中文版 | English
题名

基于替代模型和良率估计的柔性天线多目标优化算法

其他题名
FLEXIBLE ANTENNA MULTI-OBJECTIVE OPTIMIZATION ALGORITHM BASED ON SURROGATE MODEL AND YIELD ESTIMATION
姓名
姓名拼音
WANG Guangying
学号
12132144
学位类型
硕士
学位专业
080904 电磁场与微波技术
学科门类/专业学位类别
08 工学
导师
程庆沙
导师单位
电子与电气工程系
论文答辩日期
2024-05-08
论文提交日期
2024-07-02
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着物联网、智能穿戴设备等领域的迅速发展,对通信设备的要求更加严格。 柔性天线为这些应用带来了全新的可能性。相比于传统刚性天线,柔性天线具有 更大的设计自由度和适应性,可以灵活应对不同的应用场景,为用户提供更加稳 定、高效的通信服务。因此,研究柔性天线及其优化技术,对于推动智能通信设备 的发展和应用具有重要意义。目前柔性天线的设计面临由于设计变量较多、电磁 仿真耗时长而导致设计成本较高的问题,使用智能优化算法调用电磁仿真软件评 估每个种群个体的表现并求解天线设计参数的方式虽然解决了依靠经验设计天线 的问题,但是仍然消耗很大计算成本,限制了天线的优化效率。基于替代模型的 设计方法在微波器件设计领域逐渐被研究人员经常使用,它通过计算成本较低的 替代模型来引导电磁仿真模型快速找到最优解,极大提高了复杂器件的设计效率。 本文基于替代模型的优化方法,将良率作为柔性天线的目标函数,对柔性天线 的电磁性能进行高效率优化。主要研究工作及成果概括如下:(1) 针对柔性天线形变 时谐振频率偏移和带宽变窄的问题设计了良率优化框架,通过神经网络作为柔性 电小天线替代模型,拟合了天线的尺寸及形变量和回波损耗之间的映射关系,解 决了良率计算过程中需要多次计算天线响应耗费大量时间的问题。以一柔性电小 天线为实例,通过全波仿真改变形变量检验了算法的有效性,测试中弯曲情况下 的带宽保持在目标带宽的 91% 以上,同时最大谐振频率偏移量小于目标谐振频率 的 0.85%。(2) 针对柔性天线的响应和设计变量数据之间非线性程度高、建模复杂、 且需要大量样本点的问题,通过基于特征的替代模型降低了输入和输出数据之间 的非线性程度,降低了替代模型结构复杂度,减少了建模需要的样本点,提高了 设计效率。将模型应用到良率优化框架并以电小天线为例,实现了该天线弯曲时 谐振点偏移量在目标谐振频率的 1.5% 以内,最小带宽超过目标带宽 5%,最大带 宽超过目标带宽 10%。(3) 针对柔性天线多目标优化问题,通过良率优化框架和基 于特征的替代模型设计了多目标优化算法,得到了四个目标之间互不占有的解集。 最后对一种双频柔性天线进行全波仿真验证了算法产生的解集,以天线双频带的 谐振频率稳定性和带宽为目标,结果显示优化后的天线具有更高的带宽和稳定的 稳定的谐振频率,设计者可以根据解集中的结果选择设计方案。

其他摘要

With the rapid development of the Internet of Things, smart wearable devices, and other fields, the demands for communication devices have become increasingly stringent. Flexible antennas, as a novel solution, introduce entirely new possibilities for these applications. Compared to traditional rigid antennas, flexible antennas offer greater design freedom and adaptability, enabling them to respond flexibly to diverse application scenarios and provide users with more stable and efficient communication services. Therefore, studying flexible antennas and their optimization technologies is of significant importance in advancing the development and application of communication equipment. The current design of flexible antennas faces the same difficulties as other antennas—high design costs due to numerous design variables and time-consuming electromagnetic simulations. Although the traditional approach of employing intelligent optimization algorithms to invoke electromagnetic simulation software to evaluate the performance of each population individual and solve antenna design parameters addresses the issue of relying on experience to design antennas, it still incurs significant computational costs, thus limiting the optimization efficiency of antennas. The surrogate model-based design method is often used by researchers in the field of microwave device design. This method guides the electromagnetic simulation model to quickly find the optimal solution through the surrogate model, which has a low computational cost. As a result, it greatly improves the design efficiency of microwave devices with complex structures. In this paper, based on the optimization method of the surrogate model, the yield is taken as the objective function of the electromagnetic performance stability of the flexible antenna after deformation, and the electromagnetic performance of the flexible antenna is optimized with high efficiency. The main research work and achievements are summarized as follows: (1) A yield optimization framework is designed to solve the problem of resonant frequency shift and bandwidth narrowing when the flexible antenna is deformed, and the neural network is used as a surrogate model for the flexible electric small antenna, and the mapping relationship between the size and deformation of the antenna and the return loss is fitted, which solves the problem of time-consuming calculation of the antenna response in the process of yield calculation. Taking a small flexible antenna as an example, the effectiveness of the algorithm is verified, in the test, the bandwidth in the bending case is maintained at more than 91% of the target bandwidth, and the resonant frequency offset is 0.14%-0.85% of the target resonant frequency. (2) In order to solve the problem that the response of the flexible antenna and the design variable data are high and the model needs to be re-established after changing the design target, the feature-based surrogate model reduces the degree of nonlinearity between the input and output data, reduces the structural complexity of the surrogate model, increases the flexibility of the surrogate model in yield optimization, and improves the design efficiency. The model is applied to the yield optimization framework and the electric small antenna is taken as an example, and the resonant point offset of the antenna is less than 1.5% of the target resonant frequency when the antenna is bent, the minimum bandwidth exceeds the target bandwidth by 5%, and the maximum bandwidth exceeds the target bandwidth by 10%. (3) In order to solve the problem that there are many optimization targets for flexible antennas, a multi-objective optimization algorithm is designed through the yield optimization framework and a feature-based surrogate model, and the solution set is iteratively updated to generate the solution set by iteratively updating the response of random samples to meet the design indicators. The results show that the optimized antenna has higher bandwidth and stable resonant frequency, and the designer can choose the design scheme according to the results in the solution set.

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] BANAFAA M, SHAYEA I, DIN J, et al. 6G Mobile communication technology: requirements, targets, applications, challenges, advantages, and opportunities[J]. Alexandria Engineering Journal, 2023, 64: 245-274.
[2] TAO W, ZHAO L, WANG G, et al. Review of the internet of things communication technologies in smart agriculture and challenges[J]. Computers and Electronics in Agriculture, 2021, 189: 106352.
[3] GE M, BANGUI H, BUHNOVA B. Big data for internet of things: A survey[J]. Future Generation Computer Systems, 2018, 87: 601-614.
[4] GUPTA A K, CHOWDARY P S R, KRISHNA M V. Trends in IoT antenna design-A brief review[J]. Test Engineering and Management, 2020, 83(May–June 2020): 14198-14203.
[5] JOHN D M, VINCENT S, PATHAN S, et al. Flexible antennas for a sub-6 GHz 5G band: A comprehensive review[J]. Sensors, 2022, 22(19).
[6] AHMED S, TAHIR F A, SHAMIM A, et al. A compact Kapton-based inkjet-printed multiband antenna for flexible wireless devices[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1802-1805.
[7] SONI G K, YADAV D, KUMAR A. Design consideration and recent developments in flexible, transparent and wearable antenna technology: A review[J]. Transactions on Emerging Telecommunications Technologies, 2024, 35(1): e4894.
[8] VOLAKIS J L, CHATTERJEE A. Finite element method electromagnetics : Antennas, microwave circuits, and scattering applications[M]. Finite Element Method Electromagnetics : Antennas, Microwave Circuits, and Scattering Applications, 1998.
[9] MALONEY J, SMITH G, SCOTT W. Accurate computation of the radiation from simple antennas using the finite-difference time-domain method[J]. IEEE Transactions on Antennas and Propagation, 1990, 38(7): 1059-1068.
[10] TIRKAS P, BALANIS C. Finite-difference time-domain method for antenna radiation[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(3): 334-340.
[11] REINEIX A, JECKO B. Analysis of microstrip patch antennas using finite difference time domain method[J]. IEEE Transactions on Antennas and Propagation, 1989, 37(11): 1361-1369.
[12] WATERHOUSE R. Handbook of antennas in wireless communications[J]. Part-B (Antenna Technology and Numerical Methods), Chapter6 (Microstrip Patch Antennas) Edited by Lal Chand Godara, 2002.
[13] RAWLE W, SMITHS A. The method of moments: A numerical technique for wire antenna design[J]. High Frequency Electronics, 2006, 5(2): 42-47.
[14] TAYLI D. Computational tools for antenna analysis and design[M]. Electromagnetic Theory Department of Electrical and Information Technology Lund University Sweden, 2018.
[15] SUMITHRA P, THIRIPURASUNDARI D. Review on computational electromagnetics[J]. Advanced Electromagnetics, 2017, 6(1): 42–55.
[16] EL MISILMANI H M, NAOUS T, AL KHATIB S K. A review on the design and optimization of antennas using machine learning algorithms and techniques[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30(10): e22356.
[17] FENG F, NA W, JIN J, et al. Artificial neural networks for microwave computer-aided design: The state of the art[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(11): 4597-4619.
[18] KIM D H, LU N, MA R, et al. Epidermal electronics[J]. Science, 2011, 333(6044): 838-843.
[19] SALONEN P, SYDANHEIMO L, KESKILAMMI M, et al. A small planar inverted-F antenna for wearable applications[C]//Third International Symposium on Wearable Computers. 1999: 95-100.
[20] ALQADAMI A S M, STANCOMBE A E, BIALKOWSKI K S, et al. Flexible meander-line antenna array for wearable electromagnetic head imaging[J]. IEEE Transactions on Antennas and Propagation, 2021(69-7).
[21] MAO C X, VITAL D, WERNER D H, et al. Dual-polarized embroidered textile armband antenna array with omni-directional radiation for on-/off-Body wearable applications[J]. IEEE Transactions on Antennas and Propagation, 2019, PP(99): 1-1.
[22] GAO G P, YANG C, HU B, et al. A wide-bandwidth wearable all-textile PIFA with dual resonance modes for 5 GHz WLAN applications[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(6): 4206-4211.
[23] CASULA G A, LESTINI F, CHIETERA F P, et al. Design of on-body epidermal antenna on AMC substrate for UHF RFID in healthcare[J]. IEEE Transactions on Antennas and Propagation, 2024: 1-1.
[24] BISOGNIN A, THIELLEUX J, WEI W, et al. Inkjet coplanar square monopole on flexible substrate for 60-GHz applications[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 435-438.
[25] ALTINOZEN E, VUKOVIC A, SEWELL P. Assessment of the robustness of flexible antennas to complex deformations[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(6): 4714-4723.
[26] SAHU N K, NAIK N C, TRIPATHY M C, et al. A review of the advancement of metasurfaces in wearable antenna design for off-body communications.[J]. Progress in Electromagnetics Research B, 2024, 104.
[27] KOZIEL S, OGURTSOV S. Antenna design by simulation-driven optimization. Surrogatebased approach[M]. Antenna Design by Simulation-Driven Optimization. Surrogate-Based Approach, 2014.
[28] SØNDERGAARD J. Optimization using surrogate models - by the space mapping technique [D]. Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby: Informatics and Mathematical Modelling, Technical University of Denmark, DTU, 2003: 203. 59.
[29] KOZIEL S. Shape-preserving response prediction for microwave design optimization[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 2829-2837.
[30] SIMPSON T W, POPLINSKI J D, KOCH P N, et al. Metamodels for computer-based engineering design: survey and recommendations[J]. Engineering with computers, 2001, 17: 129-150.
[31] BOX G E, WILSON K B. On the experimental attainment of optimum conditions[M]// Breakthroughs in statistics: methodology and distribution. Springer, 1992: 270-310.
[32] KOZIEL S, OGURTSOV S, COUCKUYT I, et al. Efficient simulation-driven design optimization of antennas using co-kriging[C]//Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation. 2012: 1-2.
[33] KOZIEL S, PIETRENKO-DABROWSKA A. Performance-driven yield optimization of highfrequency structures by kriging surrogates[J]. Applied Sciences, 2022, 12(7).
[34] SHARMA Y, ZHANG H H, XIN H. Machine learning techniques for optimizing design of double T-shaped monopole antenna[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5658-5663.
[35] FENG F, NA W, JIN J, et al. ANNs for fast parameterized EM modeling: The state of the art in machine learning for design automation of passive microwave structures[J]. IEEE Microwave Magazine, 2021, 22(10): 37-50.
[36] MINA R, JABBOUR C, SAKR G E. A review of machine learning techniques in analog integrated circuit design automation[J]. Electronics, 2022, 11(3): 435.
[37] KOUHALVANDI L, CEYLAN O, OZOGUZ S. Automated deep neural learning-based optimization for high performance high power amplifier designs[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(12): 4420-4433.
[38] RUDNER T, POROD W, CSABA G. Design of oscillatory neural networks by machine learning [J]. Frontiers in Neuroscience, 2024, 18: 1307525.
[39] KESARWANI A K, YADAV M, SINGH D, et al. A review on the recent applications of particle swarm optimization and genetic algorithm during antenna design[J]. Materials Today: Proceedings, 2022, 56: 3823-3825.
[40] YU Y, ZHANG Z, CHENG Q S, et al. State-of-the-Art: AI-Assisted surrogate modeling and optimization for microwave filters[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(11): 4635-4651.
[41] POZAR D. Microwave Engineering, 4th Edition[M]. Wiley, 2011.
[42] NG A Y. Feature selection, L 1 vs. L 2 regularization, and rotational invariance[C]//Proceedings of 21st International Conference on Machine Learning. 2004.
[43] MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441.
[44] HOLLAND J. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence[Z]. 1992.
[45] DORIGO M. Optimization, learning and natural algorithms[J]. Thesis Politecnico Di Milano Italy, 1992. 60
[46] KIRKPATRICK S, GELATT C D, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680.
[47] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN’95 - International Conference on Neural Networks: Vol. 4. 1995: 1942-1948 vol.4.
[48] BARTZ-BEIELSTEIN T, BRANKE J, MEHNEN J, et al. Evolutionary Algorithms[J]. WIREs Data Mining and Knowledge Discovery, 4(3): 178-195.
[49] VIKHAR P A. Evolutionary algorithms: A critical review and its future prospects[C/OL]//2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC). 2016: 261-265. DOI: 10.1109/ICGTSPICC.2016.7955308.
[50] RUDER S. An overview of gradient descent optimization algorithms[A]. 2016.
[51] RUTENBAR R A. Simulated annealing algorithms: An overview[J]. IEEE Circuits and Devices magazine, 1989, 5(1): 19-26.
[52] SUMAN B, KUMAR P. A survey of simulated annealing as a tool for single and multiobjective optimization[J]. Journal of the operational research society, 2006, 57: 1143-1160.
[53] BLUM C. Ant colony optimization: Introduction and recent trends[J]. Physics of Life reviews, 2005, 2(4): 353-373.
[54] DORIGO M, STÜTZLE T. The ant colony optimization metaheuristic: Algorithms, applications, and advances[J]. Handbook of metaheuristics, 2003: 250-285.
[55] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[56] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE transactions on evolutionary computation, 2002, 6(2): 182-197.
[57] OCHOA J S, CANGELLARIS A C. Random-space dimensionality reduction for expedient yield estimation of passive microwave structures[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(12): 4313-4321.
[58] KOZIEL S, BANDLER J W. Rapid yield estimation and optimization of microwave structures exploiting feature-based statistical analysis[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(1): 107-114.
[59] RAYAS-SANCHEZ J E, GUTIERREZ-AYALA V. EM-based monte carlo analysis and yield prediction of microwave circuits using linear-input neural-output space mapping[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(12): 4528-4537.
[60] ZHANG Z, CHEN H, YU Y, et al. Yield-constrained optimization design using polynomial chaos for microwave filters[J]. IEEE Access, 2021, 9: 22408-22416.
[61] ZHANG J, ZHANG C, FENG F, et al. Polynomial chaos-based approach to yield-driven EM optimization[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(7): 3186- 3199.
[62] KIRTANIA S G, ELGER A W, HASAN M R, et al. Flexible antennas: A review[J]. Micromachines, 2020, 11(9).
[63] EL GHARBI M, FERNáNDEZ-GARCíA R, AHYOUD S, et al. A review of flexible wearable antenna sensors: Design, fabrication methods, and applications[J]. Materials, 2020, 13(17). 61
[64] WANG Y, TANG M C, CHEN S, et al. Design of low-cost, flexible, uniplanar, electrically small, quasi-isotropic antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (8): 1646-1650.
[65] KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. Ithaca, NYarXiv.org, 2014.
[66] KOZIEL S. Fast simulation‐driven antenna design using response‐feature surrogates[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2015, 25(5): 394-402.
[67] KOZIEL S, PIETRENKO-DABROWSKA A. Design-oriented computationally-efficient feature-based surrogate modelling of multi-band antennas with nested kriging[J]. AEU: Archiv fur Elektronik und Ubertragungstechnik: Electronic and Communication, 2020, 120(1).
[68] PIETRENKO-DABROWSKA A, KOZIEL S. Accelerated parameter tuning of antenna structures by means of response features and principal directions[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(11): 8987-8999.
[69] KOZIEL S, PIETRENKO-DABROWSKA A. Expedited feature-based quasi-global optimization of multi-band antenna input characteristics with jacobian variability tracking[J]. IEEE Access, 2020, PP(99): 1-1.
[70] KOZIEL S, BANDLER J W. Rapid yield estimation and optimization of microwave structures exploiting feature-based statistical analysis[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(1): 107-114.
[71] GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[M]//Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. 2010: 249-256.
[72] GEMBICKI F, HAIMES Y. Approach to performance and sensitivity multiobjective optimization: The goal attainment method[J]. IEEE Transactions on Automatic Control, 1975, 20(6): 769-771.
[73] ATRASH M E, ABDALLA M A, ELHENNAWY H M. A wearable dual-band low profile high gain low SAR antenna AMC-Backed for WBAN applications[J]. IEEE Transactions on Antennas and Propagation, 2019, PP(99).
[74] IBRAHIM A, RAHNAMAYAN S, MARTIN M V, et al. 3D-RadVis antenna: Visualization and performance measure for many-objective optimization[J]. Swarm and Evolutionary Computation, 2018, 39: 157-176.

所在学位评定分委会
电子科学与技术
国内图书分类号
TN82
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778831
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
王光英. 基于替代模型和良率估计的柔性天线多目标优化算法[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132144-王光英-电子与电气工程(6873KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王光英]的文章
百度学术
百度学术中相似的文章
[王光英]的文章
必应学术
必应学术中相似的文章
[王光英]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。