中文版 | English
题名

基于CRISPR/Cas9系统在肾透明细胞癌(ccRCC)中筛选VHL合成致死基因

其他题名
CRISPR/CAS9 BASED SCREENING OF SYNTHETIC LETHAL PARTNER WITH VHL IN CLEAR CELL RENAL CELL CARCINOMA CELL
姓名
姓名拼音
ZHANG Mengyang
学号
12133077
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
朱琼花
导师单位
系统生物学系
论文答辩日期
2024-05-13
论文提交日期
2024-07-02
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

Von Hippel-Lindau(VHL)肿瘤抑制基因的纯合缺失是肾透明细胞癌的标志性起始事件。VHL蛋白失活导致缺氧诱导因子HIF的组成性激活,进而引起下游血管内皮生长因子(VEGF)和哺乳动物雷帕霉素靶蛋白(mTOR)等促血管生成和促增殖蛋白的表达上调。VEGF和mTOR抑制剂因此被用于肾透明细胞癌的治疗,但有效率低和抗药性仍然限制着患者的预后和生存。合成致死指两个基因,其中任何一个基因的单独丢失不会致死,但两个基因的同时丢失是致死的。识别癌症特异性的突变作为合成致死伙伴可以特异性清除肿瘤细胞,由于VHL突变在肾透明细胞癌中的普遍性,针对VHL突变的合成致死相互作用作为肾透明细胞癌的治疗靶点存在巨大潜力。

本文通过先后稳定转染Cas9蛋白表达载体与VHL过表达载体或相应的空载对照,在携带VHL突变的786-O肾透明细胞癌细胞系上构建了高敲除效率的VHL等基因细胞。大型基因组学研究揭示,表观遗传调控因子基因经常与VHL共同缺失,并且是肾透明细胞癌形成的重要共同驱动因素。本文设计了针对449个表观遗传调控因子基因的EPI-KO sgRNA文库用于筛选肾透明细胞癌标志性表观遗传异常的VHL合成致死伙伴。通过不同的生物信息学分析得到两组共10个候选VHL合成致死基因,并通过细胞混合增殖实验检验了第一组6个基因的合成致死效果,结果显示TRIM28基因与VHL存在合成致死效果。本文中构建的适用于CRISPR/Cas9高通量筛选的VHL合成致死筛选模型将为肾透明细胞癌药物靶点的发现做出一定贡献。

其他摘要

Homozygous loss of function of the Von Hippel-Lindau tumor suppressor gene (VHL) is a hallmark event in clear cell renal cell carcinoma (ccRCC). The inactivation of the von Hippel-Lindau (VHL) protein causes constitutive activation of the hypoxia-inducible factor (HIF), leading to the upregulation of downstream pro-angiogenic and pro-proliferative proteins. Vascular endothelial growth factor (VEGF) and mammalian target of rapamycin (mTOR) are such downstream targets, and their inhibitors are effective in suppressing ccRCC. However, easily developed drug resistance of both inhibitors and other side effects hindered their efficacy. Synthetic lethality between two genes refers to a phenomenon where perturbing either gene alone is viable, while simultaneous perturbation of both genes results in loss of viability. Targeting cancer-specific mutations for synthetic lethal partner identification is a great treatment strategy for precision tumor cell elimination. Due to its prevalence in ccRCC, VHL mutation holds significant potential as a target for synthetic lethal treatment strategies.

In this paper, we created an isogenic cell pair with high knockout efficiency. We first stably transfected the Cas9 protein expression vector into the VHL deficient 786-O cell line. Then, we introduced either the VHL overexpression vector or the corresponding empty vector to the Cas9-expressing cell. Large genomic studies reveal that epigenetic regulator genes are often co-deleted with VHL and are important co-drivers of ccRCC. Therefore, we developed an EPI-KO sgRNA library targeting 449 epigenetic regulator genes for CRISPR screening of VHL synthetic lethal partners. Through bioinformatical analysis of screening results, two groups of 10 candidate VHL synthetic lethal genes were obtained. Six of these genes were tested through mixed cell proliferation experiments to validate their synthetic lethal effects. The results showed that TRIM28 and VHL have synthetic lethal effects. The CRISPR/Cas9-based high-throughput synthetic lethality screening model developed in this study contributed to the discovery of drug targets for ccRCC.

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249.
[2] HSIEH J J, PURDUE M P, SIGNORETTI S, et al. Renal cell carcinoma[J]. Nature Reviews Disease Primers, 2017, 3: 17009.
[3] JONASCH E, WALKER C L, RATHMELL W K. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality[J]. Nature Reviews Nephrology, 2021, 17(4): 245-261.
[4] SZÜCS S, MÜLLER-BRECHLIN R, DERIESE W, et al. Deletion 3p: the only chromosome loss in a primary renal cell carcinoma[J]. Cancer Genetics and Cytogenetics, 1987, 26(2): 369-373.
[5] LATIF F, TORY K, GNARRA J, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene[J]. Science, 1993, 260(5112): 1317-1320.
[6] MITCHELL T J, TURAJLIC S, ROWAN A, et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx Renal[J]. Cell, 2018, 173(3): 611-623.e617.
[7] RICKETTS C J, DE CUBAS A A, FAN H, et al. The Cancer Genome Atlas comprehensive molecular characterization of renal cell carcinoma[J]. Cell Reports, 2018, 23(1): 313-326.e315.
[8] COWMAN S J, KOH M Y. Revisiting the HIF switch in the tumor and its immune microenvironment[J]. Trends in Cancer, 2022, 8(1): 28-42.
[9] GANNER A, GEHRKE C, KLEIN M, et al. VHL suppresses RAPTOR and inhibits mTORC1 signaling in clear cell renal cell carcinoma[J]. Scientific Reports, 2021, 11(1): 14827.
[10] CHOUEIRI T K, MOTZER R J. Systemic therapy for metastatic renal-cell carcinoma[J]. The New England Journal of Medicine, 2017, 376(4): 354-366.
[11] GOSSAGE L, EISEN T, MAHER E R. VHL, the story of a tumour suppressor gene[J]. Nature Reviews Cancer, 2015, 15(1): 55-64.
[12] KNUDSON A G JR. Mutation and cancer: statistical study of retinoblastoma[J]. Proceedings of the National Academy of Sciences of the United States of America, 1971, 68(4): 820-823.
[13] MAHER E R, YATES J R, FERGUSON-SMITH M A. Statistical analysis of the two stage mutation model in von Hippel-Lindau disease, and in sporadic cerebellar haemangioblastoma and renal cell carcinoma[J]. Journal of Medical Genetics, 1990, 27(5): 311-314.
[14] ZATYKA M, DA SILVA N F, CLIFFORD S C, et al. Identification of cyclin D1 and other novel targets for the von Hippel-Lindau tumor suppressor gene by expression array analysis and investigation of cyclin D1 genotype as a modifier in von Hippel-Lindau disease[J]. Cancer Research, 2002, 62(13): 3803-3811.
[15] ZHOU M I, WANG H, ROSS J J, et al. The von Hippel-Lindau tumor suppressor stabilizes novel plant homeodomain protein Jade-1[J]. Journal of Biological Chemistry, 2002, 277(42): 39887-39898.
[16] NYHAN M J, O'SULLIVAN G C, MCKENNA S L. Role of the VHL (von Hippel–Lindau) gene in renal cancer: a multifunctional tumour suppressor[J]. Biochemical Society Transactions, 2008, 36(3): 472-478.
[17] ZENG L, BAI M, MITTAL A K, et al. Candidate tumor suppressor and pVHL partner Jade-1 binds and inhibits AKT in renal cell carcinoma[J]. Cancer Research, 2013, 73(17): 5371-5380.
[18] ZHOU M I, WANG H, FOY R L, et al. Tumor suppressor von Hippel-Lindau (VHL) stabilization of Jade-1 protein occurs through plant homeodomains and is VHL mutation dependent[J]. Cancer Research, 2004, 64(4): 1278-1286.
[19] KAELIN W G JR. von Hippel-Lindau disease[J]. Annual Review of Pathology: Mechanisms of Disease, 2007, 2(1): 145-173.
[20] KAPITSINOU P P, HAASE V H. The VHL tumor suppressor and HIF: insights from genetic studies in mice[J]. Cell Death & Differentiation, 2008, 15(4): 650-659.
[21] HARLANDER S, SCHÖNENBERGER D, TOUSSAINT N C, et al. Combined mutation in Vhl, Trp53 and Rb1 causes clear cell renal cell carcinoma in mice[J]. Nature Medicine, 2017, 23(7): 869-877.
[22] MARGUERON R, TROJER P, REINBERG D. The key to development: interpreting the histone code?[J]. Current Opinion in Genetics & Development, 2005, 15(2): 163-176.
[23] PORTELA A, ESTELLER M. Epigenetic modifications and human disease[J]. Nature Biotechnology, 2010, 28(10): 1057-1068.
[24] JONES P A, BAYLIN S B. The epigenomics of cancer[J]. Cell, 2007, 128(4): 683-692.
[25] MARGUERON R, REINBERG D. The Polycomb complex PRC2 and its mark in life[J]. Nature, 2011, 469(7330): 343-349.
[26] DAWSON M A, KOUZARIDES T. Cancer epigenetics: from mechanism to therapy[J]. Cell, 2012, 150(1): 12-27.
[27] WALTON J, LAWSON K, PRINOS P, et al. PBRM1, SETD2 and BAP1 - the trinity of 3p in clear cell renal cell carcinoma[J]. Nature Reviews Urology, 2023, 20(2): 96-115.
[28] GAO W, LI W, XIAO T, et al. Inactivation of the PBRM1 tumor suppressor gene amplifies the HIF-response in VHL-/- clear cell renal carcinoma[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 1027-1032.
[29] NARGUND A M, PHAM C G, DONG Y, et al. The SWI/SNF protein PBRM1 restrains VHL-loss-driven clear cell renal cell carcinoma[J]. Cell Reports, 2017, 18(12): 2893-2906.
[30] CAI W, SU L, LIAO L, et al. PBRM1 acts as a p53 lysine-acetylation reader to suppress renal tumor growth[J]. Nature Communications, 2019, 10
[31] ESPANA-AGUSTI J, WARREN A, CHEW S K, et al. Loss of PBRM1 rescues VHL dependent replication stress to promote renal carcinogenesis[J]. Nature Communications, 2017, 8(1): 2026.
[32] WAGNER E J, CARPENTER P B. Understanding the language of Lys36 methylation at histone H3[J]. Nature Reviews Molecular Cell Biology, 2012, 13(2): 115-126.
[33] EDMUNDS J W, MAHADEVAN L C, CLAYTON A L. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation[J]. The EMBO Journal, 2008, 27(2): 406-420.
[34] PEÑA-LLOPIS S, VEGA-RUBÍN-DE-CELIS S, LIAO A, et al. BAP1 loss defines a new class of renal cell carcinoma[J]. Nature Genetics, 2012, 44(7): 751-759.
[35] KAPUR P, PEÑA-LLOPIS S, CHRISTIE A, et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation[J]. The Lancet. Oncology, 2013, 14(2): 159-167.
[36] LINEHAN W M, RICKETTS C J. The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications[J]. Nature Reviews Urology, 2019, 16(9): 539-552.
[37] WETTERSTEN H I, ABOUD O A, LARA P N JR., et al. Metabolic reprogramming in clear cell renal cell carcinoma[J]. Nature Reviews Nephrology, 2017, 13(7): 410-419.
[38] HAAS N B, APPLEMAN L J, STEIN M, et al. Autophagy inhibition to augment mTOR inhibition: a Phase I/II trial of everolimus and hydroxychloroquine in patients with previously treated renal cell carcinoma[J]. Clinical Cancer Research, 2019, 25(7): 2080-2087.
[39] MOTZER R J, JONASCH E, AGARWAL N, et al. Kidney cancer, version 3.2022, NCCN clinical practice guidelines in oncology[J]. Journal of the National Comprehensive Cancer Network, 2022, 20(1): 71-90.
[40] U.S. NATIONAL LIBRARY OF MEDICINE. DS3201 and ipilimumab for the treatment of metastatic prostate, urothelial and renal cell cancers. NCT04388852[EB/OL]. (2020-05-14)
[2024-04-25].https://classic.clinicaltrials.gov/ct2/show/NCT04388852.
[41] KAELIN W G JR. HIF2 inhibitor joins the kidney cancer armamentarium[J]. J Journal of Clinical Oncology, 2018, 36(9): 908-910.
[42] U.S. FOOD AND DRUG ADMINISTRATION. FDA approves belzutifan for cancers associated with von Hippel-Lindau disease[EB/OL]. (2022-02-01)
[2024-04-25]. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-belzutifan-cancers-associated-von-hippel-lindau-disease.
[43] KHORKOVA O, STAHL J, JOJI A, et al. Amplifying gene expression with RNA-targeted therapeutics[J]. Nature Reviews Drug Discovery, 2023, 22(7): 539-561.
[44] O'NEIL N J, BAILEY M L, HIETER P. Synthetic lethality and cancer[J]. Nature Reviews Genetics, 2017, 18(10): 613-623.
[45] HARTWELL L H, SZANKASI P, ROBERTS C J, et al. Integrating genetic approaches into the discovery of anticancer drugs[J]. Science, 1997, 278(5340): 1064-1068.
[46] SONNENBLICK A, DE AZAMBUJA E, AZIM H A JR, et al. An update on PARP inhibitors--moving to the adjuvant setting[J]. Nature Reviews Clinical Oncology, 2015, 12(1): 27-41.
[47] BRYANT H E, SCHULTZ N, THOMAS H D, et al. Specific killing of BRCA2-deficient tumors with inhibitors of poly(ADP-ribose) polymerase[J]. Nature, 2005, 434(7035): 913-917.
[48] FARMER H, MCCABE N, LORD C J, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy[J]. Nature, 2005, 434(7035): 917-921.
[49] HUANG A, GARRAWAY L A, ASHWORTH A, et al. Synthetic lethality as an engine for cancer drug target discovery[J]. Nature Reviews Drug Discovery, 2020, 19(1): 23-38.
[50] BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712.
[51] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
[52] CHO S W, KIM S, KIM J M, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease[J]. Nature Biotechnology, 2013, 31(3): 230-232.
[53] CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823.
[54] JINEK M, EAST A, CHENG A, et al. RNA-programmed genome editing in human cells[J]. eLife, 2013, 2: e00471.
[55] MALI P, YANG L, ESVELT K M, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826.
[56] ANZALONE A V, KOBLAN L W, LIU D R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nature Biotechnology, 2020, 38(7): 824-844.
[57] JOUNG J, KONERMANN S, GOOTENBERG J S, et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening[J]. Nature Protocols, 2017, 12(4): 828-863.
[58] SHALEM O, SANJANA N E, HARTENIAN E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells[J]. Science, 2014, 343(6166): 84-87.
[59] MAKHOV P, SOHN J A, SEREBRIISKII I G, et al. CRISPR/Cas9 genome-wide loss-of-function screening identifies druggable cellular factors involved in sunitinib resistance in renal cell carcinoma[J]. British Journal of Cancer, 2020, 123(12): 1749-1756.
[60] HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
[61] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method [J]. Methods, 2001, 25(4): 402-408.
[62] ARONESTY E. Comparison of sequencing utility programs[J]. The Open Bioinformatics Journal, 2013, 7: 1-8.
[63] SOBCZUK P, BRODZIAK A, KHAN M I, et al. Choosing the right animal model for renal cancer research[J]. Translational Oncology, 2020, 13(3): 100745.
[64] ZHANG J-P, LI X-L, NEISES A, et al. Different effects of sgRNA length on CRISPR-mediated gene knockout efficiency[J]. Scientific Reports, 2016, 6(1): 28566.
[65] YUEN G, KHAN F J, GAO S, et al. CRISPR/Cas9-mediated gene knockout is insensitive to target copy number but is dependent on guide RNA potency and Cas9/sgRNA threshold expression level[J]. Nucleic Acids Research, 2017, 45(20): 12039-12053.
[66] FERNANDES NETO J M, LIEFTINK C, JASTRZEBSKI K, et al. Performance of large scale pooled CRISPR screens is dependent on Cas9 expression levels[J/OL]. bioRxiv, 2021. https://www.biorxiv.org/content/10.1101/2021.07.13.452178v2. DOI:10.1101/2021.07.13.452178
[67] SUN N, PETIWALA S, LU C, et al. VHL synthetic lethality signatures uncovered by genotype-specific CRISPR-Cas9 screens[J]. The CRISPR Journal, 2019, 2: 230-245.
[68] GATTO F, NOOKAEW I, NIELSEN J. Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): E866-E875.
[69] ZHU S, DING W, CHEN Y, et al. High VHL expression reverses Warburg phenotype and enhances immunogenicity in kidney tumor cells[J]. Genomics, Proteomics & Bioinformatics, 2022, 20(4): 657-669.
[70] BUART S, TERRY S, DIOP M B K, et al. The most common VHL point mutation R167Q in hereditary VHL disease interferes with cell plasticity regulation[J]. Cancers, 2021, 13(15): 3897.
[71] WANG X, HU J, FANG Y, et al. Multi-omics profiling to assess signaling changes upon VHL restoration and identify putative VHL substrates in clear cell renal cell carcinoma cell lines[J]. Cells, 2022, 11(3): 472.
[72] RAN F A, HSU P D, WRIGHT J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nature Protocols, 2013, 8(11): 2281-2308.
[73] WANG B, WANG M, ZHANG W, et al. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute[J]. Nature Protocols, 2019, 14(3): 756-780.
[74] ABE A, MIYANOHARA A, FRIEDMANN T. Polybrene increases the efficiency of gene transfer by lipofection[J]. Gene Therapy, 1998, 5(5): 708-711.
[75] SONG T, LV S, MA X, et al. TRIM28 represses renal cell carcinoma cell proliferation by inhibiting TFE3/KDM6A-regulated autophagy[J]. Journal of Biological Chemistry, 2023: 104621.
[76] JI W, WANG J, ZHANG W, et al. pVHL acts as a downstream target of E2F1 to suppress E2F1 activity[J]. The Biochemical Journal, 2014, 457(1): 185-195.
[77] WANG C, RAUSCHER F J, 3RD, CRESS W D, et al. Regulation of E2F1 function by the nuclear corepressor KAP1[J]. The Journal of Biological Chemistry, 2007, 282(41): 29902-29909.

所在学位评定分委会
生物学
国内图书分类号
Q2-33
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778851
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
张梦阳. 基于CRISPR/Cas9系统在肾透明细胞癌(ccRCC)中筛选VHL合成致死基因[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12133077-张梦阳-生物系.pdf(4903KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张梦阳]的文章
百度学术
百度学术中相似的文章
[张梦阳]的文章
必应学术
必应学术中相似的文章
[张梦阳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。