[
[1] CHOI H S, ROH D H, YOON S Y, et al. Microglial interleukin-1β in the ipsilateral dorsal horn inhibits the development of mirror-image contralateral mechanical allodynia through astrocyte activation in a rat model of inflammatory pain [J]. Pain, 2015, 156(6): 1046-59.
[2] GAO Y J, XU Z Z, LIU Y C, et al. The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition [J]. Pain, 2010, 148(2): 309-19.
[3] DECOSTERD I, WOOLF C J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain [J]. Pain, 2000, 87(2): 149-58.
[4] JENNINGS E M, OKINE B N, ROCHE M, FINN D P. Stress-induced hyperalgesia [J]. Progress in Neurobiology, 2014, 121: 1-18.
[5] MUMTAZ F, KHAN M I, ZUBAIR M, DEHPOUR A R. Neurobiology and consequences of social isolation stress in animal model-A comprehensive review [J]. Biomedicine & Pharmacotherapy, 2018, 105: 1205-22.
[6] HUANG T, LIN S-H, MALEWICZ N M, et al. Identifying the pathways required for coping behaviours associated with sustained pain [J]. Nature, 2019, 565(7737): 86-+.
[7] CICHON J, BLANCK T J J, GAN W B, YANG G. Activation of cortical somatostatin interneurons prevents the development of neuropathic pain [J]. Nat Neurosci, 2017, 20(8): 1122-32.
[8] ISHIKAWA T, ETO K, KIM S K, et al. Cortical astrocytes prime the induction of spine plasticity and mirror image pain [J]. Pain, 2018, 159(8): 1592-606.
[9] MELZACK R, WALL P D. Pain mechanisms: A new theory (Reprinted from Science, vol 150, pg 971-979, 1965) [J]. Pain Forum, 1996, 5(1): 3-11.
[10] MENDELL L M. Constructing and deconstructing the gate theory of pain [J]. Pain, 2014, 155(2): 210-6.
[11] BABA H, JI R-R, KOHNO T, et al. Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn [J]. Molecular and Cellular Neuroscience, 2003, 24(3): 818-30.
[12] DUAN B, CHENG L, BOURANE S, et al. Identification of Spinal Circuits Transmitting and Gating Mechanical Pain [J]. Cell, 2014, 159(6): 1417-32.
[13] CHENG L, DUAN B, HUANG T, et al. Identification of spinal circuits involved in touch-evoked dynamic mechanical pain [J]. Nature Neuroscience, 2017, 20(6): 804-+.
[14] PEIRS C, WILLIAMS S P G, ZHAO X Y, et al. Mechanical Allodynia Circuitry in the Dorsal Horn Is Defined by the Nature of the Injury [J]. Neuron, 2021, 109(1).
[15] FRANCOIS A, LOW S A, SYPEK E I, et al. A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins [J]. Neuron, 2017, 93(4): 822-+.
[16] LIANG S H, ZHAO W J, YIN J B, et al. A Neural Circuit from Thalamic Paraventricular Nucleus to Central Amygdala for the Facilitation of Neuropathic Pain [J]. J Neurosci, 2020, 40(41): 7837-54.
[17] KOHRO Y, MATSUDA T, YOSHIHARA K, et al. Spinal astrocytes in superficial laminae gate brainstem descending control of mechanosensory hypersensitivity [J]. Nature Neuroscience, 2020, 23(11): 1376-+.
[18] KOHNO K, SHIRASAKA R, YOSHIHARA K, et al. A spinal microglia population involved in remitting and relapsing neuropathic pain [J]. Science, 2022, 376(6588): 86-+.
[19] DENG J, ZHOU H, LIN J-K, et al. The Parabrachial Nucleus Directly Channels Spinal Nociceptive Signals to the Intralaminar Thalamic Nuclei, but Not the Amygdala [J]. Neuron, 2020, 107(5): 909-+.
[20] BOWEN A J, CHEN J Y, HUANG Y W, et al. Dissociable control of unconditioned responses and associative fear learning by parabrachial CGRP neurons [J]. Elife, 2020, 9.
[21] CAMPOS C A, BOWEN A J, ROMAN C W, PALMITER R D. Encoding of danger by parabrachial CGRP neurons [J]. Nature, 2018, 555(7698): 617-+.
[22] CHEN T, TANIGUCHI W, CHEN Q-Y, et al. Top-down descending facilitation of spinal sensory excitatory transmission from the anterior cingulate cortex [J]. Nature Communications, 2018, 9.
[23] KOLTZENBURG M, LUNDBERG L E R, TOREBJORK H E. Dynamic and Static Components of Mechanical Hyperalgesia in Human Hairy Skin [J]. Pain, 1992, 51(2): 207-19.
[24] TSANG A, VON KORFF M, LEE S, et al. Common chronic pain conditions in developed and developing countries: gender and age differences and comorbidity with depression-anxiety disorders [J]. J Pain, 2008, 9(10): 883-91.
[25] HE S J, CHEN Q G, JING Z C, et al. Avellis syndrome with ipsilateral prosopalgia, glossopharyngeal neuralgia, and central post-stroke pain: A case report and literature review [J]. Medicine, 2022, 101(39).
[26] WU P-C, HUNG Y-T, CHEN C-B. Eruption of Subcutaneous Nodules in a Patient With Abdominal Pain and Arthralgia [J]. Gastroenterology, 2024, 166(2): e5-e8.
[27] SHKODRA M, MULVEY M, FALLON M, et al. Application and accuracy of the EAPC/IASP diagnostic algorithm for neuropathic cancer pain and quantitative sensory testing profile in patients with pain due to cancer [J]. Pain Reports, 2024, 9(2).
[28] SILVA A I, BARBOSA M, BARBOSA P, et al. Spinal Cord Stimulation in Refractory Postherpetic Neuralgia in Portugal: A Case Report [J]. Acta medica portuguesa, 2024.
[29] LOESER J D. Relieving pain in America [J]. Clin J Pain, 2012, 28(3): 185-6.
[30] SEAL K H, BERTENTHAL D, BARNES D E, et al. Association of Traumatic Brain Injury With Chronic Pain in Iraq and Afghanistan Veterans: Effect of Comorbid Mental Health Conditions [J]. Arch Phys Med Rehabil, 2017, 98(8): 1636-45.
[31] GEHA P, DEARAUJO I, GREEN B, SMALL D M. Decreased food pleasure and disrupted satiety signals in chronic low back pain [J]. Pain, 2014, 155(4): 712-22.
[32] COWEN S L, PHELPS C E, NAVRATILOVA E, et al. Chronic pain impairs cognitive flexibility and engages novel learning strategies in rats [J]. Pain, 2018, 159(7): 1403-12.
[33] ZIMMERMAN A, BAI L, GINTY D D. The gentle touch receptors of mammalian skin [J]. Science, 2014, 346(6212): 950-4.
[34] COSTE B, MATHUR J, SCHMIDT M, et al. Piezo1 and Piezo2 Are Essential Components of Distinct Mechanically Activated Cation Channels [J]. Science, 2010, 330(6000): 55-60.
[35] RANADE S S, WOO S-H, DUBIN A E, et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice [J]. Nature, 2014, 516(7529): 121-U330.
[36] EIJKELKAMP N, LINLEY J E, TORRES J M, et al. A role for Piezo2 in EPAC1-dependent mechanical allodynia [J]. Nature Communications, 2013, 4.
[37] TORSNEY C, MACDERMOTT A B. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord [J]. Journal of Neuroscience, 2006, 26(6): 1833-43.
[38] LU Y, DONG H, GAN Y, et al. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia [J]. Journal of Clinical Investigation, 2013, 123(9): 4050-62.
[39] PETITJEAN H, PAWLOWSKI S A, FRAINE S L, et al. Dorsal Horn Parvalbumin Neurons Are Gate-Keepers of Touch-Evoked Pain after Nerve Injury [J]. Cell Reports, 2015, 13(6): 1246-57.
[40] HUGHES D I, SIKANDER S, KINNON C M, et al. Morphological, neurochemical and electrophysiological features of parvalbumin-expressing cells: a likely source of axo-axonic inputs in the mouse spinal dorsal horn [J]. Journal of Physiology-London, 2012, 590(16): 3927-51.
[41] MIRAUCOURT L S, DALLEL R, VOISIN D L. Glycine Inhibitory Dysfunction Turns Touch into Pain through PKCgamma Interneurons [J]. Plos One, 2007, 2(11).
[42] MOULTON E A, SCHMAHMANN J D, BECERRA L, BORSOOK D. The cerebellum and pain: Passive integrator or active participator? [J]. Brain Research Reviews, 2010, 65(1): 14-27.
[43] MARTUCCI K T, MACKEY S C. Neuroimaging of Pain Human Evidence and Clinical Relevance of Central Nervous System Processes and Modulation [J]. Anesthesiology, 2018, 128(6): 1241-54.
[44] LEE J-J, KIM H J, CEKO M, et al. A neuroimaging biomarker for sustained experimental and clinical pain [J]. Nature Medicine, 2021, 27(1): 174-+.
[45] CUI L-L, WANG X-X, LIU H, et al. Projections from infralimbic medial prefrontal cortex glutamatergic outputs to amygdala mediates opioid induced hyperalgesia in male rats [J]. Molecular Pain, 2024, 20.
[46] LAUBACH M, AMARANTE L M, SWANSON K, WHITE S R. What, If Anything, Is Rodent Prefrontal Cortex? [J]. Eneuro, 2018, 5(5).
[47] VAN HEUKELUM S, MARS R B, GUTHRIE M, et al. Where is Cingulate Cortex? A Cross-Species View [J]. Trends in Neurosciences, 2020, 43(5): 285-99.
[48] LIU S, YE M, PAO G M, et al. Divergent brainstem opioidergic pathways that coordinate breathing with pain and emotions [J]. Neuron, 2022, 110(5): 857-73.e9.
[49] KUNER R, KUNER T. CELLULAR CIRCUITS IN THE BRAIN AND THEIR MODULATION IN ACUTE AND CHRONIC PAIN [J]. Physiological Reviews, 2021, 101(1): 213-58.
[50] BUSHNELL M C, CEKO M, LOW L A. Cognitive and emotional control of pain and its disruption in chronic pain [J]. Nature Reviews Neuroscience, 2013, 14(7): 502-11.
[51] TAN L L, KUNER R. Neocortical circuits in pain and pain relief [J]. Nature Reviews Neuroscience, 2021, 22(8): 458-71.
[52] LIU Y, LATREMOLIERE A, LI X, et al. Touch and tactile neuropathic pain sensitivity are set by corticospinal projections [J]. Nature, 2018, 561(7724): 547-+.
[53] BAGLEY E E, INGRAM S L. Endogenous opioid peptides in the descending pain modulatory circuit [J]. Neuropharmacology, 2020, 173.
[54] HEINRICHER M M, TAVARES I, LEITH J L, LUMB B M. Descending control of nociception: Specificity, recruitment and plasticity [J]. Brain Research Reviews, 2009, 60(1): 214-25.
[55] BASBAUM A I, FIELDS H L. ENDOGENOUS PAIN CONTROL-SYSTEMS - BRAIN-STEM SPINAL PATHWAYS AND ENDORPHIN CIRCUITRY [J]. Annual Review of Neuroscience, 1984, 7: 309-38.
[56] MORGAN M M, WHITTIER K L, HEGARTY D M, AICHER S A. Periaqueductal gray neurons project to spinally projecting GABAergic neurons in the rostral ventromedial medulla [J]. Pain, 2008, 140(2): 376-86.
[57] ZHANG Y, ZHAO S, RODRIGUEZ E, et al. Identifying local and descending inputs for primary sensory neurons [J]. Journal of Clinical Investigation, 2015, 125(10): 3782-94.
[58] KIM Y S, CHU Y, HAN L, et al. Central Terminal Sensitization of TRPV1 by Descending Serotonergic Facilitation Modulates Chronic Pain [J]. Neuron, 2014, 81(4): 873-87.
[59] HIRSCHBERG S, LI Y, RANDALL A, et al. Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats [J]. eLife, 2017, 6.
[60] RAVER C, UDDIN O, JI Y, et al. An Amygdalo-Parabrachial Pathway Regulates Pain Perception and Chronic Pain [J]. Journal of Neuroscience, 2020, 40(17): 3424-42.
[61] SUN L, LIU R, GUO F, et al. Parabrachial nucleus circuit governs neuropathic pain-like behavior [J]. Nature Communications, 2020, 11(1).
[62] PALMITER R D. The Parabrachial Nucleus: CGRP Neurons Function as a General Alarm [J]. Trends in Neurosciences, 2018, 41(5): 280-93.
[63] CHIANG M C, BOWEN A, SCHIER L A, et al. Parabrachial Complex: A Hub for Pain and Aversion [J]. Journal of Neuroscience, 2019, 39(42): 8225-30.
[64] HYLDEN J L K, HAYASHI H, BENNETT G J, DUBNER R. SPINAL LAMINA-I NEURONS PROJECTING TO THE PARABRACHIAL AREA OF THE CAT MIDBRAIN [J]. Brain Research, 1985, 336(1): 195-8.
[65] CHOI S, HACHISUKA J, BRETT M A, et al. Parallel ascending spinal pathways for affective touch and pain [J]. Nature, 2020, 587(7833): 258-+.
[66] CAMERON D, POLGAR E, GUTIERREZ-MECINAS M, et al. The organisation of spinoparabrachial neurons in the mouse [J]. Pain, 2015, 156(10): 2061-71.
[67] ROOME R B, BOUROJENI F B, MONA B, et al. Phox2a Defines a Developmental Origin of the Anterolateral System in Mice and Humans [J]. Cell Reports, 2020, 33(8).
[68] RODRIGUEZ E, SAKURAI K, XU J, et al. A craniofacial-specific monosynaptic circuit enables heightened affective pain [J]. Nature Neuroscience, 2017, 20(12): 1734-+.
[69] REN X, LIU S, VIRLOGEUX A, et al. Identification of an essential spinoparabrachial pathway for mechanical itch [J]. Neuron, 2023, 111(11): 1812-+.
[70] HAN S, SOLEIMAN M T, SODEN M E, et al. Elucidating an Affective Pain Circuit that Creates a Threat Memory [J]. Cell, 2015, 162(2): 363-74.
[71] CHIANG M C, NGUYEN E K, CANTO-BUSTOS M, et al. Divergent Neural Pathways Emanating from the Lateral Parabrachial Nucleus Mediate Distinct Components of the Pain Response [J]. Neuron, 2020, 106(6): 927-+.
[72] NORRIS A J, SHAKER J R, CONE A L, et al. Parabrachial opioidergic projections to preoptic hypothalamus mediate behavioral and physiological thermal defenses [J]. Elife, 2021, 10.
[73] TAN C L, COOKE E K, LEIB D E, et al. Warm-Sensitive Neurons that Control Body Temperature [J]. Cell, 2016, 167(1): 47-+.
[74] NAKAMURA K, MORRISON S F. A thermosensory pathway that controls body temperature [J]. Nature Neuroscience, 2008, 11(1): 62-71.
[75] FONG H, ZHENG J, KURRASCH D. The structural and functional complexity of the integrative hypothalamus [J]. Science, 2023, 382(6669): 388-93.
[76] KAYAOGLU G, EKICI M, ALTUNKAYNAK B. Mechanical Allodynia in Healthy Teeth Adjacent and Contralateral to Endodontically Diseased Teeth: A Clinical Study [J]. Journal of Endodontics, 2020, 46(5): 611-8.
[77] ZHANG B, QIU L Y, XIAO W, et al. Reconstruction of the Hypothalamo-Neurohypophysial System and Functional Dissection of Magnocellular Oxytocin Neurons in the Brain [J]. Neuron, 2021, 109(2): 331-+.
[78] CHEN S D, YOU J, ZHANG W, et al. The genetic architecture of the human hypothalamus and its involvement in neuropsychiatric behaviours and disorders [J]. Nature Human Behaviour, 2024.
[79] RIECHER-RöSSLER A. Oestrogens, prolactin, hypothalamic-pituitary-gonadal axis, and schizophrenic psychoses [J]. Lancet Psychiatry, 2017, 4(1): 63-72.
[80] ZHENG Z W, GUO C, LI M, et al. Hypothalamus-habenula potentiation encodes chronic stress experience and drives depression onset [J]. Neuron, 2022, 110(8): 1400-+.
[81] ISHII M, IADECOLA C. Metabolic and Non-Cognitive Manifestations of Alzheimer's Disease: The Hypothalamus as Both Culprit and Target of Pathology [J]. Cell Metabolism, 2015, 22(5): 761-76.
[82] VAN ERP T G M, HIBAR D P, RASMUSSEN J M, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium [J]. Molecular Psychiatry, 2016, 21(4): 547-53.
[83] MA Y, ZHAO W A, CHEN D D, et al. Disinhibition of Mesolimbic Dopamine Circuit by the Lateral Hypothalamus Regulates Pain Sensation [J]. Journal of Neuroscience, 2023, 43(24): 4525-40.
[84] BERNARD J F, PESCHANSKI M, BESSON J M. A POSSIBLE SPINO (TRIGEMINO)-PONTO-AMYGDALOID PATHWAY FOR PAIN [J]. Neuroscience Letters, 1989, 100(1-3): 83-8.
[85] NEUGEBAUER V, LI W D, BIRD G C, et al. Synaptic plasticity in the amygdala in a model of arthritic pain: Differential roles of metabotropic glutamate receptors 1 and 5 [J]. Journal of Neuroscience, 2003, 23(1): 52-63.
[86] HUA T, CHEN B, LU D, et al. General anesthetics activate a potent central pain-suppression circuit in the amygdala [J]. Nature Neuroscience, 2020, 23(7): 854-68.
[87] NARITA M, KANEKO C, MIYOSHI K, et al. Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala [J]. Neuropsychopharmacology, 2006, 31(4): 739-50.
[88] MYERS B, MEERVELD B G-V. Elevated corticosterone in the amygdala leads to persistant increases in anxiety-like behavior and pain sensitivity [J]. Behavioural Brain Research, 2010, 214(2): 465-9.
[89] VOLKOW N D, MCLELLAN A T. Opioid Abuse in Chronic Pain - Misconceptions and Mitigation Strategies [J]. New England Journal of Medicine, 2016, 374(13): 1253-63.
[90] ZUBIETA J K, SMITH Y R, BUELLER J A, et al. Regional mu opioid receptor regulation of sensory and affective dimensions of pain [J]. Science, 2001, 293(5528): 311-5.
[91] FIELDS H L. The Doctor's Dilemma: Opiate Analgesics and Chronic Pain [J]. Neuron, 2011, 69(4): 591-4.
[92] MATTHES H W D, MALDONADO R, SIMONIN F, et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene [J]. Nature, 1996, 383(6603): 819-23.
[93] BIRDSONG W T, WILLIAMS J T. Recent Progress in Opioid Research from an Electrophysiological Perspective [J]. Molecular Pharmacology, 2020, 98(4): 401-9.
[94] WILLIAMS J T, INGRAM S L, HENDERSON G, et al. Regulation of μ-Opioid Receptors: Desensitization, Phosphorylation, Internalization, and Tolerance [J]. Pharmacological Reviews, 2013, 65(1): 223-54.
[95] MANGLIK A, LIN H, ARYAL D K, et al. Structure-based discovery of opioid analgesics with reduced side effects [J]. Nature, 2016, 537(7619): 185-+.
[96] CORDER G, CASTRO D C, BRUCHAS M R, SCHERRER G. Endogenous and Exogenous Opioids in Pain [M]//ROSKA B, ZOGHBI H Y. Annual Review of Neuroscience, Vol 41. 2018: 453-73.
[97] SAMAD T A, MOORE K A, SAPIRSTEIN A, et al. Interleukin-1β-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity [J]. Nature, 2001, 410(6827): 471-5.
[98] LI L, CHEN S-R, ZHOU M-H, et al. α2δ-1 switches the phenotype of synaptic AMPA receptors by physically disrupting heteromeric subunit assembly [J]. Cell Reports, 2021, 36(3).
[99] ALLES S R A, CAIN S M, SNUTCH T P. Pregabalin as a Pain Therapeutic: Beyond Calcium Channels [J]. Frontiers in Cellular Neuroscience, 2020, 14.
[100] KIM D-S, LI K-W, BOROUJERDI A, et al. Thrombospondin-4 Contributes to Spinal Sensitization and Neuropathic Pain States [J]. Journal of Neuroscience, 2012, 32(26): 8977-87.
[101] EROGLU C, ALLEN N J, SUSMAN M W, et al. Gabapentin Receptor α2δ-1 Is a Neuronal Thrombospondin Receptor Responsible for Excitatory CNS Synaptogenesis [J]. Cell, 2009, 139(2): 380-92.
[102] CAO P, ZHANG M, NI Z, et al. Green light induces antinociception via visual-somatosensory circuits [J]. Cell Reports, 2023, 42(4).
[103] SULLERE S, KUNCZT A, MCGEHEE D S. A cholinergic circuit that relieves pain despite opioid tolerance [J]. Neuron, 2023, 111(21): 3414-+.
[104] RUPPRECHT R, DI BENEDETTO B. Extracellular Signal-Regulated Kinases: A Role for Mood Disorders and the Emotional Component of Pain? [J]. Biological Psychiatry, 2017, 81(8): 639-41.
[105] DOUGLASS A M, KUCUKDERELI H, PONSERRE M, et al. Central amygdala circuits modulate food consumption through a positive-valence mechanism [J]. Nature Neuroscience, 2017, 20(10): 1384-+.
[106] WANG H, WANG Q, CUI L, et al. A molecularly defined amygdala-independent tetra-synaptic forebrain-to-hindbrain pathway for odor-driven innate fear and anxiety [J]. Nature Neuroscience, 2024.
[107] ZHANG Y, LIU S, ZHANG Y-Q, et al. Timing Mechanisms Underlying Gate Control by Feedforward Inhibition [J]. Neuron, 2018, 99(5): 941-+.
[108] MASGORET P, DE SOTO I, CABALLERO A, et al. Incidence of contralateral neurosensitive changes and persistent postoperative pain 6 months after mastectomy A prospective, observational investigation [J]. Medicine, 2020, 99(11).
[109] KONOPKA K-H, HARBERS M, HOUGHTON A, et al. Bilateral Sensory Abnormalities in Patients with Unilateral Neuropathic Pain; A Quantitative Sensory Testing (QST) Study [J]. Plos One, 2012, 7(5).
[110] LOCKWOOD S, DICKENSON A H. What goes up must come down: insights from studies on descending controls acting on spinal pain processing [J]. Journal of Neural Transmission, 2020, 127(4): 541-9.
[111] BANNISTER K. Descending pain modulation: influence and impact [J]. Current Opinion in Physiology, 2019, 11: 62-6.
[112] HUANG J, GADOTTI V M, CHEN L, et al. A neuronal circuit for activating descending modulation of neuropathic pain [J]. Nature Neuroscience, 2019, 22(10): 1659-+.
[113] LE BARS D, VILLANUEVA L, BOUHASSIRA D, WILLER J C. Diffuse noxious inhibitory controls (DNIC) in animals and in man [J]. Patologicheskaia fiziologiia i eksperimental'naia terapiia, 1992, (4): 55-65.
修改评论