[1] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconductingprocessor[J]. Nature, 2019, 574(7779): 505-510.
[2] PRESKILL J. Quantum computing and the entanglement frontier[J]. arXiv preprintarXiv:1203.5813, 2012.
[3] BLOCH F. Nuclear induction[J]. Physical Review, 1946, 70(7-8): 460.
[4] O’BRIEN J L. Optical quantum computing[J]. Science, 2007, 318(5856): 1567-1570.
[5] BENHELM J, KIRCHMAIR G, ROOS C F, et al. Towards fault-tolerant quantum computingwith trapped ions[J]. Nature Physics, 2008, 4(6): 463-466.
[6] HANSON R, AWSCHALOM D D. Coherent manipulation of single spins in semiconductors[J]. Nature, 2008, 453(7198): 1043-1049.
[7] DUTT M G, CHILDRESS L, JIANG L, et al. Quantum register based on individual electronicand nuclear spin qubits in diamond[J]. Science, 2007, 316(5829): 1312-1316.
[8] DEVORET M H, SCHOELKOPF R J. Superconducting circuits for quantum information: anoutlook[J]. Science, 2013, 339(6124): 1169-1174.
[9] KRANTZ P, KJAERGAARD M, YAN F, et al. A quantum engineer’s guide to superconductingqubits[J]. Applied Physics Reviews, 2019, 6(2).
[10] JOSEPHSON B D. Possible new effects in superconductive tunnelling[J]. Physics Letters,1962, 1(7): 251-253.
[11] KOCH J, TERRI M Y, GAMBETTA J, et al. Charge-insensitive qubit design derived fromthe Cooper pair box[J]. Physical Review Applied, 2007, 76(4): 042319.
[12] BARENDS R, KELLY J, MEGRANT A, et al. Superconducting quantum circuits at the surfacecode threshold for fault tolerance[J]. Nature, 2014, 508(7497): 500-503.
[13] SONG C, XU K, LIU W, et al. 10-qubit entanglement and parallel logic operations with asuperconducting circuit[J]. Physical Review Letters, 2017, 119(18): 180511.
[14] GONG M, CHEN M C, ZHENG Y, et al. Genuine 12-qubit entanglement on a superconductingquantum processor[J]. Physical Review Letters, 2019, 122(11): 110501.
[15] YE Y, GE Z Y, WU Y, et al. Propagation and localization of collective excitations on a 24-qubit superconducting processor[J]. Physical Review Letters, 2019, 123(5): 050502.
[16] WU Y, BAO W S, CAO S, et al. Strong quantum computational advantage using a superconductingquantum processor[J]. Physical Review Letters, 2021, 127(18): 180501.
[17] GAMBETTA J. IBM’s roadmap for scaling quantum technology[J]. IBM Research Blog(September 2020), 2020.
[18] XU S, SUN Z Z, WANG K, et al. Digital simulation of projective non-Abelian anyons with68 superconducting qubits[J]. Chinese Physics Letters, 2023.
[19] JIN Y X, XU H Z, WANG Z A, et al. Quafu-RL: The cloud quantum computers based quantumreinforcement learning[J]. Chinese Physics B, 2024.
[20] PLACE A P, RODGERS L V, MUNDADA P, et al. New material platform for superconductingtransmon qubits with coherence times exceeding 0.3 milliseconds[J]. Nature Communications,2021, 12(1): 1-6.
[21] BARENDS R, KELLY J, MEGRANT A, et al. Coherent Josephson qubit suitable for scalablequantum integrated circuits[J]. Physical Review Letters, 2013, 111(8): 080502.
[22] Sonnet Software Inc. Sonnet Suites: High-Frequency Electromagnetic Simulation Software[Z]. Available at https://www.sonnetsoftware.com/. 2023.
[23] SCHUCK C, GUO X, FAN L, et al. Quantum interference in heterogeneous superconductingphotoniccircuits on a silicon chip[J]. Nature Communications, 2016, 7(1): 10352.
[24] LUO W, CAO L, SHI Y, et al. Recent progress in quantum photonic chips for quantum communicationand internet[J]. Light: Science & Applications, 2023, 12(1): 175.
[25] METCALF B. Silica-on-silicon waveguide circuits and superconducting detectors for integratedquantum information processing[D]. Oxford University, UK, 2014.
[26] SHAH A, PEEK S E, YELAMANCHILI B, et al. Superconducting molybdenum multi-chipmodule approach for cryogenic and quantum applications[C]//2022 IEEE 72nd ElectronicComponents and Technology Conference (ECTC). 2022: 276-282.
[27] PARK S H, BAEK D, PARK I, et al. Design of scalable superconducting quantum circuitsusing flip-chip assembly[J]. IEEE Transactions on Applied Superconductivity, 2023, 33(5):1-6.
[28] KOSEN S, LI H X, ROMMEL M, et al. Building blocks of a flip-chip integrated superconductingquantum processor[J]. Quantum Science and Technology, 2022, 7(3): 035018.
[29] XU X B, WANG W T, SUN L Y, et al. Hybrid superconducting photonic-phononic chip forquantum information processing[J]. Chip, 2022, 1(3): 100016.
[30] MARTINI F, GAGGERO A, MATTIOLI F, et al. Single photon detection with superconductingnanowires on crystalline silicon carbide[J]. Optics Express, 2019, 27(21): 29669-29675.
[31] SI M, ZHOU L, PENG W, et al. Superconducting nanowire single photon detector on 4H-SiCsubstrates with saturated quantum efficiency[J]. Applied Physics Letters, 2023, 123(13).
[32] WANG C, LI X, XU H, et al. Transmon qubit with relaxation time exceeding 0.5 milliseconds[J]. arXiv preprint arXiv:2105.09890, 2021.
[33] BIZNÁROVÁ J, OSMAN A, REHNMAN E, et al. Mitigation of interfacial dielectric loss inaluminum-on-silicon superconducting qubits[J]. arXiv preprint arXiv:2310.06797, 2023.
[34] DOLAN G. Offset masks for lift-off photoprocessing[J]. Applied Physics Letters, 1977, 31(5):337-339.
[35] POTTS A, PARKER G, BAUMBERG J, et al. CMOS compatible fabrication methods forsubmicron Josephson junction qubits[J]. IEE Proceedings-Science, Measurement and Technology,2001, 148(5): 225-228.
[36] GURVITCH M, WASHINGTON M, HUGGINS H. High quality refractory Josephson tunneljunctions utilizing thin aluminum layers[J]. Applied Physics Letters, 1983, 42(5): 472-474.
[37] MOROHASHI S, SHINOKI F, SHOJI A, et al. High quality Nb/Al-AlOx/Nb Josephson junction[J]. Applied Physics Letters, 1985, 46(12): 1179-1181.
[38] MOROHASHI S, HASUO S. Experimental investigations and analysis for high-qualityNb/Al-AlO x/Nb Josephson junctions[J]. Journal of Applied Physics, 1987, 61(10): 4835-4849.
[39] MARTINIS J M, COOPER K B, MCDERMOTT R, et al. Decoherence in Josephson qubitsfrom dielectric loss[J]. Physical Review Letters, 2005, 95(21): 210503.
[40] POTTS A, ROUTLEY P, PARKER G J, et al. Novel fabrication methods for submicrometerJosephson junction qubits[J]. Journal of Materials Science: Materials in Electronics, 2001, 12:289-293.
[41] KELLY J S. Fault-tolerant superconducting qubits[M]. University of California, Santa Barbara,2015.
[42] QUINTANA C, MEGRANT A, CHEN Z, et al. Characterization and reduction ofmicrofabrication-induced decoherence in superconducting quantum circuits[J]. AppliedPhysics Letters, 2014, 105(6).
[43] PONCHAK G E, PAPAPOLYMEROU J, TENTZERIS M M. Excitation of coupled slotlinemode in finite-ground CPW with unequal ground-plane widths[J]. IEEE Transactions on MicrowaveTheory and Techniques, 2005, 53(2): 713-717.
[44] DUNSWORTH A, MEGRANT A, BARENDS R, et al. Low loss multi-layer wiring for superconductingmicrowave devices[J]. arXiv preprint arXiv:1712.01671, 2017.
[45] WU T, ZHOU Y, XU Y, et al. Landau–Zener–Stückelberg interference in nonlinear regime[J]. Chinese Physics Letters, 2019, 36(12): 124204.
[46] NIU J, LIU B J, ZHOU Y, et al. Customizable quantum control via stimulated Raman userdefinedpassage[J]. Physical Review Applied, 2022, 17(3): 034056.
[47] TAO Z, ZHANG L, LI X, et al. Experimental realization of phase-controlled dynamics withhybrid digital–analog approach[J]. npj Quantum Information, 2021, 7(1): 73.
[48] SHORE B W, KNIGHT P L. The jaynes-cummings model[J]. Journal of Modern Optics, 1993,40(7): 1195-1238.
[49] NEELEY M, BIALCZAK R C, LENANDER M, et al. Generation of three-qubit entangledstates using superconducting phase qubits[J]. Nature, 2010, 467(7315): 570-573.
[50] HOFHEINZ M, WANG H, ANSMANN M, et al. Synthesizing arbitrary quantum states in asuperconducting resonator[J]. Nature, 2009, 459(7246): 546-549.
[51] SMOLIN J A, GAMBETTA J M, SMITH G. Efficient method for computing the maximumlikelihoodquantum state from measurements with additive gaussian noise[J]. Physical ReviewLetters, 2012, 108(7): 070502.
[52] KREIKEBAUM J, O’BRIEN K, MORVAN A, et al. Improving wafer-scale Josephson junctionresistance variation in superconducting quantum coherent circuits[J]. Superconductor Scienceand Technology, 2020, 33(6): 06LT02.
[53] PRESKILL J. Quantum computing in the NISQ era and beyond[J]. Quantum, 2018, 2: 79.
[54] BERNIEN H, SCHWARTZ S, KEESLING A, et al. Probing many-body dynamics on a 51-atom quantum simulator[J]. Nature, 2017, 551(7682): 579-584.
[55] VITEAU M, BASON M, RADOGOSTOWICZ J, et al. Rydberg excitations in Bose-Einsteincondensates in quasi-one-dimensional potentials and optical lattices[J]. Physical Review Letters,2011, 107(6): 060402.
[56] ZHANG J, PAGANO G, HESS P W, et al. Observation of a many-body dynamical phasetransition with a 53-qubit quantum simulator[J]. Nature, 2017, 551(7682): 601-604.
[57] BRITTON J W, SAWYER B C, KEITH A C, et al. Engineered two-dimensional Ising interactionsin a trapped-ion quantum simulator with hundreds of spins[J]. Nature, 2012, 484(7395):489-492.
[58] ZAJAC D, HAZARD T, MI X, et al. Scalable gate architecture for a one-dimensional arrayof semiconductor spin qubits[J]. Physical Review Applied, 2016, 6(5): 054013.
[59] MUKHOPADHYAY U, DEHOLLAIN J P, REICHL C, et al. A 2× 2 quantum dot array withcontrollable inter-dot tunnel couplings[J]. Applied Physics Letters, 2018, 112(18).
[60] HOFFMAN A J, SRINIVASAN S J, GAMBETTA J M, et al. Coherent control of a superconductingqubit with dynamically tunable qubit-cavity coupling[J]. Physical Review B, 2011,84(18): 184515.
[61] CHEN Y, NEILL C, ROUSHAN P, et al. Qubit architecture with high coherence and fasttunable coupling[J]. Physical Review Letters, 2014, 113(22): 220502.
[62] BAUST A, HOFFMANN E, HAEBERLEIN M, et al. Tunable and switchable coupling betweentwo superconducting resonators[J]. Physical Review B, 2015, 91(1): 014515.
[63] WEBER S J, SAMACH G O, HOVER D, et al. Coherent coupled qubits for quantum annealing[J]. Physical Review Applied, 2017, 8(1): 014004.
[64] XU Y, CHU J, YUAN J, et al. High-fidelity, high-scalability two-qubit gate scheme for superconductingqubits[J]. Physical Review Letters, 2020, 125(24): 240503.
[65] YAN F, KRANTZ P, SUNG Y, et al. Tunable coupling scheme for implementing high-fidelitytwo-qubit gates[J]. Physical Review Applied, 2018, 10(5): 054062.
[66] MCKAY D C, WOOD C J, SHELDON S, et al. Efficient Z gates for quantum computing[J].Physical Review Applied, 2017, 96(2): 022330.
[67] KELLY J, BARENDS R, CAMPBELL B, et al. Optimal quantum control using randomizedbenchmarking[J]. Physical Review Letters, 2014, 112(24): 240504.
[68] KNILL E, LEIBFRIED D, REICHLE R, et al. Randomized benchmarking of quantum gates[J]. Physical Review Applied, 2008, 77(1): 012307.
[69] MAGESAN E, GAMBETTA J M, EMERSON J. Scalable and robust randomized benchmarkingof quantum processes[J]. Physical Review Letters, 2011, 106(18): 180504.
[70] MAGESAN E, GAMBETTA J M, JOHNSON B R, et al. Efficient measurement of quantumgate error by interleaved randomized benchmarking[J]. Physical Review Letters, 2012, 109(8):080505.
[71] EPSTEIN J M, CROSS A W, MAGESAN E, et al. Investigating the limits of randomizedbenchmarking protocols[J]. Physical Review Applied, 2014, 89(6): 062321.
[72] RAMSEY N F. A molecular beam resonance method with separated oscillating fields[J]. PhysicalReview, 1950, 78(6): 695.
[73] HAHN E L. Spin echoes[J]. Physical Review, 1950, 80(4): 580.
[74] CARR H Y, PURCELL E M. Effects of diffusion on free precession in nuclear magneticresonance experiments[J]. Physical Review, 1954, 94(3): 630.
[75] MEIBOOM S, GILL D. Modified spin-echo method for measuring nuclear relaxation times[J]. Review of Scientific Instruments, 1958, 29(8): 688-691.
[76] GULLION T, BAKER D B, CONRADI M S. New, compensated carr-purcell sequences[J].Journal of Magnetic Resonance, 1990, 89(3): 479-484.
[77] BORNEMAN T W, HÜRLIMANN M D, CORY D G. Application of optimal control toCPMG refocusing pulse design[J]. Journal of Magnetic Resonance, 2010, 207(2): 220-233.
[78] TYRYSHKIN A, WANG Z H, ZHANG W, et al. Dynamical decoupling in the presence ofrealistic pulse errors[J]. arXiv preprint arXiv:1011.1903, 2010.
[79] PARNELL C, DE MOORTEL I. Philosophical transactions of the royal society A: mathematical[J]. Physical and Engineering Sciences, 2012, 370: 3217.
[80] KHODJASTEH K, VIOLA L. Dynamically error-corrected gates for universal quantum computation[J]. Physical Review Letters, 2009, 102(8): 080501.
[81] HU C, YUAN J, VELOSO B A, et al. Conditional coherent control with superconductingartificial atoms[J]. arXiv preprint arXiv:2203.09791, 2022.
[82] CHU J, HE X, ZHOU Y, et al. Scalable algorithm simplification using quantum AND logic[J]. Nature Physics, 2023, 19(1): 126-131.
[83] LUO K, HUANG W, TAO Z, et al. Experimental realization of two qutrits gate with tunablecoupling in superconducting circuits[J]. Physical Review Letters, 2023, 130(3): 030603.
[84] HU C, QIU J, SOUZA P J, et al. Optimal charging of a superconducting quantum battery[J].Quantum Science and Technology, 2022, 7(4): 045018.
[85] HAN Z, LYU C, ZHOU Y, et al. Multilevel variational spectroscopy using a programmablequantum simulator[J]. Physical Review Research, 2024, 6(1): 013015.
[86] SATZINGER K, CONNER C, BIENFAIT A, et al. Simple non-galvanic flip-chip integrationmethod for hybrid quantum systems[J]. Applied Physics Letters, 2019, 114(17).
[87] FOXEN B, MUTUS J, LUCERO E, et al. Qubit compatible superconducting interconnects[J].Quantum Science and Technology, 2017, 3(1): 014005.
[88] SETE E A, CHEN A Q, MANENTI R, et al. Floating tunable coupler for scalable quantumcomputing architectures[J]. Physical Review Applied, 2021, 15(6): 064063.
[89] SATZINGER K, CONNER C, BIENFAIT A, et al. Simple non-galvanic flip-chip integrationmethod for hybrid quantum systems[J]. Applied Physics Letters, 2019, 114(17): 173501.
[90] ROSENBERG D, KIM D, DAS R, et al. 3D integrated superconducting qubits[J]. npj QuantumInformation, 2017, 3(1): 1-5.
[91] GLAZMAN L, CATELANI G. Bogoliubov quasiparticles in superconducting qubits[J]. Sci-Post Physics Lecture Notes, 2021: 031.
[92] CATELANI G, PEKOLA J P. Using materials for quasiparticle engineering[J]. Materials forQuantum Technology, 2022, 2(1): 013001.
[93] CARDANI L, VALENTI F, CASALI N, et al. Reducing the impact of radioactivity on quantumcircuits in a deep-underground facility[J]. Nature Communications, 2021, 12(1): 2733.
[94] WILEN C D, ABDULLAH S, KURINSKY N, et al. Correlated charge noise and relaxationerrors in superconducting qubits[J]. Nature, 2021, 594(7863): 369-373.
[95] MCEWEN M, FAORO L, ARYA K, et al. Resolving catastrophic error bursts from cosmicrays in large arrays of superconducting qubits[J]. Nature Physics, 2022, 18(1): 107-111.
[96] CATELANI G, KOCH J, FRUNZIO L, et al. Quasiparticle relaxation of superconductingqubits in the presence of flux[J]. Physical Review Letters, 2011, 106(7): 077002.
[97] LENANDER M, WANG H, BIALCZAK R C, et al. Measurement of energy decay in superconductingqubits from nonequilibrium quasiparticles[J]. Physical Review B, 2011, 84(2):024501.
[98] PAIK H, SCHUSTER D I, BISHOP L S, et al. Observation of high coherence in Josephsonjunction qubits measured in a three-dimensional circuit QED architecture[J]. Physical ReviewLetters, 2011, 107(24): 240501.
[99] POP I M, GEERLINGS K, CATELANI G, et al. Coherent suppression of electromagneticdissipation due to superconducting quasiparticles[J]. Nature, 2014, 508(7496): 369-372.
[100] HENRIQUES F, VALENTI F, CHARPENTIER T, et al. Phonon traps reduce the quasiparticledensity in superconducting circuits[J]. Applied Physics Letters, 2019, 115(21).
[101] BLAIS A, HUANG R S, WALLRAFF A, et al. Cavity quantum electrodynamics for superconductingelectrical circuits: An architecture for quantum computation[J]. Physical ReviewA, 2004, 69(6): 062320.
[102] NAKAMURA Y, PASHKIN Y A, TSAI J. Coherent control of macroscopic quantum statesin a single-Cooper-pair box[J]. Nature, 1999, 398(6730): 786-788.
[103] DUTY T, GUNNARSSON D, BLADH K, et al. Coherent dynamics of a Josephson chargequbit[J]. Physical Review B, 2004, 69(14): 140503.
[104] ASTAFIEV O, PASHKIN Y A, YAMAMOTO T, et al. Single-shot measurement of theJosephson charge qubit[J]. Physical Review B, 2004, 69(18): 180507.
[105] SERNIAK K, DIAMOND S, HAYS M, et al. Direct dispersive monitoring of charge parity inoffset-charge-sensitive transmons[J]. Physical Review Applied, 2019, 12(1): 014052.
[106] KURTER C, MURRAY C E, GORDON R, et al. Quasiparticle tunneling as a probe of Josephsonjunction barrier and capacitor material in superconducting qubits[J]. npj Quantum Information,2022, 8(1): 31.
[107] GORDON R, MURRAY C E, KURTER C, et al. Environmental radiation impact on lifetimesand quasiparticle tunneling rates of fixed-frequency transmon qubits[J]. Applied Physics Letters,2022, 120(7).
[108] CATELANI G. Parity switching and decoherence by quasiparticles in single-junction transmons[J]. Physical Review B, 2014, 89(9): 094522.
[109] GAMBINO J P, ADDERLY S A, KNICKERBOCKER J U. An overview of through-siliconviatechnology and manufacturing challenges[J]. Microelectronic Engineering, 2015, 135: 73-106.
[110] IYER S S, KIRIHATA T. Three-dimensional integration: A tutorial for designers[J]. IEEESolid-State Circuits Magazine, 2015, 7(4): 63-74.
[111] PATEL U, PECHENEZHSKIY I V, PLOURDE B, et al. Phonon-mediated quasiparticlepoisoning of superconducting microwave resonators[J]. Physical Review B, 2017, 96(22):220501.
[112] YOST D R W, SCHWARTZ M E, MALLEK J, et al. Solid-state qubits integrated with superconductingthrough-silicon vias[J]. npj Quantum Information, 2020, 6(1): 1-7.
[113] ZHONG Y, CHANG H S, SATZINGER K, et al. Violating Bell’s inequality with remotelyconnected superconducting qubits[J]. Nature Physics, 2019, 15(8): 741-744.
[114] KURPIERS P, MAGNARD P, WALTER T, et al. Deterministic quantum state transfer andremote entanglement using microwave photons[J]. Nature, 2018, 558(7709): 264-267.
[115] NIU J, ZHANG L, LIU Y, et al. Low-loss interconnects for modular superconducting quantumprocessors[J]. Nature Electronics, 2023, 6(3): 235-241.
[116] QIU J, LIU Y, NIU J, et al. Deterministic quantum teleportation between distant superconductingchips[J]. arXiv preprint arXiv:2302.08756, 2023.
修改评论