中文版 | English
题名

外侧臂旁核在触诱发痛时空控制中的作用及其机制

其他题名
LATERALITY AND DURATION CONTROL OF MECHANICAL ALLODYNIA BY THE LATERAL PARABRACHIAL NUCLEUS
姓名
姓名拼音
HUO Jiantao
学号
12131306
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
程龙珍
导师单位
神经生物学系
论文答辩日期
2024-05-09
论文提交日期
2024-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

机械触诱发痛(mechanical allodynia),简称触诱发痛,指的是由正常情况下非痛的轻触刺激所诱发的异常疼痛现象,它是炎症性和神经病理性疼痛的典型症状。触诱发痛分为两种类型,一种是静态(点状)触诱发痛,是由如von Frey纤维丝等对皮肤表面施加稳定的轻触压力引起;另外一种是动态触诱发痛,是由如画笔等轻轻地划过皮肤的表面引起的。触诱发痛对吗啡等阿片类镇痛药相对不敏感,属于顽固性和难治性的异常疼痛,严重影响患者的日常起居和生活质量。在少数患者中,局部炎症或神经损伤可能会引起长时程、全身性的机械痛觉敏化(触诱发痛),而对于大多数患者来说,疼痛局限于损伤侧且持续时间较短。然而,控制机械痛觉敏化持续时间和侧性的神经环路机制,特别是侧性控制,目前仍知之甚少。

本研究工作主要在各种基因工程的小鼠上,应用行为学测试和脊髓及脑片电生理记录,结合病毒、化学遗传学、脑立体定位、免疫组化和原位杂交等技术聚焦解析脑干外侧臂旁核(lateral parabrachial nucleuslPBN)不同类型神经元在外周炎症或神经损伤引起的机械痛觉敏化中的作用及其神经环路机制。

我们的研究发现,化学损毁外周炎症或神经损伤对侧(而非同侧)的lPBN后,1)足底注射辣椒素或福尔马林等伤害性物质引起的触诱发痛的时程显著延长(从几个小时到至少两周时间);2)外周神经损伤(SNI模型)引起的触诱发痛从单侧(unilateral)变成了双侧(bilateral);3)脊髓背角双侧的触诱发痛“门控”打开。以上研究结果提示,lPBN在外周炎症或神经损伤引起的机械痛觉敏化的持续时间和敏化范围的调控中起着至关重要的作用。该部分内容对应本论文第3章节。

本论文第456章节聚焦解析外侧臂旁核控制机械痛觉敏化时空特征的细胞及神经环路机制,主要研究结果如下:1选择性凋亡lPBN Oprm1+Pdyn+神经元,或者从lPBN投射到下丘脑背内侧区(dorsal medial regions of hypothalamusdmH) Oprm1+lPBNOprm1→dmH)或Pdyn+lPBNPdyn→dmH)神经元后,足底注射辣椒素引起的触诱发痛的时程显著延长(从几个小时到至少两周时间),同时,SNI模型引起的触诱发痛从单侧变成了双侧;2)采用化学遗传学的方法抑制lPBN Oprm1+Pdyn+神经元,或者沉默投射到dmHlPBN Oprm1+Pdyn+神经元的轴突末梢,原本已经恢复的双侧触诱发痛复发;3)在对照实验中我们发现,沉默从lPBN投射至中央杏仁核(central amygdala, CeA)的Oprm1神经元的轴突末梢(lPBNOprm1→CeA)显著减弱了热痛,而对触诱发痛没有显著的影响;4)小鼠足底注射辣椒素后,投射至dmHlPBN Oprm1神经元的兴奋性升高;5)在dvlPBNOprm1+神经元与Pdyn+神经元有部分共表达。为了进一步明确控制触诱发痛时空特征的投射神经元类型,我们在Oprm1cre/+; PdynFlpo/+的小鼠上,采用既依赖cre又依赖flpoAAV定位注射到lPBN,从而在Oprm1+/Pdyn+的神经元上表达hM4Di受体以沉默此类神经元。研究结果表明,抑制投射到dmHlPBN Oprm1+/Pdyn+神经元的轴突末梢,原本已经恢复的双侧触诱发痛复发,行为学结果与分别沉默投射到dmHlPBN Oprm1+Pdyn+神经元的轴突末梢相同。综上所述,我们的研究结果证明,从lPBN投射至dmHOprm1+/Pdyn+神经元在时间和空间上控制外周炎症和神经损伤引起的机械痛觉敏化。后续拟开展更多实验以确定lPBN Oprm1+还是Pdyn+神经元,或者是Oprm1+/Pdyn+神经元在触诱发痛的时空控制中起至关重要的作用。

本研究首次揭示了一条或两条从脑干外侧臂旁核直接投射到下丘脑背内侧区的阿片肽能神经通路lPBNOprm1/Pdyn→dmH),该通路控制外周炎症或神经损伤引起的机械痛觉敏化的持续时间和敏化范围。本研究结果有望为临床上顽固性和难治性的异常触诱发痛的药物研发和临床治疗提供细胞和环路特异的靶点和新的思路。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[


[1] CHOI H S, ROH D H, YOON S Y, et al. Microglial interleukin-1β in the ipsilateral dorsal horn inhibits the development of mirror-image contralateral mechanical allodynia through astrocyte activation in a rat model of inflammatory pain [J]. Pain, 2015, 156(6): 1046-59.

[2] GAO Y J, XU Z Z, LIU Y C, et al. The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition [J]. Pain, 2010, 148(2): 309-19.

[3] DECOSTERD I, WOOLF C J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain [J]. Pain, 2000, 87(2): 149-58.

[4] JENNINGS E M, OKINE B N, ROCHE M, FINN D P. Stress-induced hyperalgesia [J]. Progress in Neurobiology, 2014, 121: 1-18.

[5] MUMTAZ F, KHAN M I, ZUBAIR M, DEHPOUR A R. Neurobiology and consequences of social isolation stress in animal model-A comprehensive review [J]. Biomedicine & Pharmacotherapy, 2018, 105: 1205-22.

[6] HUANG T, LIN S-H, MALEWICZ N M, et al. Identifying the pathways required for coping behaviours associated with sustained pain [J]. Nature, 2019, 565(7737): 86-+.

[7] CICHON J, BLANCK T J J, GAN W B, YANG G. Activation of cortical somatostatin interneurons prevents the development of neuropathic pain [J]. Nat Neurosci, 2017, 20(8): 1122-32.

[8] ISHIKAWA T, ETO K, KIM S K, et al. Cortical astrocytes prime the induction of spine plasticity and mirror image pain [J]. Pain, 2018, 159(8): 1592-606.

[9] MELZACK R, WALL P D. Pain mechanisms: A new theory (Reprinted from Science, vol 150, pg 971-979, 1965) [J]. Pain Forum, 1996, 5(1): 3-11.

[10] MENDELL L M. Constructing and deconstructing the gate theory of pain [J]. Pain, 2014, 155(2): 210-6.

[11] BABA H, JI R-R, KOHNO T, et al. Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn [J]. Molecular and Cellular Neuroscience, 2003, 24(3): 818-30.

[12] DUAN B, CHENG L, BOURANE S, et al. Identification of Spinal Circuits Transmitting and Gating Mechanical Pain [J]. Cell, 2014, 159(6): 1417-32.

[13] CHENG L, DUAN B, HUANG T, et al. Identification of spinal circuits involved in touch-evoked dynamic mechanical pain [J]. Nature Neuroscience, 2017, 20(6): 804-+.

[14] PEIRS C, WILLIAMS S P G, ZHAO X Y, et al. Mechanical Allodynia Circuitry in the Dorsal Horn Is Defined by the Nature of the Injury [J]. Neuron, 2021, 109(1).

[15] FRANCOIS A, LOW S A, SYPEK E I, et al. A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins [J]. Neuron, 2017, 93(4): 822-+.

[16] LIANG S H, ZHAO W J, YIN J B, et al. A Neural Circuit from Thalamic Paraventricular Nucleus to Central Amygdala for the Facilitation of Neuropathic Pain [J]. J Neurosci, 2020, 40(41): 7837-54.

[17] KOHRO Y, MATSUDA T, YOSHIHARA K, et al. Spinal astrocytes in superficial laminae gate brainstem descending control of mechanosensory hypersensitivity [J]. Nature Neuroscience, 2020, 23(11): 1376-+.

[18] KOHNO K, SHIRASAKA R, YOSHIHARA K, et al. A spinal microglia population involved in remitting and relapsing neuropathic pain [J]. Science, 2022, 376(6588): 86-+.

[19] DENG J, ZHOU H, LIN J-K, et al. The Parabrachial Nucleus Directly Channels Spinal Nociceptive Signals to the Intralaminar Thalamic Nuclei, but Not the Amygdala [J]. Neuron, 2020, 107(5): 909-+.

[20] BOWEN A J, CHEN J Y, HUANG Y W, et al. Dissociable control of unconditioned responses and associative fear learning by parabrachial CGRP neurons [J]. Elife, 2020, 9.

[21] CAMPOS C A, BOWEN A J, ROMAN C W, PALMITER R D. Encoding of danger by parabrachial CGRP neurons [J]. Nature, 2018, 555(7698): 617-+.

[22] CHEN T, TANIGUCHI W, CHEN Q-Y, et al. Top-down descending facilitation of spinal sensory excitatory transmission from the anterior cingulate cortex [J]. Nature Communications, 2018, 9.

[23] KOLTZENBURG M, LUNDBERG L E R, TOREBJORK H E. Dynamic and Static Components of Mechanical Hyperalgesia in Human Hairy Skin [J]. Pain, 1992, 51(2): 207-19.

[24] TSANG A, VON KORFF M, LEE S, et al. Common chronic pain conditions in developed and developing countries: gender and age differences and comorbidity with depression-anxiety disorders [J]. J Pain, 2008, 9(10): 883-91.

[25] HE S J, CHEN Q G, JING Z C, et al. Avellis syndrome with ipsilateral prosopalgia, glossopharyngeal neuralgia, and central post-stroke pain: A case report and literature review [J]. Medicine, 2022, 101(39).

[26] WU P-C, HUNG Y-T, CHEN C-B. Eruption of Subcutaneous Nodules in a Patient With Abdominal Pain and Arthralgia [J]. Gastroenterology, 2024, 166(2): e5-e8.

[27] SHKODRA M, MULVEY M, FALLON M, et al. Application and accuracy of the EAPC/IASP diagnostic algorithm for neuropathic cancer pain and quantitative sensory testing profile in patients with pain due to cancer [J]. Pain Reports, 2024, 9(2).

[28] SILVA A I, BARBOSA M, BARBOSA P, et al. Spinal Cord Stimulation in Refractory Postherpetic Neuralgia in Portugal: A Case Report [J]. Acta medica portuguesa, 2024.

[29] LOESER J D. Relieving pain in America [J]. Clin J Pain, 2012, 28(3): 185-6.

[30] SEAL K H, BERTENTHAL D, BARNES D E, et al. Association of Traumatic Brain Injury With Chronic Pain in Iraq and Afghanistan Veterans: Effect of Comorbid Mental Health Conditions [J]. Arch Phys Med Rehabil, 2017, 98(8): 1636-45.

[31] GEHA P, DEARAUJO I, GREEN B, SMALL D M. Decreased food pleasure and disrupted satiety signals in chronic low back pain [J]. Pain, 2014, 155(4): 712-22.

[32] COWEN S L, PHELPS C E, NAVRATILOVA E, et al. Chronic pain impairs cognitive flexibility and engages novel learning strategies in rats [J]. Pain, 2018, 159(7): 1403-12.

[33] ZIMMERMAN A, BAI L, GINTY D D. The gentle touch receptors of mammalian skin [J]. Science, 2014, 346(6212): 950-4.

[34] COSTE B, MATHUR J, SCHMIDT M, et al. Piezo1 and Piezo2 Are Essential Components of Distinct Mechanically Activated Cation Channels [J]. Science, 2010, 330(6000): 55-60.

[35] RANADE S S, WOO S-H, DUBIN A E, et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice [J]. Nature, 2014, 516(7529): 121-U330.

[36] EIJKELKAMP N, LINLEY J E, TORRES J M, et al. A role for Piezo2 in EPAC1-dependent mechanical allodynia [J]. Nature Communications, 2013, 4.

[37] TORSNEY C, MACDERMOTT A B. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord [J]. Journal of Neuroscience, 2006, 26(6): 1833-43.

[38] LU Y, DONG H, GAN Y, et al. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia [J]. Journal of Clinical Investigation, 2013, 123(9): 4050-62.

[39] PETITJEAN H, PAWLOWSKI S A, FRAINE S L, et al. Dorsal Horn Parvalbumin Neurons Are Gate-Keepers of Touch-Evoked Pain after Nerve Injury [J]. Cell Reports, 2015, 13(6): 1246-57.

[40] HUGHES D I, SIKANDER S, KINNON C M, et al. Morphological, neurochemical and electrophysiological features of parvalbumin-expressing cells: a likely source of axo-axonic inputs in the mouse spinal dorsal horn [J]. Journal of Physiology-London, 2012, 590(16): 3927-51.

[41] MIRAUCOURT L S, DALLEL R, VOISIN D L. Glycine Inhibitory Dysfunction Turns Touch into Pain through PKCgamma Interneurons [J]. Plos One, 2007, 2(11).

[42] MOULTON E A, SCHMAHMANN J D, BECERRA L, BORSOOK D. The cerebellum and pain: Passive integrator or active participator? [J]. Brain Research Reviews, 2010, 65(1): 14-27.

[43] MARTUCCI K T, MACKEY S C. Neuroimaging of Pain Human Evidence and Clinical Relevance of Central Nervous System Processes and Modulation [J]. Anesthesiology, 2018, 128(6): 1241-54.

[44] LEE J-J, KIM H J, CEKO M, et al. A neuroimaging biomarker for sustained experimental and clinical pain [J]. Nature Medicine, 2021, 27(1): 174-+.

[45] CUI L-L, WANG X-X, LIU H, et al. Projections from infralimbic medial prefrontal cortex glutamatergic outputs to amygdala mediates opioid induced hyperalgesia in male rats [J]. Molecular Pain, 2024, 20.

[46] LAUBACH M, AMARANTE L M, SWANSON K, WHITE S R. What, If Anything, Is Rodent Prefrontal Cortex? [J]. Eneuro, 2018, 5(5).

[47] VAN HEUKELUM S, MARS R B, GUTHRIE M, et al. Where is Cingulate Cortex? A Cross-Species View [J]. Trends in Neurosciences, 2020, 43(5): 285-99.

[48] LIU S, YE M, PAO G M, et al. Divergent brainstem opioidergic pathways that coordinate breathing with pain and emotions [J]. Neuron, 2022, 110(5): 857-73.e9.

[49] KUNER R, KUNER T. CELLULAR CIRCUITS IN THE BRAIN AND THEIR MODULATION IN ACUTE AND CHRONIC PAIN [J]. Physiological Reviews, 2021, 101(1): 213-58.

[50] BUSHNELL M C, CEKO M, LOW L A. Cognitive and emotional control of pain and its disruption in chronic pain [J]. Nature Reviews Neuroscience, 2013, 14(7): 502-11.

[51] TAN L L, KUNER R. Neocortical circuits in pain and pain relief [J]. Nature Reviews Neuroscience, 2021, 22(8): 458-71.

[52] LIU Y, LATREMOLIERE A, LI X, et al. Touch and tactile neuropathic pain sensitivity are set by corticospinal projections [J]. Nature, 2018, 561(7724): 547-+.

[53] BAGLEY E E, INGRAM S L. Endogenous opioid peptides in the descending pain modulatory circuit [J]. Neuropharmacology, 2020, 173.

[54] HEINRICHER M M, TAVARES I, LEITH J L, LUMB B M. Descending control of nociception: Specificity, recruitment and plasticity [J]. Brain Research Reviews, 2009, 60(1): 214-25.

[55] BASBAUM A I, FIELDS H L. ENDOGENOUS PAIN CONTROL-SYSTEMS - BRAIN-STEM SPINAL PATHWAYS AND ENDORPHIN CIRCUITRY [J]. Annual Review of Neuroscience, 1984, 7: 309-38.

[56] MORGAN M M, WHITTIER K L, HEGARTY D M, AICHER S A. Periaqueductal gray neurons project to spinally projecting GABAergic neurons in the rostral ventromedial medulla [J]. Pain, 2008, 140(2): 376-86.

[57] ZHANG Y, ZHAO S, RODRIGUEZ E, et al. Identifying local and descending inputs for primary sensory neurons [J]. Journal of Clinical Investigation, 2015, 125(10): 3782-94.

[58] KIM Y S, CHU Y, HAN L, et al. Central Terminal Sensitization of TRPV1 by Descending Serotonergic Facilitation Modulates Chronic Pain [J]. Neuron, 2014, 81(4): 873-87.

[59] HIRSCHBERG S, LI Y, RANDALL A, et al. Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats [J]. eLife, 2017, 6.

[60] RAVER C, UDDIN O, JI Y, et al. An Amygdalo-Parabrachial Pathway Regulates Pain Perception and Chronic Pain [J]. Journal of Neuroscience, 2020, 40(17): 3424-42.

[61] SUN L, LIU R, GUO F, et al. Parabrachial nucleus circuit governs neuropathic pain-like behavior [J]. Nature Communications, 2020, 11(1).

[62] PALMITER R D. The Parabrachial Nucleus: CGRP Neurons Function as a General Alarm [J]. Trends in Neurosciences, 2018, 41(5): 280-93.

[63] CHIANG M C, BOWEN A, SCHIER L A, et al. Parabrachial Complex: A Hub for Pain and Aversion [J]. Journal of Neuroscience, 2019, 39(42): 8225-30.

[64] HYLDEN J L K, HAYASHI H, BENNETT G J, DUBNER R. SPINAL LAMINA-I NEURONS PROJECTING TO THE PARABRACHIAL AREA OF THE CAT MIDBRAIN [J]. Brain Research, 1985, 336(1): 195-8.

[65] CHOI S, HACHISUKA J, BRETT M A, et al. Parallel ascending spinal pathways for affective touch and pain [J]. Nature, 2020, 587(7833): 258-+.

[66] CAMERON D, POLGAR E, GUTIERREZ-MECINAS M, et al. The organisation of spinoparabrachial neurons in the mouse [J]. Pain, 2015, 156(10): 2061-71.

[67] ROOME R B, BOUROJENI F B, MONA B, et al. Phox2a Defines a Developmental Origin of the Anterolateral System in Mice and Humans [J]. Cell Reports, 2020, 33(8).

[68] RODRIGUEZ E, SAKURAI K, XU J, et al. A craniofacial-specific monosynaptic circuit enables heightened affective pain [J]. Nature Neuroscience, 2017, 20(12): 1734-+.

[69] REN X, LIU S, VIRLOGEUX A, et al. Identification of an essential spinoparabrachial pathway for mechanical itch [J]. Neuron, 2023, 111(11): 1812-+.

[70] HAN S, SOLEIMAN M T, SODEN M E, et al. Elucidating an Affective Pain Circuit that Creates a Threat Memory [J]. Cell, 2015, 162(2): 363-74.

[71] CHIANG M C, NGUYEN E K, CANTO-BUSTOS M, et al. Divergent Neural Pathways Emanating from the Lateral Parabrachial Nucleus Mediate Distinct Components of the Pain Response [J]. Neuron, 2020, 106(6): 927-+.

[72] NORRIS A J, SHAKER J R, CONE A L, et al. Parabrachial opioidergic projections to preoptic hypothalamus mediate behavioral and physiological thermal defenses [J]. Elife, 2021, 10.

[73] TAN C L, COOKE E K, LEIB D E, et al. Warm-Sensitive Neurons that Control Body Temperature [J]. Cell, 2016, 167(1): 47-+.

[74] NAKAMURA K, MORRISON S F. A thermosensory pathway that controls body temperature [J]. Nature Neuroscience, 2008, 11(1): 62-71.

[75] FONG H, ZHENG J, KURRASCH D. The structural and functional complexity of the integrative hypothalamus [J]. Science, 2023, 382(6669): 388-93.

[76] KAYAOGLU G, EKICI M, ALTUNKAYNAK B. Mechanical Allodynia in Healthy Teeth Adjacent and Contralateral to Endodontically Diseased Teeth: A Clinical Study [J]. Journal of Endodontics, 2020, 46(5): 611-8.

[77] ZHANG B, QIU L Y, XIAO W, et al. Reconstruction of the Hypothalamo-Neurohypophysial System and Functional Dissection of Magnocellular Oxytocin Neurons in the Brain [J]. Neuron, 2021, 109(2): 331-+.

[78] CHEN S D, YOU J, ZHANG W, et al. The genetic architecture of the human hypothalamus and its involvement in neuropsychiatric behaviours and disorders [J]. Nature Human Behaviour, 2024.

[79] RIECHER-RöSSLER A. Oestrogens, prolactin, hypothalamic-pituitary-gonadal axis, and schizophrenic psychoses [J]. Lancet Psychiatry, 2017, 4(1): 63-72.

[80] ZHENG Z W, GUO C, LI M, et al. Hypothalamus-habenula potentiation encodes chronic stress experience and drives depression onset [J]. Neuron, 2022, 110(8): 1400-+.

[81] ISHII M, IADECOLA C. Metabolic and Non-Cognitive Manifestations of Alzheimer's Disease: The Hypothalamus as Both Culprit and Target of Pathology [J]. Cell Metabolism, 2015, 22(5): 761-76.

[82] VAN ERP T G M, HIBAR D P, RASMUSSEN J M, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium [J]. Molecular Psychiatry, 2016, 21(4): 547-53.

[83] MA Y, ZHAO W A, CHEN D D, et al. Disinhibition of Mesolimbic Dopamine Circuit by the Lateral Hypothalamus Regulates Pain Sensation [J]. Journal of Neuroscience, 2023, 43(24): 4525-40.

[84] BERNARD J F, PESCHANSKI M, BESSON J M. A POSSIBLE SPINO (TRIGEMINO)-PONTO-AMYGDALOID PATHWAY FOR PAIN [J]. Neuroscience Letters, 1989, 100(1-3): 83-8.

[85] NEUGEBAUER V, LI W D, BIRD G C, et al. Synaptic plasticity in the amygdala in a model of arthritic pain: Differential roles of metabotropic glutamate receptors 1 and 5 [J]. Journal of Neuroscience, 2003, 23(1): 52-63.

[86] HUA T, CHEN B, LU D, et al. General anesthetics activate a potent central pain-suppression circuit in the amygdala [J]. Nature Neuroscience, 2020, 23(7): 854-68.

[87] NARITA M, KANEKO C, MIYOSHI K, et al. Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala [J]. Neuropsychopharmacology, 2006, 31(4): 739-50.

[88] MYERS B, MEERVELD B G-V. Elevated corticosterone in the amygdala leads to persistant increases in anxiety-like behavior and pain sensitivity [J]. Behavioural Brain Research, 2010, 214(2): 465-9.

[89] VOLKOW N D, MCLELLAN A T. Opioid Abuse in Chronic Pain - Misconceptions and Mitigation Strategies [J]. New England Journal of Medicine, 2016, 374(13): 1253-63.

[90] ZUBIETA J K, SMITH Y R, BUELLER J A, et al. Regional mu opioid receptor regulation of sensory and affective dimensions of pain [J]. Science, 2001, 293(5528): 311-5.

[91] FIELDS H L. The Doctor's Dilemma: Opiate Analgesics and Chronic Pain [J]. Neuron, 2011, 69(4): 591-4.

[92] MATTHES H W D, MALDONADO R, SIMONIN F, et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene [J]. Nature, 1996, 383(6603): 819-23.

[93] BIRDSONG W T, WILLIAMS J T. Recent Progress in Opioid Research from an Electrophysiological Perspective [J]. Molecular Pharmacology, 2020, 98(4): 401-9.

[94] WILLIAMS J T, INGRAM S L, HENDERSON G, et al. Regulation of μ-Opioid Receptors: Desensitization, Phosphorylation, Internalization, and Tolerance [J]. Pharmacological Reviews, 2013, 65(1): 223-54.

[95] MANGLIK A, LIN H, ARYAL D K, et al. Structure-based discovery of opioid analgesics with reduced side effects [J]. Nature, 2016, 537(7619): 185-+.

[96] CORDER G, CASTRO D C, BRUCHAS M R, SCHERRER G. Endogenous and Exogenous Opioids in Pain [M]//ROSKA B, ZOGHBI H Y. Annual Review of Neuroscience, Vol 41. 2018: 453-73.

[97] SAMAD T A, MOORE K A, SAPIRSTEIN A, et al. Interleukin-1β-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity [J]. Nature, 2001, 410(6827): 471-5.

[98] LI L, CHEN S-R, ZHOU M-H, et al. α2δ-1 switches the phenotype of synaptic AMPA receptors by physically disrupting heteromeric subunit assembly [J]. Cell Reports, 2021, 36(3).

[99] ALLES S R A, CAIN S M, SNUTCH T P. Pregabalin as a Pain Therapeutic: Beyond Calcium Channels [J]. Frontiers in Cellular Neuroscience, 2020, 14.

[100] KIM D-S, LI K-W, BOROUJERDI A, et al. Thrombospondin-4 Contributes to Spinal Sensitization and Neuropathic Pain States [J]. Journal of Neuroscience, 2012, 32(26): 8977-87.

[101] EROGLU C, ALLEN N J, SUSMAN M W, et al. Gabapentin Receptor α2δ-1 Is a Neuronal Thrombospondin Receptor Responsible for Excitatory CNS Synaptogenesis [J]. Cell, 2009, 139(2): 380-92.

[102] CAO P, ZHANG M, NI Z, et al. Green light induces antinociception via visual-somatosensory circuits [J]. Cell Reports, 2023, 42(4).

[103] SULLERE S, KUNCZT A, MCGEHEE D S. A cholinergic circuit that relieves pain despite opioid tolerance [J]. Neuron, 2023, 111(21): 3414-+.

[104] RUPPRECHT R, DI BENEDETTO B. Extracellular Signal-Regulated Kinases: A Role for Mood Disorders and the Emotional Component of Pain? [J]. Biological Psychiatry, 2017, 81(8): 639-41.

[105] DOUGLASS A M, KUCUKDERELI H, PONSERRE M, et al. Central amygdala circuits modulate food consumption through a positive-valence mechanism [J]. Nature Neuroscience, 2017, 20(10): 1384-+.

[106] WANG H, WANG Q, CUI L, et al. A molecularly defined amygdala-independent tetra-synaptic forebrain-to-hindbrain pathway for odor-driven innate fear and anxiety [J]. Nature Neuroscience, 2024.

[107] ZHANG Y, LIU S, ZHANG Y-Q, et al. Timing Mechanisms Underlying Gate Control by Feedforward Inhibition [J]. Neuron, 2018, 99(5): 941-+.

[108] MASGORET P, DE SOTO I, CABALLERO A, et al. Incidence of contralateral neurosensitive changes and persistent postoperative pain 6 months after mastectomy A prospective, observational investigation [J]. Medicine, 2020, 99(11).

[109] KONOPKA K-H, HARBERS M, HOUGHTON A, et al. Bilateral Sensory Abnormalities in Patients with Unilateral Neuropathic Pain; A Quantitative Sensory Testing (QST) Study [J]. Plos One, 2012, 7(5).

[110] LOCKWOOD S, DICKENSON A H. What goes up must come down: insights from studies on descending controls acting on spinal pain processing [J]. Journal of Neural Transmission, 2020, 127(4): 541-9.

[111] BANNISTER K. Descending pain modulation: influence and impact [J]. Current Opinion in Physiology, 2019, 11: 62-6.

[112] HUANG J, GADOTTI V M, CHEN L, et al. A neuronal circuit for activating descending modulation of neuropathic pain [J]. Nature Neuroscience, 2019, 22(10): 1659-+.

[113] LE BARS D, VILLANUEVA L, BOUHASSIRA D, WILLER J C. Diffuse noxious inhibitory controls (DNIC) in animals and in man [J]. Patologicheskaia fiziologiia i eksperimental'naia terapiia, 1992, (4): 55-65.

所在学位评定分委会
生物学
国内图书分类号
Q189
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778845
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
霍剑韬. 外侧臂旁核在触诱发痛时空控制中的作用及其机制[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12131306-霍剑韬-生物系.pdf(8213KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[霍剑韬]的文章
百度学术
百度学术中相似的文章
[霍剑韬]的文章
必应学术
必应学术中相似的文章
[霍剑韬]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。