[1] LIU N, LI W Y, PASTA M, et al. Nanomaterials for electrochemical energystorage[J]. Frontiers of Physics, 2014, 9(3): 323-350.
[2] CHU S, ARUN M. Opportunities and challenges for a sustainable energyfuture[J]. Nature, 2012, 488(7411): 294-303.
[3] WU X, GAO N W, JIA H Y, et al. Thermoelectric converters based on ionicconductors[J]. Chemistry-An Asian Journal, 2021, 16(2): 129-141.
[4] TOAN N V, UDAGAWA D K, INOMATA N K, et al. Thermoelectric powerbattery using Al 2O3 nanochannels of 10 nm diameter for energy harvesting oflow-grade waste heat[J]. Energy Conversion and Management, 2019, 199(C):111979.
[5] LI T, ZHANG X, LACEY S D, et al. Cellulose ionic conductors with highdifferential thermal voltage for low-grade heat harvesting[J]. NatureMaterials, 2019, 18(6): 608-613.
[6] LONG R, KUANG Z F, LIU Z C, et al. Ionic thermal up-diffusion innanofluidic salinity-gradient energy harvesting[J]. National Science Review, 2019, 6(6): 1266-1273.
[7] ZHAO X L, LI L, XIE W Y, ET AL. pH-regulated thermo-drivennanofluidics for nanoconfined mass transport and energy conversion[J]. Nanoscale Advances, 2020, 2(9): 4070-4076.
[8] BARRAGÁN V, KRISTIANSEN K, SIGNE K. Perspectives on thermoelectricenergy conversion in ion-exchange membranes[J]. Entropy, 2018, 20(12):905.
[9] JIA Z J, WANG B G, SONG S Q, et al. Blue energy: Current technologiesfor sustainable power generation from water salinity gradient[J]. Renewableand Sustainable Energy Reviews, 2014, 31(31): 91-100.
[10] ALVAREZ S O, OSORIO A F, WINTER C. Practical global salinity gradientenergy potential[J]. Renewable and Sustainable Energy Reviews, 2016, 60(60): 1387-1395.
[11] TSENG A J, LI Y M, LIN C Y, et al. Salinity gradient power: Optimizationof nanopore size[J]. Electrochimica Acta, 2016, 219: 790-797.
[12] LIU S S, YANG R J, LIN X Y, et al. Gated thermoelectric sensation bynanochannels grafted with thermally responsive polymers[J]. ChemicalCommunications, 2020, 56(91): 14291-14294.
[13] LIU B Y, QIN F. Single-residue molecular switch for high-temperaturedependence of vanilloid receptor TRPV3[J]. Proceedings of the NationalAcademy of Sciences of the United States of America, 2017, 114(7): 1589- 1594.
[14] DAVID B, NATALIA R, FERREIRA G, et al. Gating of thermally activatedchannels[J]. Current Topics in Membranes, 2014, 74(74): 51-87.
[15] Jiao C, Liu H L, Yang J M, et al. SERS detection of nucleobases in singlesilver plasmonic nanopores[J]. ACS Sensors, 2020, 5(7): 2198-2204.
[16] ZHAO X P, WANG S S, MUHAMMAD R Y, et al. Thermo and pH Dual- Actuating smart porous anodic aluminum for controllable drug release[J]. Advanced Materials Interfaces, 2018, 5(13): 1800185.
[17] AHMED S A, SHEN Q, LIAO Q B, et al. Mass transfer modulation and gasmapping based on covalent organic Frameworks-Covered thetamicropipette[J]. Analytical Chemistry, 2020, 92(10): 7343-7348.
[18] LU SHI, CAO F F, ZHANG L M, et al. I-motif formed at physiological pHtriggered by spatial confinement of nanochannels: An electrochemicalplatform for pH monitoring in brain microdialysates[J]. AnalyticalChemistry, 2020, 92(6): 4535-4540.
[19] ZHAO X P, WANG S S, RIZWAN Y M, et al. Asymmetric NanochannelIonchannel hybrid for ultrasensitive and Label-Free detection of copper ionsin blood[J]. Analytical Chemistry, 2018, 90(1): 896–902.
[20] LI P, XIE G H, PEI L, et al. Light-Driven ATP transmembrane transportcontrolled by DNA canomachines[J]. Journal of the American ChemicalSociety, 2018, 140(47): 16048-16052.
[21] CHEN W, ZHAO X P, LIU F F, et al. Dendrimer-Au nanoparticle networkcovered alumina membrane for ion rectification and enhanced bioanalysis[J]. Nano Letters, 2020, 20(3): 1846-1854.
[22] ALI M, NASIR S M, HUNG N Q, et al. Metal ion affinity-basedbiomolecular recognition and conjugation inside synthetic polymernanopores modified with iron-terpyridine complexes[J]. Journal of theAmerican Chemical Society, 2011, 133(43): 17307-14.
[23] QIAO S L, WANG H. Temperature-responsive polymers: Synthesisproperties and biomedical applications[J]. Nano Research, 2018, 11(10):5400-5423.
[24] VIANA F, ELVIRA D L, CARLOS B. Specificity of cold thermotransductionis determined by differential ionic channel expression[J]. NatureNeuroscience, 2002, 5(3): 254-260.
[25] ZHANG P C, CHEN S F, ZHU C J, et al. Covalent organic framework nanofluidic membrane as a platform for highly sensitive bionicthermossensation[J]. Nature Communications, 2021, 12(1): 1844.
[26] JI J Z, KANG Q, ZHOU Y, et al. Osmotic power generation with positivelyand negatively charged 2d nanofluidic membrane pairs[J]. AdvancedFunctional Materials, 2017, 27(2): 1603623.
[27] QIN S, LIU D, CHE Y, et al. Nanofluidic electric generators constructedfrom boron nitride nanosheet membranes[J]. Nano Energy, 2018, 47: 368-373.
[28] MARCOTTE A, MOUTERDE T, NIGUÈS A, et al. Mechanically activatedionic transport across single-digit carbon nanotubes[J]. Nature Materials, 2020, 19(10): 1057-1061.
[29] SECCHI E, MARBACH S, NIGUÈS A, et al. Massive radius-dependent flowslippage in carbon nanotubes[J]. Nature, 2016, 537(7619): 210-213.
[30] PEI P, JIN H, HYUN P J, et al. Origin of giant ionic currents in carbonnanotube channels[J]. ACS Nano, 2011, 5(9): 7277-7283.
[31] LIU H T, HE J, TANG J Y, et al. Translocation of single-stranded DNAthrough single-walled carbon nanotubes[J]. Science, 2010, 327(5961): 64-67.
[32] LONG R, KUANG F F, LIU Z C, et al. Ionic thermal up-diffusion innanofluidic salinity-gradient energy harvesting[J]. National Science Review, 2019, 6(6): 1266-1273.
[33] CHENG C, JIANG G P, SIMON G P, et al. Low-voltage electrostaticmodulation of ion diffusion through layered graphene-based nanoporousmembranes[J]. Nature Nanotechnology, 2018, 13(8): 685-690.
[34] LUND N J, SHAUN C. Hendy effective slip length of nanoscale mixed-slipsurfaces[J]. The Anziam Journal, 2009, 50(3): 381-394.
[35] WANG R F, CHAI J, LUO B B, et al. A review on slip boundary conditionsat the nanoscale: Recent development and applications[J]. Beilstein Journalof Nanotechnology, 2021, 12: 1237-1251.
[36] KANG B D, JAISUK Y, HYUN J K, et al. Slip-enhanced reverseelectrodialytic power generation in ion-selective nanochannels[J]. Journal ofThermal Science, 2013, 22(1): 36-41.
[37] HUANG W H, CHANG C C, YANG R J. Effect of hydrodynamic slip onthermoelectric response in negatively-charged nanofluidic channels[J]. International Journal of Heat and Mass Transfer, 2023, 214: 124454.
[38] 杨蓉婕, 刘珊珊, 周璘, 等. 离子选择性膜的热电响应:理论和实验[C]. 中国化学会(Chinese Chemical Society), 中国仪器仪表学会. 中国化学会第十四届全国电分析化学学术会议会议论文集(第二分册), 2020, (2): 287-288。
[39] 崔一凡, 郭乃理, 朱小红. 温度对还原氧化石墨烯电化学性能影响的研究[J]. 凝聚态物理学进展, 2021, 10(2): 33-44.
[40] 曹坤, 王菁潇, 董承卫, 等. 石墨烯基导热薄膜的研究进展[J]. 材料科学与工艺, 2024, 32(02): 29-43.
[41] CHEN K X, YAO L N, SU B. Bionic thermoelectric response withnanochannels[J]. Journal of the American Chemical Society, 2019, 141(21):8608-8615.
[42] LI F, LAURENT J, SAMY M. Giant thermoelectric response of nanofluidicsystems driven by water excess Enthalpy[J]. Physical Review Letters, 2019, 123(13): 138001.
[43] CHENG C, JIANG G P, SIMON G P, et al. Low-voltage electrostaticmodulation of ion diffusion through layered graphene-based nanoporousmembranes[J]. Nature Nanotechnology, 2018, 13(8): 685-690.
[44] XUE Y H, XIA Y, YANG S, et al. Atomic-scale ion transistor with ultrahighdiffusivity[J]. Science, 2021, 372(6541): 501-503.
[45] 林 洋, 冯俊玮, 张焕侠, 等. 基于两性高分子化合物/还原氧化石墨烯的离子传感器[J]. 纺织科学与工程学报, 2021, 38(4): 7-10.
[46] 朱玉方, 张慧丽, 梁丰国, 等. 还原氧化石墨烯的可控制备及表征[J]. 材料导报, 2023: 1-12.
[47] 帅骁睿, 张鹏程, 张正卿, 等. 氧化还原法石墨烯绿色制备技术研究进展[J]. 化工管理, 2020, (29): 31-34.
[48] RADHA B, ESFANDIAR A, WANG F C, et al. Molecular transport throughcapillaries made with atomic-scale precision[J]. Nature, 2016, 538(7624):222-225.
[49] THOMAS J A, MCGAUGHEY A J. Reassessing fast water transport throughcarbon nanotubes[J]. Nano Letters, 2008, 8(9): 2788-2793.
[50] FALK K, JOLY L. Molecular origin of fast water transport in carbonnanotube membranes: superlubricity versus curvature dependent friction[J]. Nano Letters, 2010, 10(10): 4067-4073.
[51] KANNAM S K, TODD B D, HANSEN J S, et al. How fast does water flow incarbon nanotubes[J]. The Journal of Chemical Physics, 2013, 138(9): 094701.
[52] XIE Q, AMIN A M, JIAO S P, et al. Fast water transport in graphenenanofluidic channels[J]. Nature Nanotechnology, 2018, 13(3): 238-245.
[53] ALOIS W. Thermal non-equilibrium transport in colloids[J]. Reports onProgress in Physics, 2010, 73(12): 126601-126638.
[54] DIETZEL M, HARDT S. Thermoelectricity in Confined LiquidElectrolytes[J]. Physical Review Letters, 2016, 116 (22): 225901.
[55] AGAR J N, MOU C Y, LIN J L. Single-ion heat of transport in electrolytesolutions. A hydrodynamic theory[J]. Journal of Physical Chemistry, 1989, 93(5): 2079-2082.
[56] LI F, SAMY M, LAURENT J. What Controls Thermo-osmosis? Molecularsimulations show the critical role of interfacial hydrodynamics[J]. PhysicalReview Letters, 2017, 119 (21): 214501.
[57] LAUGA E, BRENNER M, STONE H. Microfluidics: The no-slip boundarycondition. springer handbook of experimental fluid mechanics[J]. SpringerHandbooks. 2007, 1219-1240.
[58] BREGULLA A P, WÜRGER A, GÜNTHER K, et al. Thermo-Osmotic flow inthin films[J]. Physical Review Letters, 2016, 116 (18): 188303.
[59] FERNÁNDEZM J, GUARDIA L, PAREDES J I, et al. Vitamin-C is an idealsubstitute for hydrazine in the reduction of graphene oxide suspensions[J]. Journal of Physical Chemistry C, 2010, (14): 6426-6432.
[60] XIAO J, ZHAN H L, WANG X, et al. Electrolyte gating in graphene-basedsupercapacitors and its use for probing nanoconfined charging dynamics[J]. Nature Nanotechnology. 2020, 15(8): 683-689.
[61] MEHDI O, MICHAEL D S, HERRERO C, et al. Complex coupling betweensurface charge and thermo-osmotic phenomena[J]. Physical ChemistryChemical Physics, 2023, 25 (36): 24321-24331.
[62] ESFANDIAR A, RADHA B, WANG F C, et al. Size effect in ion transportthrough angstrom-scale slits[J]. Science, 2017, 358 (6362): 511-513.
[63] XIE Y B, FU L, THOMAS N H, et al. Liquid-Solid slip on charged walls:The dramatic impact of charge distribution[J]. Physical Review Letters, 2020, 125 (1): 014501.
[64] LAURENT J, CHRISTOPHE Y, EMMANUEL T, et al. Hydrodynamics withinthe electric double layer on slipping surfaces[J]. Physical Review Letters, 2004, 93 (25): 257805.
[65] BOUZIGUES C I, TABELING P, BOCQUET L. Nanofluidics in the Debyelayer at hydrophilic and hydrophobic surfaces[J]. Physical Review Letters, 2008, 101 (11): 114503.
[66] WANG F C, QIAN J H, FAN J C, et al. Molecular transport under extremeconfinement[J]. Science China Physics, Mechanics & Astronomy, 2022, 65(6): 264601.
[67] KAUFMAN I K, FEDORENKO O A, LUCHINSKY D G, et al. Ionic Coulombblockade and anomalous mole fraction effect in the NaChBac bacterial ionchannel and its charge-varied mutants[J]. EPJ Nonlinear Biomedical Physics, 2017, 5: 4-4.
[68] HUNTER R J, WRIGHT H J. The dependence of electrokinetic potential onconcentration of electrolyte[J]. Journal of Colloid and Interface Science, 1971, 37 (3): 564-580.
修改评论