[1] BANAFAA M, SHAYEA I, DIN J, et al. 6G Mobile communication technology: requirements, targets, applications, challenges, advantages, and opportunities[J]. Alexandria Engineering Journal, 2023, 64: 245-274.
[2] TAO W, ZHAO L, WANG G, et al. Review of the internet of things communication technologies in smart agriculture and challenges[J]. Computers and Electronics in Agriculture, 2021, 189: 106352.
[3] GE M, BANGUI H, BUHNOVA B. Big data for internet of things: A survey[J]. Future Generation Computer Systems, 2018, 87: 601-614.
[4] GUPTA A K, CHOWDARY P S R, KRISHNA M V. Trends in IoT antenna design-A brief review[J]. Test Engineering and Management, 2020, 83(May–June 2020): 14198-14203.
[5] JOHN D M, VINCENT S, PATHAN S, et al. Flexible antennas for a sub-6 GHz 5G band: A comprehensive review[J]. Sensors, 2022, 22(19).
[6] AHMED S, TAHIR F A, SHAMIM A, et al. A compact Kapton-based inkjet-printed multiband antenna for flexible wireless devices[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1802-1805.
[7] SONI G K, YADAV D, KUMAR A. Design consideration and recent developments in flexible, transparent and wearable antenna technology: A review[J]. Transactions on Emerging Telecommunications Technologies, 2024, 35(1): e4894.
[8] VOLAKIS J L, CHATTERJEE A. Finite element method electromagnetics : Antennas, microwave circuits, and scattering applications[M]. Finite Element Method Electromagnetics : Antennas, Microwave Circuits, and Scattering Applications, 1998.
[9] MALONEY J, SMITH G, SCOTT W. Accurate computation of the radiation from simple antennas using the finite-difference time-domain method[J]. IEEE Transactions on Antennas and Propagation, 1990, 38(7): 1059-1068.
[10] TIRKAS P, BALANIS C. Finite-difference time-domain method for antenna radiation[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(3): 334-340.
[11] REINEIX A, JECKO B. Analysis of microstrip patch antennas using finite difference time domain method[J]. IEEE Transactions on Antennas and Propagation, 1989, 37(11): 1361-1369.
[12] WATERHOUSE R. Handbook of antennas in wireless communications[J]. Part-B (Antenna Technology and Numerical Methods), Chapter6 (Microstrip Patch Antennas) Edited by Lal Chand Godara, 2002.
[13] RAWLE W, SMITHS A. The method of moments: A numerical technique for wire antenna design[J]. High Frequency Electronics, 2006, 5(2): 42-47.
[14] TAYLI D. Computational tools for antenna analysis and design[M]. Electromagnetic Theory Department of Electrical and Information Technology Lund University Sweden, 2018.
[15] SUMITHRA P, THIRIPURASUNDARI D. Review on computational electromagnetics[J]. Advanced Electromagnetics, 2017, 6(1): 42–55.
[16] EL MISILMANI H M, NAOUS T, AL KHATIB S K. A review on the design and optimization of antennas using machine learning algorithms and techniques[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30(10): e22356.
[17] FENG F, NA W, JIN J, et al. Artificial neural networks for microwave computer-aided design: The state of the art[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(11): 4597-4619.
[18] KIM D H, LU N, MA R, et al. Epidermal electronics[J]. Science, 2011, 333(6044): 838-843.
[19] SALONEN P, SYDANHEIMO L, KESKILAMMI M, et al. A small planar inverted-F antenna for wearable applications[C]//Third International Symposium on Wearable Computers. 1999: 95-100.
[20] ALQADAMI A S M, STANCOMBE A E, BIALKOWSKI K S, et al. Flexible meander-line antenna array for wearable electromagnetic head imaging[J]. IEEE Transactions on Antennas and Propagation, 2021(69-7).
[21] MAO C X, VITAL D, WERNER D H, et al. Dual-polarized embroidered textile armband antenna array with omni-directional radiation for on-/off-Body wearable applications[J]. IEEE Transactions on Antennas and Propagation, 2019, PP(99): 1-1.
[22] GAO G P, YANG C, HU B, et al. A wide-bandwidth wearable all-textile PIFA with dual resonance modes for 5 GHz WLAN applications[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(6): 4206-4211.
[23] CASULA G A, LESTINI F, CHIETERA F P, et al. Design of on-body epidermal antenna on AMC substrate for UHF RFID in healthcare[J]. IEEE Transactions on Antennas and Propagation, 2024: 1-1.
[24] BISOGNIN A, THIELLEUX J, WEI W, et al. Inkjet coplanar square monopole on flexible substrate for 60-GHz applications[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 435-438.
[25] ALTINOZEN E, VUKOVIC A, SEWELL P. Assessment of the robustness of flexible antennas to complex deformations[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(6): 4714-4723.
[26] SAHU N K, NAIK N C, TRIPATHY M C, et al. A review of the advancement of metasurfaces in wearable antenna design for off-body communications.[J]. Progress in Electromagnetics Research B, 2024, 104.
[27] KOZIEL S, OGURTSOV S. Antenna design by simulation-driven optimization. Surrogatebased approach[M]. Antenna Design by Simulation-Driven Optimization. Surrogate-Based Approach, 2014.
[28] SØNDERGAARD J. Optimization using surrogate models - by the space mapping technique [D]. Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby: Informatics and Mathematical Modelling, Technical University of Denmark, DTU, 2003: 203. 59.
[29] KOZIEL S. Shape-preserving response prediction for microwave design optimization[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 2829-2837.
[30] SIMPSON T W, POPLINSKI J D, KOCH P N, et al. Metamodels for computer-based engineering design: survey and recommendations[J]. Engineering with computers, 2001, 17: 129-150.
[31] BOX G E, WILSON K B. On the experimental attainment of optimum conditions[M]// Breakthroughs in statistics: methodology and distribution. Springer, 1992: 270-310.
[32] KOZIEL S, OGURTSOV S, COUCKUYT I, et al. Efficient simulation-driven design optimization of antennas using co-kriging[C]//Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation. 2012: 1-2.
[33] KOZIEL S, PIETRENKO-DABROWSKA A. Performance-driven yield optimization of highfrequency structures by kriging surrogates[J]. Applied Sciences, 2022, 12(7).
[34] SHARMA Y, ZHANG H H, XIN H. Machine learning techniques for optimizing design of double T-shaped monopole antenna[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5658-5663.
[35] FENG F, NA W, JIN J, et al. ANNs for fast parameterized EM modeling: The state of the art in machine learning for design automation of passive microwave structures[J]. IEEE Microwave Magazine, 2021, 22(10): 37-50.
[36] MINA R, JABBOUR C, SAKR G E. A review of machine learning techniques in analog integrated circuit design automation[J]. Electronics, 2022, 11(3): 435.
[37] KOUHALVANDI L, CEYLAN O, OZOGUZ S. Automated deep neural learning-based optimization for high performance high power amplifier designs[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(12): 4420-4433.
[38] RUDNER T, POROD W, CSABA G. Design of oscillatory neural networks by machine learning [J]. Frontiers in Neuroscience, 2024, 18: 1307525.
[39] KESARWANI A K, YADAV M, SINGH D, et al. A review on the recent applications of particle swarm optimization and genetic algorithm during antenna design[J]. Materials Today: Proceedings, 2022, 56: 3823-3825.
[40] YU Y, ZHANG Z, CHENG Q S, et al. State-of-the-Art: AI-Assisted surrogate modeling and optimization for microwave filters[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(11): 4635-4651.
[41] POZAR D. Microwave Engineering, 4th Edition[M]. Wiley, 2011.
[42] NG A Y. Feature selection, L 1 vs. L 2 regularization, and rotational invariance[C]//Proceedings of 21st International Conference on Machine Learning. 2004.
[43] MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441.
[44] HOLLAND J. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence[Z]. 1992.
[45] DORIGO M. Optimization, learning and natural algorithms[J]. Thesis Politecnico Di Milano Italy, 1992. 60
[46] KIRKPATRICK S, GELATT C D, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680.
[47] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN’95 - International Conference on Neural Networks: Vol. 4. 1995: 1942-1948 vol.4.
[48] BARTZ-BEIELSTEIN T, BRANKE J, MEHNEN J, et al. Evolutionary Algorithms[J]. WIREs Data Mining and Knowledge Discovery, 4(3): 178-195.
[49] VIKHAR P A. Evolutionary algorithms: A critical review and its future prospects[C/OL]//2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC). 2016: 261-265. DOI: 10.1109/ICGTSPICC.2016.7955308.
[50] RUDER S. An overview of gradient descent optimization algorithms[A]. 2016.
[51] RUTENBAR R A. Simulated annealing algorithms: An overview[J]. IEEE Circuits and Devices magazine, 1989, 5(1): 19-26.
[52] SUMAN B, KUMAR P. A survey of simulated annealing as a tool for single and multiobjective optimization[J]. Journal of the operational research society, 2006, 57: 1143-1160.
[53] BLUM C. Ant colony optimization: Introduction and recent trends[J]. Physics of Life reviews, 2005, 2(4): 353-373.
[54] DORIGO M, STÜTZLE T. The ant colony optimization metaheuristic: Algorithms, applications, and advances[J]. Handbook of metaheuristics, 2003: 250-285.
[55] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[56] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE transactions on evolutionary computation, 2002, 6(2): 182-197.
[57] OCHOA J S, CANGELLARIS A C. Random-space dimensionality reduction for expedient yield estimation of passive microwave structures[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(12): 4313-4321.
[58] KOZIEL S, BANDLER J W. Rapid yield estimation and optimization of microwave structures exploiting feature-based statistical analysis[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(1): 107-114.
[59] RAYAS-SANCHEZ J E, GUTIERREZ-AYALA V. EM-based monte carlo analysis and yield prediction of microwave circuits using linear-input neural-output space mapping[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(12): 4528-4537.
[60] ZHANG Z, CHEN H, YU Y, et al. Yield-constrained optimization design using polynomial chaos for microwave filters[J]. IEEE Access, 2021, 9: 22408-22416.
[61] ZHANG J, ZHANG C, FENG F, et al. Polynomial chaos-based approach to yield-driven EM optimization[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(7): 3186- 3199.
[62] KIRTANIA S G, ELGER A W, HASAN M R, et al. Flexible antennas: A review[J]. Micromachines, 2020, 11(9).
[63] EL GHARBI M, FERNáNDEZ-GARCíA R, AHYOUD S, et al. A review of flexible wearable antenna sensors: Design, fabrication methods, and applications[J]. Materials, 2020, 13(17). 61
[64] WANG Y, TANG M C, CHEN S, et al. Design of low-cost, flexible, uniplanar, electrically small, quasi-isotropic antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (8): 1646-1650.
[65] KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. Ithaca, NYarXiv.org, 2014.
[66] KOZIEL S. Fast simulation‐driven antenna design using response‐feature surrogates[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2015, 25(5): 394-402.
[67] KOZIEL S, PIETRENKO-DABROWSKA A. Design-oriented computationally-efficient feature-based surrogate modelling of multi-band antennas with nested kriging[J]. AEU: Archiv fur Elektronik und Ubertragungstechnik: Electronic and Communication, 2020, 120(1).
[68] PIETRENKO-DABROWSKA A, KOZIEL S. Accelerated parameter tuning of antenna structures by means of response features and principal directions[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(11): 8987-8999.
[69] KOZIEL S, PIETRENKO-DABROWSKA A. Expedited feature-based quasi-global optimization of multi-band antenna input characteristics with jacobian variability tracking[J]. IEEE Access, 2020, PP(99): 1-1.
[70] KOZIEL S, BANDLER J W. Rapid yield estimation and optimization of microwave structures exploiting feature-based statistical analysis[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(1): 107-114.
[71] GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[M]//Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. 2010: 249-256.
[72] GEMBICKI F, HAIMES Y. Approach to performance and sensitivity multiobjective optimization: The goal attainment method[J]. IEEE Transactions on Automatic Control, 1975, 20(6): 769-771.
[73] ATRASH M E, ABDALLA M A, ELHENNAWY H M. A wearable dual-band low profile high gain low SAR antenna AMC-Backed for WBAN applications[J]. IEEE Transactions on Antennas and Propagation, 2019, PP(99).
[74] IBRAHIM A, RAHNAMAYAN S, MARTIN M V, et al. 3D-RadVis antenna: Visualization and performance measure for many-objective optimization[J]. Swarm and Evolutionary Computation, 2018, 39: 157-176.
修改评论