中文版 | English
题名

基于指数构建的新能源汽车产业上中下游行业关联性及其影响因素研究

其他题名
STUDY ON THE INTERRELATIONSHIPS AND INFLUENCING FACTORS OF UPSTREAM, MIDSTREAM, AND DOWNSTREAM INDUSTRIES IN THE NEW ENERGY VEHICLE INDUSTRY BASED ON INDEX CONSTRUCTION
姓名
姓名拼音
CHEN Jie
学号
12232960
学位类型
硕士
学位专业
0251 金融
学科门类/专业学位类别
02 经济学
导师
孙便霞
导师单位
商学院
论文答辩日期
2024-05-16
论文提交日期
2024-07-02
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

新能源汽车行业近年来因其迅速发展和广阔前景得到了广泛关注,我国也形成了较为完善的新能源产业链。对新能源汽车行业股价进行研究能够从资本市场的角度了解产业链内部的关联性和相互影响情况。本文从新能源汽车产业链上中下游行业中各筛选出10家具有代表性的上市公司,以201871日至2023630日为研究区间,分别构造了上中下游行业的股价指数。

基于所构建的股指,本文利用时间序列分析方法,通过对上中下游股指进行协整检验并建立误差修正模型,发现上游和中游股价间存在长期均衡关系,下游股价则较为平稳,与上中游之间缺乏显著的长期均衡关系;通过建立BEKK-GARCH模型并进行波动溢出效应检验,发现新能源汽车产业链相邻层级股价间存在相互波动溢出效应,上游对下游也存在单向的波动溢出。

此外,本文还计算了产业链各层级之间的动态条件相关系数,并对影响相关性变动的因素进行了探究。研究发现,油价波动对各层级间的相关性均造成显著正向影响,制造业PMI对相关性造成显著负向影响。相比之下,新能源汽车销量增速仅能影响到中游和下游之间的相关性,而锂矿价格波动则不会对产业链相关性造成显著影响。

本文还根据实证结果对新能源汽车产业链各层级股价相互关联的机制进行了推测,并为公司管理者、投资者以及政策制定者提供了合理建议,以保障我国新能源汽车行业的平稳健康发展。

其他摘要

In recent years, the new energy vehicle industry has received widespread attention due to its rapid development and broad prospects. China has also formed a relatively complete new energy industry chain. Studying the stock prices of the new energy industry can help us understand the internal relationships and mutual influences within the industry chain from the perspective of the capital market. This article selects 10 representative listed companies from each of the upstream, midstream, and downstream industries in the new energy industry vehicle chain, and constructs stock price indices for each of these industries using the research period from July 1, 2018 to June 30, 2023.

Based on the constructed stock indices, this article utilizes time series analysis methods to conduct cointegration tests on the upstream, midstream, and downstream stock indices and establishes error correction models. The results reveal that there exists a long-term equilibrium relationship between upstream and midstream stock prices, while downstream stock prices are relatively stable and lack significant long-term equilibrium relationships with upstream and midstream prices. By establishing a BEKK-GARCH model and conducting a volatility spillover effect test, it is found that there exists mutual volatility spillover effects between adjacent levels of the new energy vehicle industry chain, and there is also a unidirectional volatility spillover from upstream to downstream.

Furthermore, this article calculates the dynamic conditional correlation coefficients between various levels of the industry chain and explores the factors that influence changes in correlation. The study finds that oil price fluctuations have a significant positive impact on the correlation between all levels, while the manufacturing PMI has a significant negative impact on correlation. In contrast, the growth rate of new energy vehicle sales only affects the correlation between the midstream and downstream, while fluctuations in lithium ore prices do not have a significant impact on the correlation within the industry chain.

Based on the empirical results, the article also speculates on the mechanisms of mutual correlation among stock prices at various levels of the new energy industry chain and provides reasonable suggestions for company managers, investors, and policy makers to ensure the stable and healthy development of China's new energy vehicle industry.

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] Funk K, Rabl A. Electric versus conventional vehicles: social costs and benefits in France[J]. Transportation Research Part D: Transport and Environment, 1999, 4(6): 397-411.
[2] Suurs R A A, Hekkert M P, Smits R E H M. Understanding the build-up of a technological innovation system around hydrogen and fuel cell technologies[J]. International Journal of Hydrogen Energy, 2009, 34(24): 9639-9654.
[3] Becker T A, Sidhu I, Tenderich B. Electric vehicles in the United States: a new model with forecasts to 2030[J]. Center for Entrepreneurship and Technology, University of California, Berkeley, 2009, 24: 1-32.
[4] Yuan X, Liu X, Zuo J. The development of new energy vehicles for a sustainable future: A review[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 298-305.
[5] 陈清泉,高金燕,何璇等.新能源汽车发展意义及技术路线研究[J].中国工程科学,2018,20(01):68-73.
[6] 马建,刘晓东,陈轶嵩等.中国新能源汽车产业与技术发展现状及对策[J].中国公路学报,2018,31(08):1-19.
[7] 王震坡,黎小慧,孙逢春.产业融合背景下的新能源汽车技术发展趋势[J].北京理工大学学报,2020,40(01):1-10.DOI:10.15918/j.tbit1001-0645.2019.309.
[8] Wang L, Fu Z L, Guo W, et al. What influences sales market of new energy vehicles in China? Empirical study based on survey of consumers’ purchase reasons[J]. Energy policy, 2020, 142: 111484.
[9] 王海,尹俊雅.地方产业政策与行业创新发展——来自新能源汽车产业政策文本的经验证据[J].财经研究,2021,47(05):64-78.DOI:10.16538/j.cnki.jfe.20210217.301.
[10] 行伟波,张康.新能源汽车产业发展的税收支持政策:国际经验与发展前瞻[J].财政科学,2023,(04):140-153.DOI:10.19477/j.cnki.10-1368/f.2023.04.010.
[11] 王明赫.我国新能源汽车产业政策研究[D].吉林大学,2023.DOI:10.27162/d.cnki.gjlin.2023.006977.
[12] Hirschman A O, Sirkin G. Investment criteria and capital intensity once again[J]. The Quarterly Journal of Economics, 1958, 72(3): 469-471.
[13] Porter M E. Technology and competitive advantage[J]. Journal of business strategy, 1985, 5(3): 60-78.
[14] Stevens G C. Integrating the supply chain[J]. international Journal of physical distribution & Materials Management, 1989, 19(8): 3-8.
[15] Haddad M, Harrison A. Are there dynamic externalities from direct foreign investment? Evidence for Morocco[J]. Market Structure and Industrial Performance, 1994, 15: 273.
[16] Krugman P. How the economy organizes itself in space: a survey of the new economic geography[M]//The economy as an evolving complex system II. CRC Press, 2018: 239-262.
[17] Gao H B, Coltd B F . Analysis on the Industrial Chain Financial Services of Financial Companies[J]. Management & Technology of SME, 2017.
[18] Rameezdeen R, Ramachandra T. Construction linkages in a developing economy: the case of Sri Lanka[J]. Construction Management and Economics, 2008, 26(5): 499-506.
[19] Tong B, Wu C, Zhou C. Modeling the co-movements between crude oil and refined petroleum markets[J]. Energy Economics, 2013, 40: 882-897.
[20] 霍国庆,姜威.我国新能源汽车产业链与其纵向整合的特点研究[J].现代管理科学,2016,(09):12-14.
[21] Li Q, Cheng K, Yang X. Response pattern of stock returns to international oil price shocks: From the perspective of China’s oil industrial chain[J]. Applied Energy, 2017, 185: 1821-1831.
[22] 朱新球,赵慧达.基于冷链食品供应链风险传染效应的实证研究[J].哈尔滨商业大学学报(社会科学版),2018,(04):59-70.
[23] 黄贝亚.手机产业链构建及上市企业的股价指数分析与预测[D].上海财经大学,2020.DOI:10.27296/d.cnki.gshcu.2020.002362.
[24] Jia Y, Ding C, Dong Z. Transmission mechanism of stock price fluctuation in the rare earth industry chain[J]. Sustainability, 2021, 13(22): 12913.
[25] 刘俊杰,胡永宏.仿制药一致性评价政策对药品供应链上下游股价相依性的影响研究[J].系统工程理论与实践,2022,42(02):423-436.
[26] Sadorsky P. Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies[J]. Energy economics, 2012, 34(1): 248-255.
[27] Managi S, Okimoto T. Does the price of oil interact with clean energy prices in the stock market?[J]. Japan and the world economy, 2013, 27: 1-9.
[28] BenSaïda A. Good and bad volatility spillovers: An asymmetric connectedness[J]. Journal of Financial Markets, 2019, 43: 78-95.
[29] Xiao J, Ni Z. A Research on Volatility Spillover Effect between Real Estate Industry Index and other Related Industries Based on MGARCH-BEKK/DCC Model[C]//Journal of Physics: Conference Series. IOP Publishing, 2020, 1549(4): 042050.
[30] 刘静一,李彤,简志宏.中国股票市场行业间波动溢出非对称效应研究——基于“好的波动”和“坏的波动”分析[J].运筹与管理,2020,29(09):196-203.
[31] 江红莉,何建敏.房地产业与金融业的波动溢出效应研究[J].现代管理科学,2014,(08):33-35.
[32] Kumar S, Managi S, Matsuda A. Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis[J]. Energy Economics, 2012, 34(1): 215-226.
[33] 秦天程.传统能源及碳交易价格与新能源股价——基于VAR和CAPM-GARCH模型的分析[J].技术经济与管理研究,2014,(12):120-124.
[34] Ahmad W. On the dynamic dependence and investment performance of crude oil and clean energy stocks[J]. Research in International Business and Finance, 2017, 42: 376-389.
[35] 郭扬宗.产业政策对公司股价波动的影响研究[D].福州大学,2020.DOI:10.27022/d.cnki.gfzhu.2020.000512.
[36] 王甜.我国新能源汽车产业链股票价格波动传导时序网络研究[D].河北地质大学,2021.DOI:10.27752/d.cnki.gsjzj.2021.000004.
[37] 许伟,周园媛.基于VAR和GARCH模型的新能源股价研究[J].中国经贸导刊(中),2021,(01):98-100.
[38] 吴翔宇.新冠疫情时期原油价格波动对我国A股新能源企业股价的溢出效应评估[D].南华大学,2021.DOI:10.27234/d.cnki.gnhuu.2021.000997.
[39] 卜佳慧.新能源股股价波动性研究[J].吉林金融研究,2022,(09):40-43.
[40] 梁子懿.基于复杂网络的新能源产业链上市公司股价波动研究[D].河北地质大学,2022.DOI:10.27752/d.cnki.gsjzj.2022.000459.
[41] 杨舒.基于分位数回归的新能源股价影响因素研究[J].商展经济,2023,(03):116-119.DOI:10.19995/j.cnki.CN10-1617/F7.2023.03.116.
[42] Porter·M E, Competitive strategy, Journal of Marketing, 1980, 1(2):2001.
[43] Porter Michael E. Competitive advantage: creating and sustaining superior performance[J]. New York, 1985.
[44] Rostow W W. The stages of economic growth[J]. The economic history review, 1959, 12(1): 1-16.
[45] Engle R F, Granger C W J. Co-integration and error correction: representation, estimation, and testing[J]. Econometrica: journal of the Econometric Society, 1987: 251-276.
[46] Johansen S. Statistical analysis of cointegration vectors[J]. Journal of economic dynamics and control, 1988, 12(2-3): 231-254.
[47] Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J]. Econometrica: Journal of the econometric society, 1982: 987-1007.
[48] Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of econometrics, 1986, 31(3): 307-327.
[49] Bollerslev T, Engle R F, Wooldridge J M. A capital asset pricing model with time-varying covariances[J]. Journal of political Economy, 1988, 96(1): 116-131.
[50] Engle R F, Kroner K F. Multivariate simultaneous generalized ARCH[J]. Econometric theory, 1995, 11(1): 122-150.
[51] Liu Y, Li H, Guan J, et al. Influence of different factors on prices of upstream, middle and downstream products in China's whole steel industry chain: Based on Adaptive Neural Fuzzy Inference System[J]. Resources Policy, 2019, 60: 134-142.
[52] Ramos S B, Veiga H, Wang C W. Risk factors in the oil industry: An upstream and downstream analysis[M]//The Interrelationship Between Financial and Energy Markets. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014: 3-32.
[53] Chen H .The impact of environmental protection standards on the automobile capital market——An Event Study Based on China VI Emission Standards[C]//Wuhan Zhicheng Times Cultural Development Co., Ltd..Proceedings of 6th International Conference on Economics and Management, Education, Humanities and Social Sciences (EMEHSS 2022).Xi'an Jiaotong University;,2022:12.DOI:10.26914/c.cnkihy.2022.075364.
[54] 谭艺浩. 原油期货和中美新能源车上市公司股价的溢出效应研究[D].北京交通大学,2023.DOI:10.26944/d.cnki.gbfju.2023.001003.
[55] Graham M, Nikkinen J, Sahlström P. Relative importance of scheduled macroeconomic news for stock market investors[J]. Journal of Economics and Finance, 2003, 27: 153-165.
[56] 张媛.宏观经济先行指标对我国股票市场影响的实证分析[D].兰州大学,2014.
[57] 刘凯,翟亚男. 新能源车主:再买车不考虑燃油车[N]. 华夏时报,2022-08-29(014).DOI:10.28391/n.cnki.nhxsb.2022.000622.
[58] 匡益成,屈博.PMI公布事件对股票市场短期收益的影响研究[J].中国物价,2020(10):66-69.

所在学位评定分委会
金融
国内图书分类号
F832
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778833
专题商学院_金融系
推荐引用方式
GB/T 7714
陈杰. 基于指数构建的新能源汽车产业上中下游行业关联性及其影响因素研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232960-陈杰-金融系.pdf(1936KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈杰]的文章
百度学术
百度学术中相似的文章
[陈杰]的文章
必应学术
必应学术中相似的文章
[陈杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。