中文版 | English
题名

林火三要素对受热土壤溶解有机质特性的 影响规律研究

其他题名
IMPACTS OF THE THREE ELEMENTS OF FOREST FIRE ON THE CHARACTERISTICS OF DISSOLVED ORGANIC MATTER IN HEATED SOILS
姓名
姓名拼音
ZHANG Qiang
学号
11949042
学位类型
博士
学位专业
085274 能源与环保
学科门类/专业学位类别
08 工学
导师
王俊坚
导师单位
环境科学与工程学院
论文答辩日期
2024-04-20
论文提交日期
2024-07-02
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

在当前全球变暖和人类活动加剧的背景下,森林火灾的频率和强度显著上升。受火灾加热过程影响,土壤中大量受热土壤溶解有机质(DOM)形成并进入水生态系统。因此,受热土壤DOM成为全球碳循环过程中的重要要素。此外,受热土壤DOM不仅是火灾后生态系统恢复过程中土壤微生物群落的重要营养底物,还是导致流域内饮用水质量下降的消毒副产物的重要前体物。受热土壤DOM特性受土壤火烧严重度的影响,而土壤火烧严重度主要受林火三要素(加热温度、氧气浓度、燃料类型)所控制。目前,大多研究主要集中在加热温度对土壤有机质的影响,而在林火三要素对受热土壤DOM特性的综合影响规律方面有待深入挖掘。因此,揭示林火三要素不同程度影响下受热土壤DOM特性变化规律,对评估和理解受热土壤DOM介导的碳循环和生态环境效应具有重要意义。

本文旨在通过室内模拟实验,结合多种谱学分析技术,探讨林火三要素对受热土壤DOM特性的影响规律。首先,基于对森林O层有机覆盖和A层矿质土壤的梯度加热(150-500 ℃,25 ℃为梯度)控制实验,揭示不同加热温度水平下受热土壤DOM特性的变化规律。确定两个代表性温度(中低温:250 ℃;高温:400 ℃)之后,阐明在250 和400 ℃加热条件下,不同氧气浓度水平下(0%至21%)森林O层有机覆盖层和A层矿质土壤DOM特性的变化规律。最后,在250和400 ℃有氧加热条件下,厘清不同燃料类型(不同土壤来源)影响下受热土壤DOM特性的变化规律。主要研究结果如下:

DOM产量随温度升高先增后减,其中溶解性有机碳(DOC)最大产量的温度阈值(TTmax)和产量由正转负的转折温度阈值(TT0)在O层和A层中存在差异。O层有机覆盖层的TT0低于A层矿质土壤层,暗示O层土壤往往缺乏矿物质保护从而经历更强烈的热反应。在分子层面,DOM各分子组分之间的温度阈值有所不同:碳水化合物和脂肪族化合物TT0最低,随后是多肽化合物和多酚化合物,稠环芳香化合物TT0最高。在加热温度低于TT0的温度时,特别是在TTmax时,加热增加DOM的产量,特别是微生物可利用组分,这为土壤微生物群落提供更多的营养底物。这些结果揭示了受热土壤DOM特性在森林火灾加热过程中随加热温度的非线性变化特征。

O层和A层土壤DOC含量随着氧气浓度增加而增加。同时,DOM的芳香性以及稠环芳香化合物的相对丰度也随氧气浓度的增加而增加,而DOM微生物可利用性以及多肽化合物和脂肪族化合物的相对丰度则有所降低。此外,与400 ℃相比,在250 ℃加热下的DOC含量、DOM分子量、DOM微生物可利用性和DOM分子组分的变化对氧气浓度变化的敏感性更高。氧气浓度的增加促进了DOM中羧基化反应的发生,是形成稠环芳香化合物的关键因素。最后,研究揭示了DOM的特性变化与氧气浓度、加热温度以及燃料类型(O层有机覆盖层和A层矿质土壤层)之间存在复杂的相互作用。

随着土壤pH值增加,在250和400 ℃加热下土壤DOC含量增加,DOM芳香性降低。DOM生物可利用性以及脂肪族和多肽化合物的含量在250 ℃加热条件下随土壤pH增加;然而,在400 ℃加热条件下,这些参数随土壤pH变化相对稳定。相关分析表明,初始土壤pH值和DOC含量的变化量成正比,而初始铁矿物含量与DOC含量变化成反比。此外,铁矿物含量的增加导致DOC含量降低的趋势与碱性土壤(铁矿物含量低)中DOC含量普遍高于酸性土壤(铁矿物含量高)的现象相互印证。然而,在250 ℃加热条件下,铁矿物含量的增加导致DOM芳香性降低与碱性土壤中DOM芳香性低于酸性土壤的现象形成了鲜明对比。同时,铁矿物含量的增加导致微生物可利用性增加的趋势与碱性土壤中DOM微生物可利用性普遍高于碱性土壤的现象相悖。这些结果表明,铁矿物含量在解释不同pH值土壤受热后DOM特性差异方面起到了一定作用,但并非唯一因素。

综上所述,本研究提出了不同加热温度影响下受热土壤DOM组分与特性变化的温度阈值概念,揭示了氧气浓度对受热土壤DOM芳香性增强的影响,并刻画了不同pH值和铁矿物含量土壤受热后DOM特性的变化规律。这些发现深化了对森林火灾如何影响受热土壤DOM生物地球化学过程的理解,为火灾后土壤微生物群落的恢复和环境质量的评估提供了重要科学依据。

关键词
语种
中文
培养类别
联合培养
入学年份
2019
学位授予年份
2024-06
参考文献列表

[1] BOWMAN D, BALCH J K, ARTAXO P, et al. Fire in the earth ystem[J]. Science, 2009, 324(5926): 481-484.
[2] LUO K, WANG X, DE JONG M, et al. Drought triggers and sustains overnight fires in North America[J]. Nature, 2024, 627(8003): 321-327.
[3] BROWN P T, HANLEY H, MAHESH A, et al. Climate warming increases extreme daily wildfire growth risk in California[J]. Nature, 2023, 621: 760-766.
[4] BOWMAN D M J S, SHARPLES J J. Taming the flame, from local to global extreme wildfires[J]. Science, 2023, 381(6658): 616-619.
[5] CARSLAW K S, BOUCHER O, SPRACKLEN D V, et al. A review of natural aerosol interactions and feedbacks within the earth system[J]. Atmospheric Chemistry and Physics, 2010, 10(4): 1701-1737.
[6] RADELOFF V C, HELMERS D P, KRAMER H A, et al. Rapid growth of the US wildland-urban interface raises wildfire risk[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(13): 3314-3319.
[7] HANTSON S, ANDELA N, GOULDEN M L, et al. Human-ignited fires result in more extreme fire behavior and ecosystem impacts[J]. Nature Communications, 2022, 13(1): 2717.
[8] PELLEGRINI A F A, HOFFMANN W A, FRANCO A C. Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil[J]. Ecology, 2014, 95(2): 342-352.
[9] DELUCA T H, SALA A. Frequent fire alters nitrogen transformations in ponderosa pine stands of the inland northwest[J]. Ecology, 2006, 87(10): 2511-2522.
[10] BOERNER R E J, HUANG J J, HART S C. Impacts of fire and fire surrogate treatments on forest soil properties: a meta-analytical approach[J]. Ecological Applications, 2009, 19(2): 338-358.
[11] BASSILAKIS R, CARANGELO R M, WÓJTOWICZ M A. TG-FTIR analysis of biomass pyrolysis[J]. Fuel, 2001, 80(12): 1765-1786.
[12] GONZáLEZ P J A, GONZáLEZ V J, ALMENDROS G, et al. The effect of fire on soil organic matter—a review[J]. Environment International, 2004, 30(6): 855-870.
[13] KNICKER H. Soil organic N - An under-rated player for C sequestration in soils?[J]. Soil Biology and Biochemistry, 2011, 43(6): 1118-1129.
[14] KNICKER H. Stabilization of N-compounds in soil and organic-matter-rich sediments—what is the difference?[J]. Marine Chemistry, 2004, 92(1): 167-195.
[15] JIAN M, BERHE A A, BERLI M, et al. Vulnerability of physically protected soil organic carbon to loss under low severity fires[J]. Frontiers in Environmental Science, 2018, 6:00066.
[16] COPPOLA A I, WAGNER S, LENNARTZ S T, et al. The black carbon cycle and its role in the Earth system[J]. Nature Reviews Earth and Environment, 2022, 3(8): 516-532.
[17] KALBITZ K, SOLINGER S, PARK J H, et al. Controls on the dynamics of dissolved organic matter in soils: A review[J]. Soil Science, 2000, 165(4): 277-304.
[18] HOHNER A K, RHOADES C C, WILKERSON P, et al. Wildfires alter forest watersheds and threaten drinking water quality[J]. Accounts of Chemical Research, 2019, 52(5): 1234-1244.
[19] WANG J J, DAHLGREN R A, CHOW A T. Controlled burning of forest detritus altering spectroscopic characteristics and chlorine reactivity of dissolved organic matter: Effects of temperature and oxygen availability[J]. Environmental Science and Technology, 2015, 49(24): 14019-14027.
[20] THURMAN E M, YU Y, FERRER I, et al. Molecular identification of water-extractable organic carbon from thermally heated soils: C-13 NMR and accurate mass analyses find Benzene and Pyridine carboxylic acids[J]. Environmental Science and Technology, 2020, 54(5): 2994-3001.
[21] XU S, EISENHAUER N, PELLEGRINI A F A, et al. Fire frequency and type regulate the response of soil carbon cycling and storage to fire across soil depths and ecosystems: A meta-analysis[J]. Science of the Total Environment, 2022, 825: 153921.
[22] LEHMANN J, KLEBER M. The contentious nature of soil organic matter[J]. Nature, 2015, 528(7580): 60-68.
[23] RIEDEL T, ZAK D, BIESTER H, et al. Iron traps terrestrially derived dissolved organic matter at redox interfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(25): 10101-10105.
[23] LV J, HUANG Z, LUO L, et al. Advances in molecular and microscale characterization of soil organic matter: Current limitations and future prospects[J]. Environmental Science and Technology, 2022, 56(18): 12793-12810.
[24] JOANISSE G D, BRADLEY R L, PRESTON C M, et al. Soil enzyme inhibition by condensed litter tannins may drive ecosystem structure and processes: the case of Kalmia angustifolia[J]. New Phytologist, 2007, 175(3): 535-546.
[25] KELLERMAN A M, DITTMAR T, KOTHAWALA D N, et al. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology[J]. Nature Communications, 2014, 5(1): 3804.
[26] KAISER K, GUGGENBERGER G, HAUMAIER L. Changes in dissolved lignin-derived phenols, neutral sugars, uronic acids, and amino sugars with depth in forested Haplic Arenosols and Rendzic Leptosols[J]. Biogeochemistry, 2004, 70(1): 135-151.
[27] SAIDY A R, SMERNIK R J, BALDOCK J A, et al. The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide[J]. Geoderma, 2013, 209-210: 15-21.
[28] LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2(8): 17105.
[29] MURPHY K R, TIMKO S A, GONSIOR M, et al. Photochemistry illuminates ubiquitous organic matter fluorescence spectra[J]. Environmental Science and Technology, 2018, 52(19): 11243-11250.
[30] WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science and Technology, 2003, 37(20): 4702-4708.

[31] SPENCER R G M, AIKEN G R, DORNBLASER M M, et al. Chromophoric dissolved organic matter export from U.S. rivers[J]. Geophysical Research Letters, 2013, 40(8): 1575-1579.

[32] PEURAVUORI J, PIHLAJA K. Molecular size distribution and spectroscopic properties of aquatic humic substances[J]. Analytica Chimica Acta, 1997, 337(2): 133-149.

[33] MURPHY K R, BUTLER K D, SPENCER R G M, et al. Measurement of dissolved organic matter fluorescence in aquatic environments: An interlaboratory comparison[J]. Environmental Science and Technology, 2010, 44(24): 9405-9412.

[34] FELLMAN J B, HOOD E, SPENCER R G M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review[J]. Limnology and Oceanography, 2010, 55(6): 2452-2462.

[35] 《核磁共振原理与实验方法》[J]. 波谱学杂志, 2008, 03: 446.

[36] NELSON P N, BALDOCK J A. Estimating the molecular composition of a diverse range of natural organic materials from solid-state (13)C NMR and elemental analyses[J]. Biogeochemistry, 2005, 72(1): 1-34.

[37] MOPPER K, STUBBINS A, RITCHIE J D, et al. Advanced instrumental approaches for characterization of marine dissolved organic matter:  Extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy[J]. Chemical Reviews, 2007, 107(2): 419-442.

[38] LV J, HUANG Z, LUO L, et al. Advances in molecular and microscale characterization of soil organic matter: Current limitations and future prospects[J]. Environmental Science and Technology, 2022, 56(18): 12793-12810.

[39] ZHOU L, ZHOU Y, HU Y, et al. Microbial production and consumption of dissolved organic matter in glacial ecosystems on the Tibetan Plateau[J]. Water Research, 2019, 160: 18-28.

[40] YANG H, ZHANG P, WANG Q, et al. Temperature rather than N availability determines root exudation of alpine coniferous forests on the eastern Tibetan Plateau along elevation gradients[J]. Tree Physiology, 2023, 43(9): 1479-1492.

[41] JONES M W, COPPOLA A I, SANTíN C, et al. Fires prime terrestrial organic carbon for riverine export to the global oceans[J]. Nature Communications, 2020, 11(1): 2791.

[42] BOSTICK K W, ZIMMERMAN A R, WOZNIAK A S, et al. Production and composition of pyrogenic dissolved organic matter from a logical series of laboratory-generated chars[J]. Frontiers in Earth Science, 2018, 6:00043.

[43] NORWOOD M J, LOUCHOUARN P, KUO L J, et al. Characterization and biodegradation of water-soluble biomarkers and organic carbon extracted from low temperature chars[J]. Organic Geochemistry, 2013, 56: 111-119.

[44] WAGNER S, DITTMAR T, JAFFE R. Molecular characterization of dissolved black nitrogen via electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Organic Geochemistry, 2015, 79: 21-30.

[45] ABIVEN S, HENGARTNER P, SCHNEIDER M P W, et al. Pyrogenic carbon soluble fraction is larger and more aromatic in aged charcoal than in fresh charcoal[J]. Soil Biology and Biochemistry, 2011, 43(7): 1615-1617.

[46] ROSARIO O F L, CANONICA S. Probe compounds to assess the photochemical activity of dissolved organic Matter[J]. Environmental Science and Technology, 2016, 50(23): 12532-12547.

[47] ROTH V N, LANGE M, SIMON C, et al. Persistence of dissolved organic matter explained by molecular changes during its passage through soil[J]. Nature Geoscience, 2019, 12(9): 755-761.

[48] CHEN H, UZUN H, CHOW A T, et al. Low water treatability efficiency of wildfire-induced dissolved organic matter and disinfection by-product precursors[J]. Water Research, 2020, 184, 116111.

[49] CHEN H, TSAI K P, LIU Y N, et al. Characterization of dissolved organic matter from wildfire-induced microcystis aeruginosa blooms controlled by copper sulfate as disinfection byproduct precursors using APPI(-) and ESI(-) FT-ICR MS[J]. Water Research, 2021, 189, 116640.

[50] REVCHUK A D, SUFFET I H. Effect of wildfires on physicochemical changes of watershed dissolved organic matter[J]. Water Environment Research, 2014, 86(4): 372-381.

[51] UZUN H, DAHLGREN R A, OLIVARES C, et al. Two years of post-wildfire impacts on dissolved organic matter, nitrogen, and precursors of disinfection by-products in California stream waters[J]. Water Research, 2020, 181: 115891.

[52] WANG J J, DAHLGREN R A, ERŞAN M S, et al. Wildfire altering terrestrial precursors of disinfection byproducts in forest detritus[J]. Environmental Science and Technology, 2015, 49(10): 5921-5929.

[53] CAWLEY K M, HOHNER A K, PODGORSKI D C, et al. Molecular and spectroscopic characterization of water extractable organic matter from thermally altered soils reveal insight into disinfection byproduct precursors[J]. Environmental Science and Technology, 2017, 51(2): 771-779.

[54] SYED J H, IQBAL M, ZHONG G, et al. Polycyclic aromatic hydrocarbons (PAHs) in Chinese forest soils: profile composition, spatial variations and source apportionment[J]. Scientific Reports, 2017, 7(1): 2692.

[55] FRANCISCO LóPEZ A, HECKENAUER BARRóN E G, BELLO BUGALLO P M. Contribution to understanding the influence of fires on the mercury cycle: Systematic review, dynamic modelling and application to sustainable hypothetical scenarios[J]. Environmental Monitoring and Assessment, 2022, 194(10): 707.

[56] QU X, FU H, MAO J, et al. Chemical and structural properties of dissolved black carbon released from biochars[J]. Carbon, 2016, 96: 759-767.

[57] LI L, WANG X, FU H, et al. Dissolved black carbon facilitates photoreduction of Hg(II) to Hg(0) and reduces mercury uptake by lettuce (Lactuca sativa L.)[J]. Environmental Science and Technology, 2020, 54(18): 11137-11145.

[58] YANG B, DU P, CHEN G, et al. Dual role of soil-derived dissolved organic matter in the sulfamethoxazole oxidation by manganese dioxide[J]. Water Research, 2023, 235: 119901.

[59] MATAIX S J, CERDA A, ARCENEGUI V, et al. Fire effects on soil aggregation: A review[J]. Earth-Science Reviews, 2011, 109(1-2): 44-60.

[60] NEARY D G, KLOPATEK C C, DEBANO L F, et al. Fire effects on belowground sustainability: a review and synthesis[J]. Forest Ecology and Management, 1999, 122(1-2): 51-71.

[61] SANTíN C, OTERO X L, DOERR S H, et al. Impact of a moderate/high-severity prescribed eucalypt forest fire on soil phosphorous stocks and partitioning[J]. Science of the Total Environment, 2018, 621: 1103-1114.

[62] TANGNEY R, ISSA N A, MERRITT D J, et al. A method for extensive spatiotemporal assessment of soil temperatures during an experimental fire using distributed temperature sensing in optical fibre[J]. International Journal of Wildland Fire, 2018, 27(2): 135-140.

[63] KNICKER H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review[J]. Biogeochemistry, 2007, 85(1): 91-118.

[64] SERRASOLSAS I, KHANNA P K. Changes in heated and autoclaved forest soils of SE Australia.1. Carbon and nitrogen [J]. Biogeochemistry, 1995, 29(1): 3-24.

[65] SANTOS F, RUSSELL D, BERHE A A. Thermal alteration of water extractable organic matter in climosequence soils from the Sierra Nevada, California[J]. Journal of Geophysical Research-Biogeosciences, 2016, 121(11): 2877-2885.

[66] MCKAY G, HOHNER A K, ROSARIO O F L. Use of optical properties for evaluating the presence of pyrogenic organic matter in thermally altered soil leachates[J]. Environmental Science-Processes and Impacts, 2020, 22(4): 981-992.

[67] GORANOV A I, WOZNIAK A S, BOSTICK K W, et al. Photochemistry after fire: Structural transformations of pyrogenic dissolved organic matter elucidated by advanced analytical techniques[J]. Geochimica et Cosmochimica Acta, 2020, 290: 271-292.

[68] WOZNIAK A S, GORANOV A I, MITRA S, et al. Molecular heterogeneity in pyrogenic dissolved organic matter from a thermal series of oak and grass chars[J]. Organic Geochemistry, 2020, 148, 104065.

[69] COOK R L. Coupling NMR to NOM[J]. Analytical and bioanalytical chemistry, 2004, 378(6): 1484-1503.

[70] NATHE K, LEVIA D F, STEFFENS M, et al. Solid-state C-13 NMR characterization of surface fire effects on the composition of organic matter in both soil and soil solution from a coniferous forest[J]. Geoderma, 2017, 305: 394-406.

[71] DITTMAR T, KOCH B, HERTKORN N, et al. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater[J]. Limnology and Oceanography-Methods, 2008, 6: 230-235.

[72] BAHUREKSA W, TFAILY M M, BOITEAU R M, et al. Soil organic matter characterization by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS): A critical review of sample preparation, analysis, and data interpretation[J]. Environmental Science and Technology, 2021, 55(14): 9637-9656.

[73] BAHUREKSA W, YOUNG R B, MCKENNA A M, et al. Nitrogen enrichment during soil organic matter burning and molecular evidence of maillard reactions[J]. Environmental Science and Technology, 2022 56 (7): 4597-4609.

[74] ALEXIS M A, RUMPEL C, KNICKER H, et al. Thermal alteration of organic matter during a shrubland fire: A field study[J]. Organic Geochemistry, 2010, 41(7): 690-697.

[75] NAN H Y, ZHAO L, YANG F, et al. Different alkaline minerals interacted with biomass carbon during pyrolysis: Which one improved biochar carbon sequestration?[J]. Journal of Cleaner Production, 2020, 255: 120162.

[76] XIAO R, WANG J J, GASTON L A, et al. Biochar produced from mineral salt-impregnated chicken manure: Fertility properties and potential for carbon sequestration[J]. Waste Management, 2018, 78: 802-810.

[77] SADDAWI A, JONES J M, WILLIAMS A. Influence of alkali metals on the kinetics of the thermal decomposition of biomass[J]. Fuel Processing Technology, 2012, 104: 189-197.

[78] SJÖGERSTEN S, TURNER B L, MAHIEU N, et al. Soil organic matter biochemistry and potential susceptibility to climatic change across the forest-tundra ecotone in the Fennoscandian mountains[J]. Global Change Biology, 2003, 9(5): 759-772.

[79] KEUSKAMP J A, FELLER I C, LAANBROEK H J, et al. Short- and long-term effects of nutrient enrichment on microbial exoenzyme activity in mangrove peat[J]. Soil Biology and Biochemistry, 2015, 81: 38-47.

[80] SHARMA R K, HAJALIGOL M R. Effect of pyrolysis conditions on the formation of polycyclic aromatic hydrocarbons (PAHs) from polyphenolic compounds[J]. Journal of Analytical and Applied Pyrolysis, 2003, 66(1): 123-144.

[81] ANDERSON M K, SLEIGHT R T, TORERO J L. Ignition signatures of a downward smolder reaction[J]. Experimental Thermal and Fluid Science, 2000, 21: 33-40.

[82] HUANG X, REIN G. Interactions of earth's atmospheric oxygen and fuel moisture in smouldering wildfires[J]. Science of the Total Environment, 2016, 572: 1440-1446.

[83] RADOJEVIC M. Chemistry of forest fires and regional haze with emphasis on Southeast Asia[J]. Pure and Applied Geophysics, 2003, 160: 157-187.

[84] VERES P, ROBERTS J M, BURLING I R, et al. Measurements of gas-phase inorganic and organic acids from biomass fires by negative-ion proton-transfer chemical-ionization mass spectrometry[J]. Journal of Geophysical Research-Atmospheres, 2010, 115, D23.

[85] WANG H Z, VAN EYK P J, MEDWELL P R, et al. Effects of oxygen concentration on radiation-aided and self-sustained smoldering combustion of radiata pine[J]. Energy and Fuels, 2017, 31(8): 8619-8630.

[86] BRYANT R, DOERR S H, HELBIG M. Effect of oxygen deprivation on soil hydrophobicity during heating[J]. International Journal of Wildland Fire, 2005, 14(4): 449-455.

[87] BIRD M I, WYNN J G, SAIZ G, et al. The pyrogenic carbon cycle[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 273-298.

[88] ATANASSOVA I, DOERR S H, BRYANT R. Changes in organic compound composition in soil following heating to maximum soil water repellency under anoxic conditions[J]. Environmental Chemistry, 2012, 9(4): 369-378.

[89] CHEN H, WANG J J, KU P J, et al. Burn intensity drives the alteration of phenolic lignin to (Poly) aromatic hydrocarbons as revealed by Pyrolysis Gas Chromatography–Mass Spectrometry (Py-GC/MS)[J]. Environmental Science and Technology, 2022, 56(17): 12678-12687.

[90] CHEN C M, HALL S J, COWARD E, et al. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature Communications, 2020, 11(1): 2255.

[91] LV J T, MIAO Y X, HUANG Z Q, et al. Facet-mediated adsorption and molecular fractionation of humic substances on hematite surfaces[J]. Environmental Science and Technology, 2018, 52(20): 11660-11669.

[92] ANTONY R, WILLOUGHBY A S, GRANNAS A M, et al. Molecular insights on dissolved organic matter transformation by supraglacial microbial communities[J]. Environmental Science and Technology, 2017, 51(8): 4328-4337.

[93] RAHMAN A, EL HAYEK E, BLAKE J M, et al. Metal reactivity in laboratory burned wood from a watershed affected by wildfires[J]. Environmental Science and Technology, 2018, 52(15): 8115-8123.

[94] KEIL R G, MONTLUCON D B, PRAHL F G, et al. Soptive preseration of labile organic-matter in marine sediments[J]. Nature, 1994, 370(6490): 549-552.

[95] TORN M S, TRUMBORE S E, CHADWICK O A, et al. Mineral control of soil organic carbon storage and turnover[J]. Nature, 1997, 389(6647): 170-173.

[96] POLUBESOVA T, CHEFETZ B. DOM-affected transformation of contaminants on mineral surfaces: A review[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(3): 223-254.

[97] FREY P A, REED G H. The ubiquity of iron[J]. ACS Chemical Biology, 2012, 7(9): 1477-1481.

[98] LALONDE K, MUCCI A, OUELLET A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7388): 198-200.

[99] DU H H, PEACOCK C L, CHEN W L, et al. Binding of Cd by ferrihydrite organo-mineral composites: Implications for Cd mobility and fate in natural and contaminated environments[J]. Chemosphere, 2018, 207: 404-412.

[100] XUE Q, RAN Y, TAN Y Z, et al. Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments[J]. Chemosphere, 2019, 224: 103-110.

[101] POULTON S W, RAISWELL R. Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments[J]. Chemical Geology, 2005, 218(3): 203-221.

[102] MIKUTTA R, LORENZ D, GUGGENBERGER G, et al. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption[J]. Geochimica et Cosmochimica Acta, 2014, 144: 258-276.

[103] SODANO M, LERDA C, NISTICO R, et al. Dissolved organic carbon retention by coprecipitation during the oxidation of ferrous iron[J]. Geoderma, 2017, 307: 19-29.

[104] ZHU M, HU X F, TUC C, et al. Sorption mechanisms of diphenylarsinic acid on ferrihydrite, goethite and hematite using sequential extraction, FTIR measurement and XAFS spectroscopy[J]. Science of the Total Environment, 2019, 669: 991-1000.

[105] CHEN H F, KOOPAL L K, XU J L, et al. Selective adsorption of soil humic acid on binary systems containing kaolinite and goethite: Assessment of sorbent interactions[J]. European Journal of Soil Science, 2019, 70(5): 1098-1107.

[106] LV J, ZHANG S, WANG S, et al. Molecular-scale investigation with ESI-FT-ICR-MS on fractionation of dissolved organic matter induced by adsorption on iron oxyhydroxides[J]. Environmental Science and Technology, 2016, 50(5): 2328-2336.

[107] WU H, LIN Y, WU J, et al. A preliminary study of surface adsorption of iron oxide minerals for phenol and DOM[J]. Earth Science Frontiers, 2008, 15(6): 133-141.

[108] HUR J, SCHLAUTMAN M A. Molecular weight fractionation of humic substances by adsorption onto minerals[J]. Journal of Colloid and Interface Science, 2003, 264(2): 313-321.

[109] JONSSON J, SJOBERG S, LOVGREN L. Adsorption of Cu(II) to schwertmannite and goethite in presence of dissolved organic matter[J]. Water Research, 2006, 40(5): 969-974.

[110] WENG L P, VAN RIEMSDIJK W H, HIEMSTRA T. Cu2+ and Ca2+ adsorption to goethite in the presence of fulvic acids[J]. Geochimica et Cosmochimica Acta, 2008, 72(24): 5857-5870.

[111] XIONG J, KOOPAL L K, WENG L P, et al. Effect of soil fulvic and humic acid on binding of Pb to goethite-water interface: Linear additivity and volume fractions of HS in the Stern layer[J]. Journal of Colloid and Interface Science, 2015, 457: 121-130.

[112] YANG Y, SAIERS J E, BARNETT M O. Impact of interactions between natural organic matter and metal oxides on the desorption kinetics of Uranium from heterogeneous colloidal suspensions[J]. Environmental Science and Technology, 2013, 47(6): 2661-2669.

[113] KENNEDY M J, PEVEAR D R, HILL R J. Mineral surface control of organic carbon in black shale[J]. Science, 2002, 295(5555): 657-660.

[114] PICCOLO A. The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science[J]. Advances in Agronomy, 2002, 75: 57-134.

[115] SUTTON R, SPOSITO G. Molecular structure in soil humic substances: The new view[J]. Environmental Science and Technology, 2005, 39(23): 9009-9015.

[116] ZHOU Q H, MAURICE P A, CABANISS S E. Size fractionation upon adsorption of fulvic acid on goethite: Equilibrium and kinetic studies[J]. Geochimica et Cosmochimica Acta, 2001, 65(5): 803-812.

[117] FU H B, QUAN X. Complexes of fulvic acid on the surface of hematite, goethite, and akaganeite: FTIR observation[J]. Chemosphere, 2006, 63(3): 403-410.

[118] CLARET F, SCHAFER T, BREVET J, et al. Fractionation of suwannee river fulvic acid and aldrich humic acid on alpha-Al2O3: Spectroscopic evidence[J]. Environmental Science and Technology, 2008, 42(23): 8809-8815.

[119] CHEN C M, DYNES J J, WANG J, et al. Properties of Fe-organic matter associations via coprecipitation versus dsorption[J]. Environmental Science and Technology, 2014, 48(23): 13751-13759.

[120] REILLER P, AMEKRAZ B, MOULIN C. Sorption of aldrich humic acid onto hematite: Insights into fractionation phenomena by electrospray ionization with quadrupole time-of-flight mass spectrometry[J]. Environmental Science and Technology, 2006, 40(7): 2235-2241.

[121] COWARD E K, THOMPSON A, PLANTE A F. Contrasting Fe speciation in two humid forest soils: Insight into organomineral associations in redox-active environments[J]. Geochimica et Cosmochimica Acta, 2018, 238: 68-84.

[122] DUAN Z, ZHANG W, LU M, et al. Magnetic Fe3O4/activated carbon for combined adsorption and Fenton oxidation of 4-chlorophenol[J]. Carbon, 2020, 167: 351-363.

[123] ZHU X, QIAN F, LIU Y, et al. Controllable synthesis of magnetic carbon composites with high porosity and strong acid resistance from hydrochar for efficient removal of organic pollutants: An overlooked influence[J]. Carbon, 2016, 99: 338-347.

[124] NAN H, YANG F, ZHAO L, et al. Interaction of inherent minerals with carbon during biomass pyrolysis weakens biochar carbon sequestration potential[J]. ACS Sustainable Chemistry and Engineering, 2019, 7(1): 1591-1599.

[125] TSUBOUCHI N, MOCHIZUKI Y, BYAMBAJAV E, et al. Catalytic performance of limonite ores in the decomposition of model compounds of biomass-derived Tar[J]. Energy and Fuels, 2017, 31(4): 3898-3904.

[126] NAVARRO R M, GUIL LOPEZ R, FIERRO J L G, et al. Catalytic fast pyrolysis of biomass over Mg-Al mixed oxides derived from hydrotalcite-like precursors: Influence of Mg/Al ratio[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 362-370.

[127] LIU Y, GUO F, LI X, et al. Catalytic effect of iron and nickel on gas formation from fast biomass pyrolysis in a microfluidized bed reactor: A kinetic study[J]. Energy and Fuels, 2017, 31(11): 12278-12287.

[128] MULLEN C A, BOATENG A A. Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over Fe-modified HZSM-5 zeolites[J]. ACS Sustainable Chemistry and Engineering, 2015, 3(7): 1623-1631.

[129] SHANG H, WANG Q, OK Y S, et al. Magnetic biochar production alters the molecular characteristics and biological response of pyrolysis volatile-derived water-soluble organic matter[J]. Science of the Total Environment, 2021, 778

[130] XUHUI C, XI L I, LIPING B A I, et al. Studies on floristic characteristics of seed plants in Qipanshan Forest Park,Liaoning Province[J]. Journal of Tropical and Subtropical Botany, 2011, 19(3): 211-221.

[131] 孙龙, 任玥霄, 窦旭, et al. 火干扰对棋盘山油松林土壤碳氮及驱动因子的影响[J]. 中南林业科技大学学报, 2023, 43(07): 120-128.

[132] 孙奥博. 火干扰和生物炭输入对棋盘山油松林土壤呼吸组分的影响[D]. 东北林业大学, 2022.

[133] WANG Y H, SHI Y M, SUN G D, et al. Soil organic carbon signature under impervious surfaces[J]. ACS Earth and Space Chemistry, 2020, 4(10): 1785-1792.

[134] SCHMIDT M W I, KNICKER H, HATCHER P G, et al. Improvement of C-13 and N-15 CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10% hydrofluoric acid[J]. European Journal of Soil Science, 1997, 48(2): 319-328.

[135] WANG J J, BOWDEN R D, LAJTHA K, et al. Long-term nitrogen addition suppresses microbial degradation, enhances soil carbon storage, and alters the molecular composition of soil organic matter[J]. Biogeochemistry, 2019, 142(2): 299-313.

[136] AIKEN G R, SPENCER R G M, STRIEGL R G, et al. Influences of glacier melt and permafrost thaw on the age of dissolved organic carbon in the Yukon River basin[J]. Global Biogeochemical Cycles, 2014, 28(5): 525-537.

[137] 韦寿莲, 邓光辉, 江云宝, et al. 超分子体系中醌类光还原的研究[J]. 分析科学学报, 2002(04): 281-284.

[138] STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnology and Oceanography: Methods, 2008, 6: 572-579.

[139] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science and Technology, 2003, 37(24): 5701-5710.

[140] SHUTOVA Y, BAKER A, BRIDGEMAN J, et al. Spectroscopic characterisation of dissolved organic matter changes in drinking water treatment: From PARAFAC analysis to online monitoring wavelengths[J]. Water Research, 2014, 54: 159-169.

[141] CORY R M, MILLER M P, MCKNIGHT D M, et al. Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra[J]. Limnology and Oceanography: Methods, 2010, 8(2): 67-78.

[142] KIDA M, KOJIMA T, TANABE Y, et al. Origin, distributions, and environmental significance of ubiquitous humic-like fluorophores in Antarctic lakes and streams[J]. Water Research, 2019, 163: 114901.

[143] OHNO T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science and Technology, 2002, 36(4): 742-746.

[144] WILSON H F, XENOPOULOS M A. Effects of agricultural land use on the composition of fluvial dissolved organic matter[J]. Nature Geoscience, 2009, 2(1): 37-41.

[145] MURPHY K R, STEDMON C A, GRAEBER D, et al. Fluorescence spectroscopy and multi-way techniques. PARAFAC[J]. Analytical Methods, 2013, 5(23): 6557-6566.

[146] HUANG R, MCPHEDRAN K N, GAMAL EL-DIN M. Ultra performance liquid chromatography ion mobility time-of-flight mass spectrometry characterization of naphthenic acids species from oil sands process-affected water[J]. Environmental Science and Technology, 2015, 49(19): 11737-11745.

[147] HEADLEY J V, PERU K M, JANFADA A, et al. Characterization of oil sands acids in plant tissue using Orbitrap ultra-high resolution mass spectrometry with electrospray ionization[J]. Rapid Communications in Mass Spectrometry, 2011, 25(3): 459-462.

[148] PHUNGSAI P, KURISU F, KASUGA I, et al. Molecular characterization of low molecular weight dissolved organic matter in water reclamation processes using Orbitrap mass spectrometry[J]. Water Research, 2016, 100: 526-536.

[149] FIEVRE A, SOLOUKI T, MARSHALL A G, et al. High-resolution Fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids by laser desorption/ionization and electrospray ionization[J]. Energy and Fuels, 1997, 11(3): 554-560.

[150] KOCH B P, LUDWICHOWSKI K U, KATTNER G, et al. Advanced characterization of marine dissolved organic matter by combining reversed-phase liquid chromatography and FT-ICR-MS[J]. Marine Chemistry, 2008, 111(3): 233-241.

[151] 张鹏. 深圳市茅洲河沉积物溶解性有机质化学多样性研究[D]. 西北师范大学, 2021.

[152] KUJAWINSKI E B, BEHN M D. Automated analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra of natural organic matter[J]. Analytical Chemistry, 2006, 78(13): 4363-4373.

[153] DITTMAR T, KOCH B, HERTKORN N, et al. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater[J]. Limnology and Oceanography: Methods, 2008, 6(6): 230-235.

[154] HE C, ZHANG Y, LI Y, et al. In-house standard method for molecular characterization of dissolved organic matter by FT-ICR mass spectrometry[J]. ACS Omega, 2020, 5(20): 11730-11736.

[155] STUBBINS A, SPENCER R G M, CHEN H, et al. Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry[J]. Limnology and Oceanography, 2010, 55(4): 1467-1477.

[156] KOCH B P, DITTMAR T. From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter[J]. Rapid Communications in Mass Spectrometry, 2006, 20(5): 926-932.

[157] RIEDEL T, BIESTER H, DITTMAR T. Molecular fractionation of dissolved organic matter with metal salts[J]. Environmental Science and Technology, 2012, 46(8): 4419-4426.

[158] KELLERMAN A M, KOTHAWALA D N, DITTMAR T, et al. Persistence of dissolved organic matter in lakes related to its molecular characteristics[J]. Nature Geoscience, 2015, 8(6): 454-457.

[159] ROSSEL P E, STUBBINS A, HACH P F, et al. Bioavailability and molecular composition of dissolved organic matter from a diffuse hydrothermal system[J]. Marine Chemistry, 2015, 177: 257-266.

[160] HEMMLER D, ROULLIER-GALL C, MARSHALL J W, et al. Insights into the chemistry of non-enzymatic browning reactions in different ribose-amino acid model systems[J]. Scientific Reports, 2018, 8(1): 16879.

[161] WESTERLING A L, HIDALGO H G, CAYAN D R, et al. Warming and earlier spring increase western US forest wildfire activity[J]. Science, 2006, 313(5789): 940-943.

[162] SOMMERFELD A, SENF C, BUMA B, et al. Patterns and drivers of recent disturbances across the temperate forest biome[J]. Nature Communications, 2018, 9: 4355.

[163] DITTMAR T, DE REZENDE C E, MANECKI M, et al. Continuous flux of dissolved black carbon from a vanished tropical forest biome[J]. Nature Geoscience, 2012, 5(9): 618-622.

[164] D’ANDRILLI J, JUNKER J R, SMITH H J, et al. DOM composition alters ecosystem function during microbial processing of isolated sources[J]. Biogeochemistry, 2019, 142(2): 281-298.

[165] CHEN H, TSAI K P, SU Q, et al. Throughfall dissolved organic matter as a terrestrial disinfection byproduct precursor[J]. ACS Earth and Space Chemistry, 2019, 3(8): 1603-1613.

[166] YANG F, ZHAO L, GAO B, et al. The interfacial behavior between biochar and soil minerals and its effect on biochar stability[J]. Environmental Science and Technology, 2016, 50(5): 2264-2271.

[167] YANG F, XU Z, YU L, et al. Kaolinite enhances the stability of the dissolvable and undissolvable fractions of biochar via different mechanisms[J]. Environmental Science and Technology, 2018, 52(15): 8321-8329.

[168] KOGEL K I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter[J]. Soil Biology and Biochemistry, 2002, 34(2): 139-162.

[169] NEARY D G, KLOPATEK C C, DEBANO L F, et al. Fire effects on belowground sustainability: a review and synthesis[J]. Forest Ecology and Management, 1999, 122(1): 51-71.

[170] MERINO A, GARCIA O F, FONTURBEL M T, et al. The high content of mineral-free organic matter in soils increases their vulnerability to wildfire in humid-temperate zones[J]. Geoderma, 2021, 395: 115043.

[171] HAMBLY A C, ARVIN E, PEDERSEN L F, et al. Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy[J]. Water Research, 2015, 83: 112-120.

[172] WUNSCH U J, MURPHY K. A simple method to isolate fluorescence spectra from small dissolved organic matter datasets[J]. Water Research, 2021, 190: 116730.

[173] CATALAN N, CASAS J P, ARCE M I, et al. Behind the scenes: mechanisms regulating climatic patterns of dissolved organic carbon uptake in headwater streams[J]. Global Biogeochemical Cycles, 2018, 32(10): 1528-1541.

[174] IMBEAU E, VINCENT W F, WAUTHY M, et al. Hidden stores of organic matter in northern lake ice: selective retention of terrestrial particles, phytoplankton and labile carbon[J]. Journal of Geophysical Research-Biogeosciences, 2021, 126(8): e2020JG006233.

[175] PODGORSKI D C, HAMDAN R, MCKENNA A M, et al. Characterization of pyrogenic black carbon by desorption atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Analytical Chemistry, 2012, 84(3): 1281-1287.

[176] DERRIEN M, CHOI H, JARDé E, et al. Do early diagenetic processes affect the applicability of commonly-used organic matter source tracking tools? An assessment through controlled degradation end-member mixing experiments[J]. Water Research, 2020, 173: 115588.

[177] YAMASHITA Y, KOJIMA D, YOSHIDA N, et al. Relationships between dissolved black carbon and dissolved organic matter in streams[J]. Chemosphere, 2021, 271: 129824.

[178] KOTHAWALA D N, STEDMON C A, MULLER R A, et al. Controls of dissolved organic matter quality: evidence from a large-scale boreal lake survey[J]. Global Change Biology, 2014, 20(4): 1101-1114.

[179] WUNSCH U J, GEUER J K, LECHTENFELD O J, et al. Quantifying the impact of solid-phase extraction on chromophoric dissolved organic matter composition[J]. Marine Chemistry, 2018, 207: 33-41.

[180] BIANCHI T S, OSBURN C, SHIELDS M R, et al. Deepwater horizon oil in gulf of Mexico waters after 2 years: Transformation into the dissolved organic matter pool[J]. Environmental Science and Technology, 2014, 48(16): 9288-9297.

[181] OSBURN C L, WIGDAHL C R, FRITZ S C, et al. Dissolved organic matter composition and photoreactivity in prairie lakes of the U.S. Great Plains[J]. Limnology and Oceanography, 2011, 56(6): 2371-2390.

[182] FISCHER S J, FEGEL T S, WILKERSON P J, et al. Fluorescence and absorbance indices for dissolved organic matter from wildfire ash and burned watersheds[J]. ACS Environmental Science and Technology Water, 2023, 3: 2199-2209.

[183] DOVE N C, TAŞ N, HART S C. Ecological and genomic responses of soil microbiomes to high-severity wildfire: linking community assembly to functional potential[J]. The ISME Journal, 2022, 16(7): 1853-1863.

[184] XU W Q, WALPEN N, KEILUWEIT M, et al. Redox properties of pyrogenic dissolved organic matter (pyDOM) from biomass-derived chars[J]. Environmental Science and Technology, 2021, 55(16): 11434-11444.

[185] PRESTON C M, SCHMIDT M W I. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions[J]. Biogeosciences, 2006, 3(4): 397-420.

[186] VERGNOUX A, DI ROCCO R, DOMEIZEL M, et al. Effects of forest fires on water extractable organic matter and humic substances from Mediterranean soils: UV–vis and fluorescence spectroscopy approaches[J]. Geoderma, 2011, 160(3): 434-443.

[187] WüNSCH U J, MURPHY K R, STEDMON C A. The one-sample PARAFAC approach reveals molecular size distributions of fluorescent components in dissolved organic matter[J]. Environmental Science and Technology, 2017, 51(20): 11900-11908.

[188] BERGGREN M, GUDASZ C, GUILLEMETTE F, et al. Systematic microbial production of optically active dissolved organic matter in subarctic lake water[J]. Limnology and Oceanography, 2020, 65(5): 951-961.

[189] HEIBATI M, STEDMON C A, STENROTH K, et al. Assessment of drinking water quality at the tap using fluorescence spectroscopy[J]. Water Research, 2017, 125: 1-10.

[190] BRYM A, PAERL H W, MONTGOMERY M T, et al. Optical and chemical characterization of base-extracted particulate organic matter in coastal marine environments[J]. Marine Chemistry, 2014, 162: 96-113.

[191] MURPHY K R, HAMBLY A, SINGH S, et al. Organic matter fluorescence in municipal water recycling schemes: toward a unified PARAFAC model[J]. Environmental Science and Technology, 2011, 45(7): 2909-2916.

[192] HONG H, WU S, WANG Q, et al. Fluorescent dissolved organic matter facilitates the phytoavailability of copper in the coastal wetlands influenced by artificial topography[J]. Science of the Total Environment, 2021, 790: 147855.

[193] ZHANG Q, WANG Y, GUAN P, et al. Temperature thresholds of pyrogenic dissolved organic matter in heating experiments simulating forest fires[J]. Environmental Science and Technology, 2023, 57(45): 17291-17301.

[194] ZARK M, DITTMAR T. Universal molecular structures in natural dissolved organic matter[J]. Nature Communications, 2018, 9: 3178.

[195] AGBESHIE A A, ABUGRE S, ATTA D T, et al. A review of the effects of forest fire on soil properties[J]. Journal of Forestry Research, 2022, 33(5): 1419-1441.

[196] PELLEGRINI A F A, CAPRIO A C, GEORGIOU K, et al. Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses[J]. Global Change Biology, 2021, 27(16): 3810-3823.

[197] XIAO K Q, ZHAO Y, LIANG C, et al. Introducing the soil mineral carbon pump[J]. Nature Reviews Earth and Environment, 2023, 4(3): 135-136.

[198] D'ANDRILLI J, COOPER W T, FOREMAN C M, et al. An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability[J]. Rapid Communications in Mass Spectrometry, 2015, 29(24): 2385-2401.

[199] AMARAL V, GRAEBER D, CALLIARI D, et al. Strong linkages between DOM optical properties and main clades of aquatic bacteria[J]. Limnology and Oceanography, 2016, 61(3): 906-918.

[200] WÜNSCH U J, MURPHY K. A simple method to isolate fluorescence spectra from small dissolved organic matter datasets[J]. Water Research, 2021, 190: 116730.

[201] YANG L, CHEN Y, LEI J, et al. Effects of coastal aquaculture on sediment organic matter: Assessed with multiple spectral and isotopic indices[J]. Water Research, 2022, 223: 118951.

[202] BITTAR T B, VIEIRA A A H, STUBBINS A, et al. Competition between photochemical and biological degradation of dissolved organic matter from the cyanobacteria Microcystis aeruginosa[J]. Limnology and Oceanography, 2015, 60(4): 1172-1194.

[203] WANG S, PERKINS M, MATTHEWS D A, et al. Coupling suspect and nontarget screening with mass balance modeling to characterize organic micropollutants in the onondaga lake–Three Rivers System[J]. Environmental Science and Technology, 2021, 55(22): 15215-15226.

[204] YE C, HUANG W, HALL S J, et al. Association of organic carbon with reactive iron oxides driven by soil pH at the global scale[J]. Global Biogeochemical Cycles, 2022, 36(1): e2021GB007128.

[205] HEMINGWAY J D, ROTHMAN D H, GRANT K E, et al. Mineral protection regulates long-term global preservation of natural organic carbon[J]. Nature, 2019, 570(7760): 228-231.

[206] CHEN C, DYNES J J, WANG J, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption[J]. Environmental Science and Technology, 2014, 48(23): 13751-13759.

[207] NAN H, MAŠEK O, YANG F, et al. Minerals: A missing role for enhanced biochar carbon sequestration from the thermal conversion of biomass to the application in soil[J]. Earth-Science Reviews, 2022, 234: 104215.

 

所在学位评定分委会
资源与环境
国内图书分类号
X52
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778858
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
张强. 林火三要素对受热土壤溶解有机质特性的 影响规律研究[D]. 哈尔滨. 哈尔滨工业大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11949042-张强-环境科学与工程学(10458KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张强]的文章
百度学术
百度学术中相似的文章
[张强]的文章
必应学术
必应学术中相似的文章
[张强]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。