, et al. Cathode Supported Solid Lithium Batteries Enabling High Energy Density and Stable Cyclability[J]. Energy Storage Materials, 2021, 35: 512-519.
[35] ZHAO C, LIU Z Q, WENG W, et al. Stabilized Cathode/Sulfide Solid Electrolyte Interface via Li2ZrO3 Coating for All-Solid-State Batteries[J]. Rare Metals, 2022, 41(11): 3639-3645.
[36] LEE D, CUI Z, GOODENOUGH J B, et al. Interphase Stabilization of LiNi0.5Mn1.5O4 Cathode for 5 V-Class All-Solid-State Batteries[J]. Small, 2024, 20(2): 2306053.
[37] CHANG Z, YANG H, ZHU X, et al. A Stable Quasi-Solid Electrolyte Improves the Safe Operation of Highly Efficient Lithium-Metal Pouch Cells in Harsh Environments[J]. Nature Communications, 2022, 13(1): 1510.
[38] ZHAO C-Z, ZHAO B-C, YAN C, et al. Liquid Phase Therapy to Solid Electrolyte–Electrode Interface in Solid-State Li Metal Batteries: A Review[J]. Energy Storage Materials, 2020, 24: 75-84.
[39] WU J Y, LING S G, YANG Q, et al. Forming Solid Electrolyte Interphase In Situ in an Ionic Conducting Li1.5Al0.5Ge1.5(PO4)3-Polypropylene (PP) Based Separator for Li-Ion Batteries[J]. Chinese Physics B, 2016, 25(7): 078204.
[40] 池上森, 姜益栋, 王庆荣, 等. 液体电解液改性石榴石型固体电解质与锂负极的界面[J]. 储能科学与技术, 2021, 10(03): 914-924.
[41] XU B, DUAN H, LIU H, et al. Stabilization of Garnet/Liquid Electrolyte Interface Using Superbase Additives for Hybrid Li Batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(25): 21077-21082.
[42] 朱高龙, 赵辰孜, 袁洪, 等. 基于局部高盐界面润湿策略构筑的固态金属锂软包电池[J]. 物理化学学报, 2021, 37(02): 135-141.
[43] SHI K, CHEN L, WAN Z, et al. Lithium-Ion Spontaneous Exchange and Synergistic Transport in Ceramic-Liquid Hybrid Electrolytes for Highly Efficient Lithium-Ion Transfer[J]. Science Bulletin, 2022, 67(9): 946-954.
[44] FAN X, JI X, HAN F, et al. Fluorinated Solid Electrolyte Interphase Enables Highly Reversible Solid-State Li Metal Battery[J]. Science Advances, 2018, 4(12): eaau9245.
[45] SAGANE F, ABE T, OGUMI Z. Electrochemical Analysis of Lithium-Ion Transfer Reaction through the Interface between Ceramic Electrolyte and Ionic Liquids[J]. Journal of the Electrochemical Society, 2012, 159(11): A1766-A1769.
[46] HUO H, ZHAO N, SUN J, et al. Composite Electrolytes of Polyethylene Oxides/Garnets Interfacially Wetted by Ionic Liquid for Room-Temperature Solid-State Lithium Battery[J]. Journal of Power Sources, 2017, 372: 1-7.
[47] HWANG J, MATSUMOTO K, CHEN C Y, et al. Pseudo-Solid-State Electrolytes Utilizing the Ionic Liquid Family for Rechargeable Batteries[J]. Energy & Environmental Science, 2021, 14(11): 5834-5863.
[48] DENG Y, ZHAO S, CHEN Y, et al. Wide-Temperature and High-Rate Operation of Lithium Metal Batteries Enabled by an Ionic Liquid Functionalized Quasi-Solid-State Electrolyte[J]. Small, 2024: e2310534.
[49] PAOLELLA A, BERTONI G, ZHU W, et al. Unveiling the Cation Exchange Reaction between the NASICON Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte and the pyr13TFSI Ionic Liquid[J]. Journal of the American Chemical Society, 2022, 144(8): 3442-3448.
[50] YU X R, WANG L L, MA J, et al. Selectively Wetted Rigid-Flexible Coupling Polymer Electrolyte Enabling Superior Stability and Compatibility of High-Voltage Lithium Metal Batteries[J]. Advanced Energy Materials, 2020, 10(18): 1903939.
[51] TANG J, WANG L, TIAN C, et al. Double-Protected Layers with Solid-Liquid Hybrid Electrolytes for Long-Cycle-Life Lithium Batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4170-4178.
[52] XU S J, XU R G, YU T, et al. Decoupling of Ion Pairing and Ion Conduction in Ultrahigh-concentration Electrolytes Enables Wide-temperature Solid-state Batteries[J]. Energy & Environmental Science, 2022, 15(8): 3379-3387.
[53] HUANG Z J, LAI J C, KONG X, et al. A Solvent-Anchored Non-Flammable Electrolyte[J]. Matter, 2023, 6(2): 445-459.
[54] LI X, CONG L N, MA S C, et al. Low Resistance and High Stable Solid-Liquid Electrolyte Interphases Enable High-Voltage Solid-State Lithium Metal Batteries[J]. Advanced Functional Materials, 2021, 31(20): 2010611.
[55] OH D Y, NAM Y J, PARK K H, et al. Excellent Compatibility of Solvate Ionic Liquids with Sulfide Solid Electrolytes: Toward Favorable Ionic Contacts in Bulk-Type All-Solid-State Lithium-Ion Batteries[J]. Advanced Energy Materials, 2015, 5(22): 1500865.
[56] WANG C H, SUN Q, LIU Y L, et al. Boosting the Performance of Lithium Batteries with Solid-Liquid Hybrid Electrolytes: Interfacial Properties and Effects of Liquid Electrolytes[J]. Nano Energy, 2018, 48: 35-43.
[57] GUPTA A, KAZYAK E, DASGUPTA N P, et al. Electrochemical and Surface Chemistry Analysis of Lithium Lanthanum Zirconium Tantalum Oxide (LLZTO)/Liquid Electrolyte (LE) Interfaces[J]. Journal of Power Sources, 2020, 474: 228598.
[58] LIU J Y, GAO X W, HARTLEY G O, et al. The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte[J]. Joule, 2020, 4(1): 101-108.
[59] BUSCHE M R, DROSSEL T, LEICHTWEISS T, et al. Dynamic Formation of a Solid-Liquid Electrolyte Interphase and its Consequences for Hybrid-Battery Concepts[J]. Nature Chemistry, 2016, 8(5): 426-434.
[60] HUANG W L, BI Z J, ZHAO N, et al. Chemical Interface Engineering of Solid Garnet Batteries for Long-Life and High-Rate Performance[J]. Chemical Engineering Journal, 2021, 424: 13042.
[61] ARORA P, ZHANG Z J. Battery Separators[J]. Chemical Reviews, 2004, 104(10): 4419-4462.
[62] LEE H, YANILMAZ M, TOPRAKCI O, et al. A Review of Recent Developments in Membrane Separators for Rechargeable Lithium-Ion Batteries[J]. Energy & Environmental Science, 2014, 7(12): 3857-3886.
[63] HUANG X Z, HE R, LI M, et al. Functionalized Separator for Next-Generation Batteries [J]. Materials Today, 2020, 41: 143-155.
[64] ZHANG S S. A Review on the Separators of Liquid Electrolyte Li-Ion Batteries[J]. Journal of Power Sources, 2007, 164(1): 351-364.
[65] SONG Y H, WU K J, ZHANG T W, et al. A Nacre-Inspired Separator Coating for Impact-Tolerant Lithium Batteries[J]. Advanced Materials, 2019, 31(51): 1905711.
[66] AN Y L, TIAN Y, FENG J K, et al. MXenes for Advanced Separator in Rechargeable Batteries[J]. Materials Today, 2022, 57: 146-179.
[67] BAI S Y, LIU X Z, ZHU K, et al. Metal-Organic Framework-Based Separator for Lithium-Sulfur Batteries[J]. Nature Energy, 2016, 1(7): 16094.
[68] PU J, WANG T, TAN Y, et al. Effect of Heterostructure-Modified Separator in Lithium-Sulfur Batteries[J]. Small, 2023, 19(42): 2303266.
[69] YAO S Y, YANG Y, LIANG Z W, et al. A Dual-Functional Cationic Covalent Organic Frameworks Modified Separator for High Energy Lithium Metal Batteries[J]. Advanced Functional Materials, 2023, 33(13): 2212466.
[70] ZUO L, MA Q, XIAO P, et al. Upgrading the Separators Integrated with Desolvation and Selective Deposition toward the Stable Lithium Metal Batteries[J]. Advanced Materials, 2023: e2311529.
[71] DING L Y, YUE X Y, CHEN Y M, et al. Tandem Design of Functional Separators for Li Metal Batteries with Long-Term Stability and High-Rate Capability[J]. Advanced Functional Materials, 2023, 33(43): 2304386.
[72] ZHANG Z, WANG J, QIN H, et al. Constructing an Anion-Braking Separator to Regulate Local Li+ Solvation Structure for Stabilizing Lithium Metal Batteries[J]. ACS Nano, 2024, 18(3): 2250-2260.
[73] LUO W, ZHOU L, FU K, et al. A Thermally Conductive Separator for Stable Li Metal Anodes[J]. Nano Letters, 2015, 15(9): 6149-6154.
[74] LI X, LIU Y, PAN Y, et al. A Functional SrF2 Coated Separator Enabling a Robust and Dendrite-Free Solid Electrolyte Interphase on a Lithium Metal Anode[J]. Journal of Materials Chemistry A, 2019, 7(37): 21349-21361.
[75] MA S S, LIN H, YANG L Y, et al. High Thermal Stability and Low Impedance Polypropylene Separator Coated with Aluminum Phosphate[J]. Electrochimica Acta, 2019, 320: 134528.
[76] CHEN X, ZHANG R Y, ZHAO R R, et al. A "Dendrite-Eating" Separator for High-Areal-Capacity Lithium-Metal Batteries[J]. Energy Storage Materials, 2020, 31: 181-186.
[77] FENG Y, ZHONG B D, ZHANG R C, et al. Taming Active-Ion Crosstalk by Targeted Ion Sifter Toward High-Voltage Lithium Metal Batteries[J]. Advanced Energy Materials, 2023, 13(45): 2302295.
[78] PARIKH D, JAFTA C J, THAPALIYA B P, et al. Al2O3/TiO2 Coated Separators: Roll-To-Roll Processing and Implications for Improved Battery Safety and Performance[J]. Journal of Power Sources, 2021, 507: 230259.
[79] YANG L Y, CAO J H, LIANG W H, et al. Effects of the Separator MOF-Al2O3 Coating on Battery Rate Performance and Solid-Electrolyte Interphase Formation[J]. ACS Applied Materials & Interfaces, 2022, 14(11): 13722-13732.
[80] YUE H L, YAO Y F, LI Y M, et al. Thermally Resistant, Mechanically Robust, Enamel-Inspired Hydroxyapatite/Polyethylene Nanocomposite Battery Separator[J]. Advanced Functional Materials, 2023, 34(7): 2308039.
[81] ZHANG M, LIU K X, GAN Y C, et al. Boosting the Temperature Adaptability of Lithium Metal Batteries via a Moisture/Acid-Purified, Ion-Diffusion Accelerated Separator[J]. Advanced Energy Materials, 2022, 12(32): 2201390.
[82] YAN Z, PAN H Y, WANG J Y, et al. Suppressing Transition Metal Dissolution and Deposition in Lithium-Ion Batteries Using Oxide Solid Electrolyte Coated Polymer Separator[J]. Chinese Physics B, 2020, 29(8): 088201.
[83] YAN Z, PAN H Y, WANG J Y, et al. Enhancing Cycle Stability of Li Metal Anode by Using Polymer Separators Coated with Ti-Containing Solid Electrolytes[J]. Rare Metals, 2021, 40(6): 1357-1365.
[84] LI S, LU J, GENG Z, et al. Solid Polymer Electrolyte Reinforced with a Li1.3Al0.3Ti1.7(PO4)3-Coated Separator for All-Solid-State Lithium Batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1195-1202.
[85] SHI J L, XIA Y G, HAN S J, et al. Lithium Ion Conductive Li1.5Al0.5Ge1.5(PO4)3 Based Inorganic-Organic Composite Separator with Enhanced Thermal Stability and Excellent Electrochemical Performances in 5 V Lithium Ion Batteries[J]. Journal of Power Sources, 2015, 273: 389-395.
[86] HE T J, ZENG G F, FENG C, et al. A Solid-Electrolyte-Reinforced Separator Through Single-Step Electrophoretic Assembly for Safe High-Capacity Lithium Ion Batteries[J]. Journal of Power Sources, 2020, 448: 227469.
[87] HUO H Y, LI X N, CHEN Y, et al. Bifunctional Composite Separator with A Solid-State-Battery Strategy for Dendrite-Free Lithium Metal Batteries[J]. Energy Storage Materials, 2020, 29: 361-366.
[88] WANG M, WANG J, SI J, et al. Bifunctional Composite Separator with Redistributor and Anion Absorber for Dendrites-Free and Fast-Charging Lithium Metal Batteries[J]. Chemical Engineering Journal, 2022, 430: 132971.
[89] ZHAO C Z, CHEN P Y, ZHANG R, et al. An Ion Redistributor for Dendrite-Free Lithium Metal Anodes[J]. Science Advances, 2018, 4(11): eaat3446.
[90] LI M H, LU G J, ZHENG W K, et al. Multifunctionalized Safe Separator Toward Practical Sodium-Metal Batteries with High-Performance under High Mass Loading[J]. Advanced Functional Materials, 2023, 33(26): 2214759.
[91] ADAMS B D, ZHENG J, REN X, et al. Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries[J]. Advanced Energy Materials, 2017, 8(7): 1702097.
[92] ABRAHAM K M, JIANG Z, CARROLL B. Highly Conductive PEO-Like Polymer Electrolytes[J]. Chemistry of Materials, 1997, 9(9): 1978-1988.
[93] ALLEN J L, WOLFENSTINE J, RANGASAMY E, et al. Effect of Substitution (Ta, Al, Ga) on the Conductivity of Li7La3Zr2O12[J]. Journal of Power Sources, 2012, 206: 315-319.
[94] 李泓. 全固态锂电池:梦想照进现实[J]. 储能科学与技术, 2018, 7(02): 188-193.
[95] RAHMAN M M, MATETI S, CAI Q R, et al. High Temperature and High Rate Lithium-Ion Batteries with Boron Nitride Nanotubes Coated Polypropylene Separators[J]. Energy Storage Materials, 2019, 19: 352-359.
[96] SHENG J, ZHANG Q, LIU M, et al. Stabilized Solid Electrolyte Interphase Induced by Ultrathin Boron Nitride Membranes for Safe Lithium Metal Batteries[J]. Nano Letters, 2021, 21(19): 8447-8454.
[97] WANG Z X, QI F L, YIN L C, et al. An Anion-Tuned Solid Electrolyte Interphase with Fast Ion Transfer Kinetics for Stable Lithium Anodes[J]. Advanced Energy Materials, 2020, 10(14): 1903843.
[98] NIE Q, LUO W, LI Y, et al. Research Progress of Liquid Electrolytes for Lithium Metal Batteries at High Temperatures[J]. Small, 2023, 19(46): 2302690.
[99] RYNEARSON L, ANTOLINI C, JAYAWARDANA C, et al. Speciation of Transition Metal Dissolution in Electrolyte from Common Cathode Materials[J]. Angew Chem Int Ed Engl, 2024, 63(5): e202317109.
[100] SUN S, WANG K, HONG Z, et al. Electrolyte Design for Low-Temperature Li-Metal Batteries: Challenges and Prospects[J]. Nano-Micro Letters, 2023, 16(1): 35.
[101] MIRANDA D, GONçALVES R, WUTTKE S, et al. Overview on Theoretical Simulations of Lithium-Ion Batteries and Their Application to Battery Separators[J]. Advanced Energy Materials, 2023, 13(13): 2203874.
[102] ZHAO L, YU X N, JIAO J Y, et al. Building Cross-Phase Ion Transport Channels between Ceramic and Polymer for Highly Conductive Composite Solid-State Electrolyte[J]. Cell Reports Physical Science, 2023, 4(5): 101382.
[103] YU G, WANG Y, LI K, et al. Plasma Optimized Li7La3Zr2O12 with Vertically Aligned Ion Diffusion Pathways in Composite Polymer Electrolyte for Stable Solid-State Lithium Metal Batteries[J]. Chemical Engineering Journal, 2022, 430: 132874.
[104] GUO Y, ZENG X, LI J, et al. A High Performance Composite Separator with Robust Environmental Stability for Dendrite-Free Lithium Metal Batteries[J]. Journal of Colloid and Interface Science, 2023, 642: 321-329.
[105] YU K, ZENG H P, MA J, et al. High-Performance Lithium Metal Batteries Enabled by a Nano-Sized Garnet Solid-State Electrolyte Modified Separator[J]. Chemical Engineering Journal, 2024, 480: 148038.
[106] ZHU Y Q, GAO Y J, CUI C H, et al. A Strong-Surface-Polarity Separator Enables Dendrite-Free Lithium Metal Anodes via Coordinated Garnet Electrolyte[J]. Chemical Engineering Journal, 2023, 477: 147041.
[107] YU W L, YU Z A, CUI Y, et al. Degradation and Speciation of Li Salts during XPS Analysis for Battery Research[J]. ACS Energy Letters, 2022, 7(10): 3270-3275.

所在学位评定分委会
化学
国内图书分类号
TM911.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778824
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
曾惠鹏. 非对称超薄电解质膜在固液混合电池中的应用及其界面机理研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132026-曾惠鹏-材料科学与工程(29108KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[曾惠鹏]的文章
百度学术
百度学术中相似的文章
[曾惠鹏]的文章
必应学术
必应学术中相似的文章
[曾惠鹏]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。