[1] 张彦雯, 胡凯, 王鹏盛. 三维重建算法研究综述.[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition)/Nanjing Xinxi Gongcheng Daxue Xuebao (ziran kexue ban), 2020, 12(5).
[2] 胡芳侨, 黄永, 李惠. 建筑三维重建方法综述[J]. 智能建筑与智慧城市, 2020(5): 10-14.
[3] ZHOU Y, GALLEGO G, REBECQ H, et al. Semi-dense 3D reconstruction with a stereo event camera[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 235- 251.
[4] SCHÖNBERGER J L, ZHENG E, FRAHM J M, et al. Pixelwise view selection for unstructured multi-view stereo[C]//Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part III 14. Springer, 2016: 501-518.
[5] FRAHM J M, FITE-GEORGEL P, GALLUP D, et al. Building rome on a cloudless day[C]// Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV 11. Springer, 2010: 368-381.
[6] SCHONBERGER J L, FRAHM J M. Structure-from-motion revisited[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 4104-4113.
[7] WANG Z, WU S, XIE W, et al. NeRF–: Neural radiance fields without known camera parameters[A]. 2021.
[8] 郑太雄, 黄帅, 李永福, 等. 基于视觉的三维重建关键技术研究综述[J]. 自动化学报, 2020, 46(4): 631-652.
[9] LINDNER M, KOLB A, HARTMANN K. Data-fusion of PMD-based distance-information and high-resolution RGB-images[C]//2007 International Symposium on Signals, Circuits and Systems: volume 1. IEEE, 2007: 1-4.
[10] KELLER M, LEFLOCH D, LAMBERS M, et al. Real-time 3d reconstruction in dynamic scenes using point-based fusion[C]//2013 International Conference on 3D Vision-3DV 2013. IEEE, 2013: 1-8.
[11] HAN J, SHAO L, XU D, et al. Enhanced computer vision with microsoft kinect sensor: A review[J]. IEEE transactions on cybernetics, 2013, 43(5): 1318-1334.
[12] WANG R, PEETHAMBARAN J, CHEN D. Lidar point clouds to 3-D urban models :: A review [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(2): 606-627.
[13] WANG R. 3D building modeling using images and LiDAR: A review[J]. International Journal of Image and Data Fusion, 2013, 4(4): 273-292.
[14] 王国珲, 钱克矛, 等. 线阵相机标定方法综述[J]. Acta Optica Sinica, 2020, 40(1): 0111011.
[15] BOUGUET J Y. Camera calibration toolbox for matlab[J]. http://www. vision. caltech. edu/bouguetj/calib_doc/, 2004.
[16] ZHANG Q, PLESS R. Extrinsic calibration of a camera and laser range finder (improves camera calibration)[C]//2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566): volume 3. IEEE, 2004: 2301-2306.
[17] SCARAMUZZA D, HARATI A, SIEGWART R. Extrinsic self calibration of a camera and a 3d laser range finder from natural scenes[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2007: 4164-4169.
[18] SCARAMUZZA D, IKEUCHI K. Omnidirectional camera[M]. Springer US, 2014.
[19] UNNIKRISHNAN R, HEBERT M. Fast extrinsic calibration of a laser rangefinder to a camera [J]. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-05-09, 2005.
[20] YUAN C, LIU X, HONG X, et al. Pixel-level extrinsic self calibration of high resolution lidar and camera in targetless environments[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7517-7524.
[21] ZHANG X, ZHU S, GUO S, et al. Line-based automatic extrinsic calibration of lidar and camera [C]//2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021: 9347-9353.
[22] ZHU Y, LI C, ZHANG Y. Online camera-lidar calibration with sensor semantic information [C]//2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 4970-4976.
[23] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the seventh IEEE international conference on computer vision: volume 2. Ieee, 1999: 1150-1157.
[24] BAY H, TUYTELAARS T, VAN GOOL L. Surf: Speeded up robust features[C]//Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I 9. Springer, 2006: 404-417.
[25] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF [C]//2011 International conference on computer vision. Ieee, 2011: 2564-2571.
[26] SERAFIN J, GRISETTI G. Using augmented measurements to improve the convergence of ICP[C]//Simulation, Modeling, and Programming for Autonomous Robots: 4th International Conference, SIMPAR 2014, Bergamo, Italy, October 20-23, 2014. Proceedings 4. Springer, 2014: 566-577.
[27] LEFLOCH D, KLUGE M, SARBOLANDI H, et al. Comprehensive use of curvature for robust and accurate online surface reconstruction[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12): 2349-2365.
[28] SARLIN P E, DETONE D, MALISIEWICZ T, et al. Superglue: Learning feature matching with graph neural networks[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 4938-4947.
[29] BESL P J, MCKAY N D. Method for registration of 3-D shapes[C]//Sensor fusion IV: control paradigms and data structures: volume 1611. Spie, 1992: 586-606.
[30] CHEN Y, MEDIONI G. Object modelling by registration of multiple range images[J]. Image and vision computing, 1992, 10(3): 145-155.
[31] RUSINKIEWICZ S, LEVOY M. Efficient variants of the ICP algorithm[C]//Proceedings third international conference on 3-D digital imaging and modeling. IEEE, 2001: 145-152.
[32] RUSINKIEWICZ S, HALL-HOLT O, LEVOY M. Real-time 3D model acquisition[J]. ACM Transactions on Graphics (TOG), 2002, 21(3): 438-446.
[33] IZADI S, KIM D, HILLIGES O, et al. Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera[C]//Proceedings of the 24th annual ACM symposium on User interface software and technology. 2011: 559-568.
[34] WHELAN T, KAESS M, FALLON M, et al. Kintinuous: Spatially extended kinectfusion[Z]. 2012.
[35] CHEN J, BAUTEMBACH D, IZADI S. Scalable real-time volumetric surface reconstruction [J]. ACM Transactions on Graphics (ToG), 2013, 32(4): 1-16.
[36] ZHOU Q Y, KOLTUN V. Dense scene reconstruction with points of interest[J]. ACM Transactions on Graphics (ToG), 2013, 32(4): 1-8.
[37] ZHOU Q Y, MILLER S, KOLTUN V. Elastic fragments for dense scene reconstruction[C]// Proceedings of the IEEE International Conference on Computer Vision. 2013: 473-480.
[38] DAI A, NIESSNER M, ZOLLHÖFER M, et al. Bundlefusion: Real-time globally consistent 3d reconstruction using on-the-fly surface reintegration[J]. ACM Transactions on Graphics (ToG), 2017, 36(4): 1.
[39] WHELAN T, SALAS-MORENO R F, GLOCKER B, et al. ElasticFusion: Real-time dense SLAM and light source estimation[J]. The International Journal of Robotics Research, 2016, 35(14): 1697-1716.
[40] KAZHDAN M, BOLITHO M, HOPPE H. Poisson surface reconstruction[C]//Proceedings of the fourth Eurographics symposium on Geometry processing: volume 7. 2006: 0.
[41] KAZHDAN M, CHUANG M, RUSINKIEWICZ S, et al. Poisson surface reconstruction with envelope constraints[C]//Computer graphics forum: volume 39. Wiley Online Library, 2020: 173-182.
[42] CHENG S W, DEY T K, SHEWCHUK J, et al. Delaunay mesh generation[M]. CRC Press Boca Raton, 2013.
[43] CURLESS B, LEVOY M. A volumetric method for building complex models from range images[C]//Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. 1996: 303-312.
[44] FUHRMANN S, GOESELE M. Fusion of depth maps with multiple scales[J]. ACM Transactions on Graphics (TOG), 2011, 30(6): 1-8.
[45] ZENG M, ZHAO F, ZHENG J, et al. A memory-efficient kinectfusion using octree[C]// Computational Visual Media: First International Conference, CVM 2012, Beijing, China, November 8-10, 2012. Proceedings. Springer, 2012: 234-241.
[46] STEINBRÜCKER F, STURM J, CREMERS D. Volumetric 3D mapping in real-time on a CPU [C]//2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014: 2021-2028.
[47] NIESSNER M, ZOLLHÖFER M, IZADI S, et al. Real-time 3D reconstruction at scale using voxel hashing[J]. ACM Transactions on Graphics (ToG), 2013, 32(6): 1-11.
[48] KÄHLER O, PRISACARIU V A, REN C Y, et al. Very high frame rate volumetric integration of depth images on mobile devices[J]. IEEE transactions on visualization and computer graphics, 2015, 21(11): 1241-1250.
[49] PRISACARIU V A, KÄHLER O, GOLODETZ S, et al. Infinitam v3: A framework for large scale 3d reconstruction with loop closure[A]. 2017.
[50] HE Y, KHANNA N, BOUSHEY C J, et al. Specular highlight removal for image-based di etary assessment[C]//2012 IEEE International Conference on Multimedia and Expo Workshops. IEEE, 2012: 424-428.
[51] YANG Q, WANG S, AHUJA N. Real-time specular highlight removal using bilateral filtering [C]//Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Herak lion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV 11. Springer, 2010: 87-100.
[52] SHEN H L, ZHENG Z H. Real-time highlight removal using intensity ratio[J]. Applied optics, 2013, 52(19): 4483-4493.
[53] FU G, ZHANG Q, SONG C, et al. Specular Highlight Removal for Real-world Images[C]// Computer graphics forum: volume 38. Wiley Online Library, 2019: 253-263.
[54] YANG J, LIU L, LI S. Separating specular and diffuse reflection components in the HSI color space[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. 2013: 891-898.
[55] YAMAMOTO T, NAKAZAWA A. General improvement method of specular component separation using high-emphasis filter and similarity function[J]. ITE Transactions on Media Technology and Applications, 2019, 7(2): 92-102.
[56] WEI X, XU X, ZHANG J, et al. Specular highlight reduction with known surface geometry[J]. Computer Vision and Image Understanding, 2018, 168: 132-144.
[57] GUO X, CAO X, MA Y. Robust separation of reflection from multiple images[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 2187-2194.
[58] JIN Y, LI R, YANG W, et al. Estimating reflectance layer from a single image: Integrating reflectance guidance and shadow/specular aware learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 37. 2023: 1069-1077.
[59] 郭圣逸, 李丽, 沈彬, 等. 基于多视角序列图像的高光去除 CycleGAN 网络.[J]. Journal of Zhengzhou University (Natural Science Edition), 2023, 55(5).
[60] LI W, GONG H, YANG R. Fast texture mapping adjustment via local/global optimization[J]. IEEE transactions on visualization and computer graphics, 2018, 25(6): 2296-2303.
[61] YE X, WANG L, LI D, et al. 3D reconstruction with multi-view texture mapping[C]//Neural Information Processing: 24th International Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings, Part III 24. Springer, 2017: 198-207.
[62] CHUANG M, LUO L, BROWN B J, et al. Estimating the Laplace-Beltrami operator by restricting 3d functions[C]//Computer graphics forum: volume 28. Wiley Online Library, 2009: 1475-1484.
[63] BERTALMIO M, SAPIRO G, CASELLES V, et al. Image inpainting[C]//Proceedings of the 27th annual conference on Computer graphics and interactive techniques. 2000: 417-424.
[64] DARABI S, SHECHTMAN E, BARNES C, et al. Image melding: Combining inconsistent images using patch-based synthesis[J]. ACM Transactions on graphics (TOG), 2012, 31(4): 1-10.
[65] HUANG J B, KANG S B, AHUJA N, et al. Image completion using planar structure guidance [J]. ACM Transactions on graphics (TOG), 2014, 33(4): 1-10.
[66] MERTENS T, KAUTZ J, VAN REETH F. Exposure Fusion[C/OL]//15th Pacific Conference on Computer Graphics and Applications (PG’07). 2007: 382-390. DOI: 10.1109/PG.2007.17.
[67] VINCENT O R, FOLORUNSO O, et al. A descriptive algorithm for sobel image edge detection [C]//Proceedings of informing science & IT education conference (InSITE): volume 40. 2009: 97-107.
[68] WANG X. Laplacian operator-based edge detectors[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(5): 886-890.
[69] DING L, GOSHTASBY A. On the Canny edge detector[J]. Pattern recognition, 2001, 34(3): 721-725.
[70] XIA M, YAO J, XIE R, et al. Color consistency correction based on remapping optimization for image stitching[C]//Proceedings of the IEEE international conference on computer vision workshops. 2017: 2977-2984.
[71] PANDEY G, MCBRIDE J, SAVARESE S, et al. Automatic targetless extrinsic calibration of a 3d lidar and camera by maximizing mutual information[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 26. 2012: 2053-2059.
[72] TERRELL G R, SCOTT D W. Variable kernel density estimation[J]. The Annals of Statistics, 1992: 1236-1265.
[73] SEGAL A, HAEHNEL D, THRUN S. Generalized-icp.[C]//Robotics: science and systems: volume 2. Seattle, WA, 2009: 435.
[74] XU W, ZHANG F. Fast-lio: A fast, robust lidar-inertial odometry package by tightly-coupled iterated kalman filter[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3317-3324.
[75] HORE A, ZIOU D. Image quality metrics: PSNR vs. SSIM[C]//2010 20th international conference on pattern recognition. IEEE, 2010: 2366-2369.
[76] ZHANG L, ZHANG L, MOU X, et al. FSIM: A feature similarity index for image quality assessment[J]. IEEE transactions on Image Processing, 2011, 20(8): 2378-2386.
修改评论