[1] LUO Q, HU S, LI C, et al. Resource Scheduling in Edge Computing: A Survey[A]. 2021. arXiv: 2108.08059.
[2] DUAN Q, HU S, DENG R, et al. Combined Federated and Split Learning in Edge Computing for Ubiquitous Intelligence in Internet of Things: State-of-the-Art and Future Directions[J/OL]. Sensors, 2022, 22(16). https://www.mdpi.com/1424-8220/22/16/5983. DOI: 10.3390/s22165983.
[3] SHI W, ZHOU S, NIU Z, et al. Multiuser Co-Inference With Batch Processing Capable Edge Server[J/OL]. IEEE Transactions on Wireless Communications, 2023, 22(1): 286-300. DOI: 10.1109/TWC.2022.3192613.
[4] TANG X, CHEN X, ZENG L, et al. Joint Multiuser DNN Partitioning and Computational Resource Allocation for Collaborative Edge Intelligence[J/OL]. IEEE Internet of Things Journal, 2021, 8(12): 9511-9522. DOI: 10.1109/JIOT.2020.3010258.
[5] WANG X, HAN Y, WANG C, et al. In-Edge AI: Intelligentizing Mobile Edge Computing, Caching and Communication by Federated Learning[J/OL]. IEEE Network, 2019, 33(5): 156-165. DOI: 10.1109/MNET.2019.1800286.
[6] TEERAPITTAYANON S, MCDANEL B, KUNG H. Distributed Deep Neural Networks Over the Cloud, the Edge and End Devices[C/OL]//2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). 2017: 328-339. DOI: 10.1109/ICDCS.2017.226.
[7] CHOLLET F. Xception: Deep Learning with Depthwise Separable Convolutions[A]. 2017. arXiv: 1610.02357.
[8] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications[A]. 2017. arXiv: 1704.04861.
[9] TAN M, LE Q V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[A]. 2020. arXiv: 1905.11946.
[10] CHENG Y, WANG D, ZHOU P, et al. A Survey of Model Compression and Acceleration for Deep Neural Networks[A]. 2020. arXiv: 1710.09282.
[11] SHARMA R, BIOOKAGHAZADEH S, LI B, et al. Are Existing Knowledge Transfer Techniques Effective for Deep Learning with Edge Devices?[C/OL]//2018 IEEE International Conference on Edge Computing (EDGE). 2018: 42-49. DOI: 10.1109/EDGE.2018.00013.
[12] TEERAPITTAYANON S, MCDANEL B, KUNG H T. BranchyNet: Fast Inference via Early Exiting from Deep Neural Networks[A]. 2017. arXiv: 1709.01686.
[13] SHAO J, ZHANG H, MAO Y, et al. Branchy-GNN: a Device-Edge Co-Inference Framework for Efficient Point Cloud Processing[A]. 2023. arXiv: 2011.02422.
[14] OGDEN S S, GUO T. MODI: Mobile Deep Inference Made Efficient by Edge Computing[C/OL]//USENIX Workshop on Hot Topics in Edge Computing (HotEdge 18). Boston, MA: USENIX Association, 2018. https://www.usenix.org/conference/hotedge18/presentation/ogden.
[15] MAO J, CHEN X, NIXON K W, et al. MoDNN: Local distributed mobile computing system for Deep Neural Network[C/OL]//Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017. 2017: 1396-1401. DOI: 10.23919/DATE.2017.7927211.
[16] HU C, LI B. Distributed Inference with Deep Learning Models across Heterogeneous Edge Devices[C/OL]//IEEE INFOCOM 2022 - IEEE Conference on Computer Communications. 2022: 330-339. DOI: 10.1109/INFOCOM48880.2022.9796896.
[17] ZENG L, CHEN X, ZHOU Z, et al. CoEdge: Cooperative DNN Inference With Adaptive Workload Partitioning Over Heterogeneous Edge Devices[J/OL]. IEEE/ACM Trans. Netw., 2021, 29(2): 595–608. https://doi.org/10.1109/TNET.2020.3042320.
[18] LI E, ZENG L, ZHOU Z, et al. Edge AI: On-Demand Accelerating Deep Neural Network Inference via Edge Computing[A]. 2019. arXiv: 1910.05316.
[19] LIN P, SHI Z, XIAO Z, et al. Latency-Driven Model Placement for Efficient Edge Intelligence Service[J/OL]. IEEE Transactions on Services Computing, 2022, 15(2): 591-601. DOI: 10.1109/TSC.2021.3109094.
[20] BROWN T B, MANN B, RYDER N, et al. Language Models are Few-Shot Learners[A]. 2020. arXiv: 2005.14165.
[21] HUANG X, YU R, LIU J, et al. Parked Vehicle Edge Computing: Exploiting Opportunistic Resources for Distributed Mobile Applications[J/OL]. IEEE Access, 2018, 6: 66649-66663. DOI: 10.1109/ACCESS.2018.2879578.
[22] WANG Y, RU Z Y, WANG K, et al. Joint Deployment and Task Scheduling Optimization for Large-Scale Mobile Users in Multi-UAV-Enabled Mobile Edge Computing[J/OL]. IEEE Transactions on Cybernetics, 2020, 50(9): 3984-3997. DOI: 10.1109/TCYB.2019.2935466.
[23] DU H, LI Z, NIYATO D, et al. Enabling AI-Generated Content (AIGC) Services in Wireless Edge Networks[M/OL]. arXiv, 2023
[2024-05-06]. http://arxiv.org/abs/2301.03220. DOI: 10.48550/arXiv.2301.03220.
[24] KUM S, OH S, YEOM J, et al. Optimization of Edge Resources for Deep Learning Application with Batch and Model Management[J/OL]. Sensors, 2022, 22(17). https://www.mdpi.com/1424-8220/22/17/6717. DOI: 10.3390/s22176717.
[25] MIAO W, ZENG Z, LI S, et al. Microservice Replacement Algorithm in Cloud-Edge System for Edge Intelligence[C/OL]//2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). 2021: 1737-1744. DOI: 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00234.
[26] ZHANG M, CAO J, SAHNI Y, et al. Resource-efficient Parallel Split Learning in Heterogeneous Edge Computing[M/OL]. arXiv, 2024
[2024-05-06]. http://arxiv.org/abs/2403.15815. DOI: 10.48550/arXiv.2403.15815.
[27] LI P, WANG X, HUANG K, et al. Multi-Model Running Latency Optimization in an Edge Computing Paradigm[J/OL]. Sensors, 2022, 22(16). https://www.mdpi.com/1424-8220/22/16/6097. DOI: 10.3390/s22166097.
[28] NISHIO T, YONETANI R. Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge[C/OL]//ICC 2019 - 2019 IEEE International Conference on Communications (ICC). IEEE, 2019. https://doi.org/10.1109%2Ficc.2019.8761315. DOI: 10.1109/icc.2019.8761315.
[29] HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[A]. 2015. arXiv: 1512.03385.
[30] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation[A]. 2015. arXiv: 1505.04597.
[31] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal Speed and Accuracy of Object Detection[A]. 2020. arXiv: 2004.10934.
[32] TARNAWSKI J, PHANISHAYEE A, DEVANUR N R, et al. Efficient Algorithms for Device Placement of DNN Graph Operators[A]. 2020. arXiv: 2006.16423.
[33] BANITALEBI-DEHKORDI A, VEDULA N, PEI J, et al. Auto-Split: A General Framework of Collaborative Edge-Cloud AI[C/OL]//KDD ’21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York, NY, USA: Association for Computing Machinery, 2021: 2543–2553. https://doi.org/10.1145/3447548.3467078.
[34] ONGARO D, OUSTERHOUT J. In Search of an Understandable Consensus Algorithm[C/OL]//2014 USENIX Annual Technical Conference (USENIX ATC 14). Philadelphia, PA: USENIX Association, 2014: 305-319. https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro.
[35] LI S, ZHAO Y, VARMA R, et al. PyTorch Distributed: Experiences on Accelerating Data Parallel Training[A]. 2020. arXiv: 2006.15704.
[36] ABADI M, BARHAM P, CHEN J, et al. TensorFlow: A system for large-scale machine learning[A]. 2016. arXiv: 1605.08695.
[37] PASZKE A, GROSS S, MASSA F, et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library[A]. 2019. arXiv: 1912.01703.
[38] LIU G, DAI F, HUANG B, et al. Towards Accurate Latency Prediction of DNN Layers Inference on Diverse Computing Platforms[C/OL]//2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). 2022: 1-7. DOI: 10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927862.
[39] ZHANG L L, HAN S, WEI J, et al. Nn-Meter: Towards Accurate Latency Prediction of DeepLearning Model Inference on Diverse Edge Devices[C/OL]//MobiSys ’21: Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services. New York, NY, USA: Association for Computing Machinery, 2021: 81–93. https://doi.org/10.1145/3458864.3467882.
[40] MENDOZA D. Predicting Latency of Neural Network Inference[C]//2020.
[41] KIRILLOV A, MINTUN E, RAVI N, et al. Segment Anything[A]. 2023.
[42] LAHIANY A, APERSTEIN Y. PTEENet: Post-Trained Early-Exit Neural Networks Augmentation for Inference Cost Optimization[J/OL]. IEEE Access, 2022, 10: 69680-69687. DOI: 10.1109/ACCESS.2022.3187002.
[43] BANK D, KOENIGSTEIN N, GIRYES R. Autoencoders[A]. 2021. arXiv: 2003.05991.
[44] PASZKE A, GROSS S, MASSA F, et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library[M]. Red Hook, NY, USA: Curran Associates Inc., 2019.
修改评论