[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249.
[2] HSIEH J J, PURDUE M P, SIGNORETTI S, et al. Renal cell carcinoma[J]. Nature Reviews Disease Primers, 2017, 3: 17009.
[3] JONASCH E, WALKER C L, RATHMELL W K. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality[J]. Nature Reviews Nephrology, 2021, 17(4): 245-261.
[4] SZÜCS S, MÜLLER-BRECHLIN R, DERIESE W, et al. Deletion 3p: the only chromosome loss in a primary renal cell carcinoma[J]. Cancer Genetics and Cytogenetics, 1987, 26(2): 369-373.
[5] LATIF F, TORY K, GNARRA J, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene[J]. Science, 1993, 260(5112): 1317-1320.
[6] MITCHELL T J, TURAJLIC S, ROWAN A, et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx Renal[J]. Cell, 2018, 173(3): 611-623.e617.
[7] RICKETTS C J, DE CUBAS A A, FAN H, et al. The Cancer Genome Atlas comprehensive molecular characterization of renal cell carcinoma[J]. Cell Reports, 2018, 23(1): 313-326.e315.
[8] COWMAN S J, KOH M Y. Revisiting the HIF switch in the tumor and its immune microenvironment[J]. Trends in Cancer, 2022, 8(1): 28-42.
[9] GANNER A, GEHRKE C, KLEIN M, et al. VHL suppresses RAPTOR and inhibits mTORC1 signaling in clear cell renal cell carcinoma[J]. Scientific Reports, 2021, 11(1): 14827.
[10] CHOUEIRI T K, MOTZER R J. Systemic therapy for metastatic renal-cell carcinoma[J]. The New England Journal of Medicine, 2017, 376(4): 354-366.
[11] GOSSAGE L, EISEN T, MAHER E R. VHL, the story of a tumour suppressor gene[J]. Nature Reviews Cancer, 2015, 15(1): 55-64.
[12] KNUDSON A G JR. Mutation and cancer: statistical study of retinoblastoma[J]. Proceedings of the National Academy of Sciences of the United States of America, 1971, 68(4): 820-823.
[13] MAHER E R, YATES J R, FERGUSON-SMITH M A. Statistical analysis of the two stage mutation model in von Hippel-Lindau disease, and in sporadic cerebellar haemangioblastoma and renal cell carcinoma[J]. Journal of Medical Genetics, 1990, 27(5): 311-314.
[14] ZATYKA M, DA SILVA N F, CLIFFORD S C, et al. Identification of cyclin D1 and other novel targets for the von Hippel-Lindau tumor suppressor gene by expression array analysis and investigation of cyclin D1 genotype as a modifier in von Hippel-Lindau disease[J]. Cancer Research, 2002, 62(13): 3803-3811.
[15] ZHOU M I, WANG H, ROSS J J, et al. The von Hippel-Lindau tumor suppressor stabilizes novel plant homeodomain protein Jade-1[J]. Journal of Biological Chemistry, 2002, 277(42): 39887-39898.
[16] NYHAN M J, O'SULLIVAN G C, MCKENNA S L. Role of the VHL (von Hippel–Lindau) gene in renal cancer: a multifunctional tumour suppressor[J]. Biochemical Society Transactions, 2008, 36(3): 472-478.
[17] ZENG L, BAI M, MITTAL A K, et al. Candidate tumor suppressor and pVHL partner Jade-1 binds and inhibits AKT in renal cell carcinoma[J]. Cancer Research, 2013, 73(17): 5371-5380.
[18] ZHOU M I, WANG H, FOY R L, et al. Tumor suppressor von Hippel-Lindau (VHL) stabilization of Jade-1 protein occurs through plant homeodomains and is VHL mutation dependent[J]. Cancer Research, 2004, 64(4): 1278-1286.
[19] KAELIN W G JR. von Hippel-Lindau disease[J]. Annual Review of Pathology: Mechanisms of Disease, 2007, 2(1): 145-173.
[20] KAPITSINOU P P, HAASE V H. The VHL tumor suppressor and HIF: insights from genetic studies in mice[J]. Cell Death & Differentiation, 2008, 15(4): 650-659.
[21] HARLANDER S, SCHÖNENBERGER D, TOUSSAINT N C, et al. Combined mutation in Vhl, Trp53 and Rb1 causes clear cell renal cell carcinoma in mice[J]. Nature Medicine, 2017, 23(7): 869-877.
[22] MARGUERON R, TROJER P, REINBERG D. The key to development: interpreting the histone code?[J]. Current Opinion in Genetics & Development, 2005, 15(2): 163-176.
[23] PORTELA A, ESTELLER M. Epigenetic modifications and human disease[J]. Nature Biotechnology, 2010, 28(10): 1057-1068.
[24] JONES P A, BAYLIN S B. The epigenomics of cancer[J]. Cell, 2007, 128(4): 683-692.
[25] MARGUERON R, REINBERG D. The Polycomb complex PRC2 and its mark in life[J]. Nature, 2011, 469(7330): 343-349.
[26] DAWSON M A, KOUZARIDES T. Cancer epigenetics: from mechanism to therapy[J]. Cell, 2012, 150(1): 12-27.
[27] WALTON J, LAWSON K, PRINOS P, et al. PBRM1, SETD2 and BAP1 - the trinity of 3p in clear cell renal cell carcinoma[J]. Nature Reviews Urology, 2023, 20(2): 96-115.
[28] GAO W, LI W, XIAO T, et al. Inactivation of the PBRM1 tumor suppressor gene amplifies the HIF-response in VHL-/- clear cell renal carcinoma[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 1027-1032.
[29] NARGUND A M, PHAM C G, DONG Y, et al. The SWI/SNF protein PBRM1 restrains VHL-loss-driven clear cell renal cell carcinoma[J]. Cell Reports, 2017, 18(12): 2893-2906.
[30] CAI W, SU L, LIAO L, et al. PBRM1 acts as a p53 lysine-acetylation reader to suppress renal tumor growth[J]. Nature Communications, 2019, 10
[31] ESPANA-AGUSTI J, WARREN A, CHEW S K, et al. Loss of PBRM1 rescues VHL dependent replication stress to promote renal carcinogenesis[J]. Nature Communications, 2017, 8(1): 2026.
[32] WAGNER E J, CARPENTER P B. Understanding the language of Lys36 methylation at histone H3[J]. Nature Reviews Molecular Cell Biology, 2012, 13(2): 115-126.
[33] EDMUNDS J W, MAHADEVAN L C, CLAYTON A L. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation[J]. The EMBO Journal, 2008, 27(2): 406-420.
[34] PEÑA-LLOPIS S, VEGA-RUBÍN-DE-CELIS S, LIAO A, et al. BAP1 loss defines a new class of renal cell carcinoma[J]. Nature Genetics, 2012, 44(7): 751-759.
[35] KAPUR P, PEÑA-LLOPIS S, CHRISTIE A, et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation[J]. The Lancet. Oncology, 2013, 14(2): 159-167.
[36] LINEHAN W M, RICKETTS C J. The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications[J]. Nature Reviews Urology, 2019, 16(9): 539-552.
[37] WETTERSTEN H I, ABOUD O A, LARA P N JR., et al. Metabolic reprogramming in clear cell renal cell carcinoma[J]. Nature Reviews Nephrology, 2017, 13(7): 410-419.
[38] HAAS N B, APPLEMAN L J, STEIN M, et al. Autophagy inhibition to augment mTOR inhibition: a Phase I/II trial of everolimus and hydroxychloroquine in patients with previously treated renal cell carcinoma[J]. Clinical Cancer Research, 2019, 25(7): 2080-2087.
[39] MOTZER R J, JONASCH E, AGARWAL N, et al. Kidney cancer, version 3.2022, NCCN clinical practice guidelines in oncology[J]. Journal of the National Comprehensive Cancer Network, 2022, 20(1): 71-90.
[40] U.S. NATIONAL LIBRARY OF MEDICINE. DS3201 and ipilimumab for the treatment of metastatic prostate, urothelial and renal cell cancers. NCT04388852[EB/OL]. (2020-05-14)
[2024-04-25].https://classic.clinicaltrials.gov/ct2/show/NCT04388852.
[41] KAELIN W G JR. HIF2 inhibitor joins the kidney cancer armamentarium[J]. J Journal of Clinical Oncology, 2018, 36(9): 908-910.
[42] U.S. FOOD AND DRUG ADMINISTRATION. FDA approves belzutifan for cancers associated with von Hippel-Lindau disease[EB/OL]. (2022-02-01)
[2024-04-25]. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-belzutifan-cancers-associated-von-hippel-lindau-disease.
[43] KHORKOVA O, STAHL J, JOJI A, et al. Amplifying gene expression with RNA-targeted therapeutics[J]. Nature Reviews Drug Discovery, 2023, 22(7): 539-561.
[44] O'NEIL N J, BAILEY M L, HIETER P. Synthetic lethality and cancer[J]. Nature Reviews Genetics, 2017, 18(10): 613-623.
[45] HARTWELL L H, SZANKASI P, ROBERTS C J, et al. Integrating genetic approaches into the discovery of anticancer drugs[J]. Science, 1997, 278(5340): 1064-1068.
[46] SONNENBLICK A, DE AZAMBUJA E, AZIM H A JR, et al. An update on PARP inhibitors--moving to the adjuvant setting[J]. Nature Reviews Clinical Oncology, 2015, 12(1): 27-41.
[47] BRYANT H E, SCHULTZ N, THOMAS H D, et al. Specific killing of BRCA2-deficient tumors with inhibitors of poly(ADP-ribose) polymerase[J]. Nature, 2005, 434(7035): 913-917.
[48] FARMER H, MCCABE N, LORD C J, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy[J]. Nature, 2005, 434(7035): 917-921.
[49] HUANG A, GARRAWAY L A, ASHWORTH A, et al. Synthetic lethality as an engine for cancer drug target discovery[J]. Nature Reviews Drug Discovery, 2020, 19(1): 23-38.
[50] BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712.
[51] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
[52] CHO S W, KIM S, KIM J M, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease[J]. Nature Biotechnology, 2013, 31(3): 230-232.
[53] CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823.
[54] JINEK M, EAST A, CHENG A, et al. RNA-programmed genome editing in human cells[J]. eLife, 2013, 2: e00471.
[55] MALI P, YANG L, ESVELT K M, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826.
[56] ANZALONE A V, KOBLAN L W, LIU D R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nature Biotechnology, 2020, 38(7): 824-844.
[57] JOUNG J, KONERMANN S, GOOTENBERG J S, et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening[J]. Nature Protocols, 2017, 12(4): 828-863.
[58] SHALEM O, SANJANA N E, HARTENIAN E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells[J]. Science, 2014, 343(6166): 84-87.
[59] MAKHOV P, SOHN J A, SEREBRIISKII I G, et al. CRISPR/Cas9 genome-wide loss-of-function screening identifies druggable cellular factors involved in sunitinib resistance in renal cell carcinoma[J]. British Journal of Cancer, 2020, 123(12): 1749-1756.
[60] HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
[61] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method [J]. Methods, 2001, 25(4): 402-408.
[62] ARONESTY E. Comparison of sequencing utility programs[J]. The Open Bioinformatics Journal, 2013, 7: 1-8.
[63] SOBCZUK P, BRODZIAK A, KHAN M I, et al. Choosing the right animal model for renal cancer research[J]. Translational Oncology, 2020, 13(3): 100745.
[64] ZHANG J-P, LI X-L, NEISES A, et al. Different effects of sgRNA length on CRISPR-mediated gene knockout efficiency[J]. Scientific Reports, 2016, 6(1): 28566.
[65] YUEN G, KHAN F J, GAO S, et al. CRISPR/Cas9-mediated gene knockout is insensitive to target copy number but is dependent on guide RNA potency and Cas9/sgRNA threshold expression level[J]. Nucleic Acids Research, 2017, 45(20): 12039-12053.
[66] FERNANDES NETO J M, LIEFTINK C, JASTRZEBSKI K, et al. Performance of large scale pooled CRISPR screens is dependent on Cas9 expression levels[J/OL]. bioRxiv, 2021. https://www.biorxiv.org/content/10.1101/2021.07.13.452178v2. DOI:10.1101/2021.07.13.452178
[67] SUN N, PETIWALA S, LU C, et al. VHL synthetic lethality signatures uncovered by genotype-specific CRISPR-Cas9 screens[J]. The CRISPR Journal, 2019, 2: 230-245.
[68] GATTO F, NOOKAEW I, NIELSEN J. Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): E866-E875.
[69] ZHU S, DING W, CHEN Y, et al. High VHL expression reverses Warburg phenotype and enhances immunogenicity in kidney tumor cells[J]. Genomics, Proteomics & Bioinformatics, 2022, 20(4): 657-669.
[70] BUART S, TERRY S, DIOP M B K, et al. The most common VHL point mutation R167Q in hereditary VHL disease interferes with cell plasticity regulation[J]. Cancers, 2021, 13(15): 3897.
[71] WANG X, HU J, FANG Y, et al. Multi-omics profiling to assess signaling changes upon VHL restoration and identify putative VHL substrates in clear cell renal cell carcinoma cell lines[J]. Cells, 2022, 11(3): 472.
[72] RAN F A, HSU P D, WRIGHT J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nature Protocols, 2013, 8(11): 2281-2308.
[73] WANG B, WANG M, ZHANG W, et al. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute[J]. Nature Protocols, 2019, 14(3): 756-780.
[74] ABE A, MIYANOHARA A, FRIEDMANN T. Polybrene increases the efficiency of gene transfer by lipofection[J]. Gene Therapy, 1998, 5(5): 708-711.
[75] SONG T, LV S, MA X, et al. TRIM28 represses renal cell carcinoma cell proliferation by inhibiting TFE3/KDM6A-regulated autophagy[J]. Journal of Biological Chemistry, 2023: 104621.
[76] JI W, WANG J, ZHANG W, et al. pVHL acts as a downstream target of E2F1 to suppress E2F1 activity[J]. The Biochemical Journal, 2014, 457(1): 185-195.
[77] WANG C, RAUSCHER F J, 3RD, CRESS W D, et al. Regulation of E2F1 function by the nuclear corepressor KAP1[J]. The Journal of Biological Chemistry, 2007, 282(41): 29902-29909.
修改评论