中文版 | English
题名

石墨烯纳米通道内热电响应的电学调控及机理研究

其他题名
INVESTIGATION OF THE THERMOELECTRIC RESPONSE OF GRAPHENE NANOCHANNELS UNDER ELECTRICAL CONTROL
姓名
姓名拼音
LI Guobin
学号
12132398
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
薛亚辉
导师单位
力学与航空航天工程系
论文答辩日期
2024-05-20
论文提交日期
2024-07-02
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

热电响应是一种将温度梯度转化为电势差的现象,在纳米离子通道中, 离子在温度梯度下的定向传输行为会导致电势差的产生。纳米离子通道的壁面电荷与溶液中的离子相互作用,在其壁面附近形成的双电层会排斥溶液中带同性电荷的离子并促进带异性电荷的离子传输。纳米离子通道壁面处的滑移会导致固液界面处的离子具有较大的传输速度,从而增强离子的传输通量。本论文系统地研究了表面电荷和流体滑移长度的协同效应,对石墨烯纳米流体通道内增强热电响应的影响,利用静电学调控的方法实现了石墨烯纳米通道内热电响应性能超过一个数量级的提升,甚至超过生物热敏离子通道的热电敏感系数。本文具体从以下几个方面进行研究。

首先制备了还原氧化石墨烯分散液,并且利用真空抽滤法制备了石墨烯纳米离子通道。实验验证了门控电压对热电响应性能的影响。在门控电压下,石墨烯纳米离子通道的等效的Seebeck系数最高可达12.7 mV/K,与目前文献中的水平相比,提高了一个数量级。

其次研究了离子浓度对热电响应性能的影响。石墨烯纳米流体通道的热电响应性能随着电解质浓度的增加而减小。高浓度的电解质降低了与热渗透效应呈正相关的有效Zeta电位,从而使得热电响应性能降低。然后研究了材料层间距这一物理约束条件对热电响应性能的影响。石墨烯纳米流体膜的热电响应性能随着通道高度的增加而减小。大的通道尺寸降低了壁面处,具有非零的过量焓的比例,从而使得热电响应性能降低。

最后分析了不同离子对热电响应性能的影响。阳离子的高本征迁移率有助于提高热电性能。热电性能的最大增强遵循一个顺序,即K + > Na+ > Ca 2+ > Mg 2+,这一顺序与离子水化壳的相对尺寸相对应。

本论文研究揭示出,表面电荷和大的流体动力滑移长度的协同效应是纳米流体通道内热电效应增强的关键。这一发现将为设计超灵敏热纳米离子通道、低品位热能收集的先进纳米流体通道以及用于热信息处理的传感器装置提供指导。

 

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] LIU N, LI W Y, PASTA M, et al. Nanomaterials for electrochemical energystorage[J]. Frontiers of Physics, 2014, 9(3): 323-350.
[2] CHU S, ARUN M. Opportunities and challenges for a sustainable energyfuture[J]. Nature, 2012, 488(7411): 294-303.
[3] WU X, GAO N W, JIA H Y, et al. Thermoelectric converters based on ionicconductors[J]. Chemistry-An Asian Journal, 2021, 16(2): 129-141.
[4] TOAN N V, UDAGAWA D K, INOMATA N K, et al. Thermoelectric powerbattery using Al 2O3 nanochannels of 10 nm diameter for energy harvesting oflow-grade waste heat[J]. Energy Conversion and Management, 2019, 199(C):111979.
[5] LI T, ZHANG X, LACEY S D, et al. Cellulose ionic conductors with highdifferential thermal voltage for low-grade heat harvesting[J]. NatureMaterials, 2019, 18(6): 608-613.
[6] LONG R, KUANG Z F, LIU Z C, et al. Ionic thermal up-diffusion innanofluidic salinity-gradient energy harvesting[J]. National Science Review, 2019, 6(6): 1266-1273.
[7] ZHAO X L, LI L, XIE W Y, ET AL. pH-regulated thermo-drivennanofluidics for nanoconfined mass transport and energy conversion[J]. Nanoscale Advances, 2020, 2(9): 4070-4076.
[8] BARRAGÁN V, KRISTIANSEN K, SIGNE K. Perspectives on thermoelectricenergy conversion in ion-exchange membranes[J]. Entropy, 2018, 20(12):905.
[9] JIA Z J, WANG B G, SONG S Q, et al. Blue energy: Current technologiesfor sustainable power generation from water salinity gradient[J]. Renewableand Sustainable Energy Reviews, 2014, 31(31): 91-100.
[10] ALVAREZ S O, OSORIO A F, WINTER C. Practical global salinity gradientenergy potential[J]. Renewable and Sustainable Energy Reviews, 2016, 60(60): 1387-1395.
[11] TSENG A J, LI Y M, LIN C Y, et al. Salinity gradient power: Optimizationof nanopore size[J]. Electrochimica Acta, 2016, 219: 790-797.
[12] LIU S S, YANG R J, LIN X Y, et al. Gated thermoelectric sensation bynanochannels grafted with thermally responsive polymers[J]. ChemicalCommunications, 2020, 56(91): 14291-14294.
[13] LIU B Y, QIN F. Single-residue molecular switch for high-temperaturedependence of vanilloid receptor TRPV3[J]. Proceedings of the NationalAcademy of Sciences of the United States of America, 2017, 114(7): 1589- 1594.
[14] DAVID B, NATALIA R, FERREIRA G, et al. Gating of thermally activatedchannels[J]. Current Topics in Membranes, 2014, 74(74): 51-87.
[15] Jiao C, Liu H L, Yang J M, et al. SERS detection of nucleobases in singlesilver plasmonic nanopores[J]. ACS Sensors, 2020, 5(7): 2198-2204.
[16] ZHAO X P, WANG S S, MUHAMMAD R Y, et al. Thermo and pH Dual- Actuating smart porous anodic aluminum for controllable drug release[J]. Advanced Materials Interfaces, 2018, 5(13): 1800185.
[17] AHMED S A, SHEN Q, LIAO Q B, et al. Mass transfer modulation and gasmapping based on covalent organic Frameworks-Covered thetamicropipette[J]. Analytical Chemistry, 2020, 92(10): 7343-7348.
[18] LU SHI, CAO F F, ZHANG L M, et al. I-motif formed at physiological pHtriggered by spatial confinement of nanochannels: An electrochemicalplatform for pH monitoring in brain microdialysates[J]. AnalyticalChemistry, 2020, 92(6): 4535-4540.
[19] ZHAO X P, WANG S S, RIZWAN Y M, et al. Asymmetric Nanochannel￾Ionchannel hybrid for ultrasensitive and Label-Free detection of copper ionsin blood[J]. Analytical Chemistry, 2018, 90(1): 896–902.
[20] LI P, XIE G H, PEI L, et al. Light-Driven ATP transmembrane transportcontrolled by DNA canomachines[J]. Journal of the American ChemicalSociety, 2018, 140(47): 16048-16052.
[21] CHEN W, ZHAO X P, LIU F F, et al. Dendrimer-Au nanoparticle networkcovered alumina membrane for ion rectification and enhanced bioanalysis[J]. Nano Letters, 2020, 20(3): 1846-1854.
[22] ALI M, NASIR S M, HUNG N Q, et al. Metal ion affinity-basedbiomolecular recognition and conjugation inside synthetic polymernanopores modified with iron-terpyridine complexes[J]. Journal of theAmerican Chemical Society, 2011, 133(43): 17307-14.
[23] QIAO S L, WANG H. Temperature-responsive polymers: Synthesisproperties and biomedical applications[J]. Nano Research, 2018, 11(10):5400-5423.
[24] VIANA F, ELVIRA D L, CARLOS B. Specificity of cold thermotransductionis determined by differential ionic channel expression[J]. NatureNeuroscience, 2002, 5(3): 254-260.
[25] ZHANG P C, CHEN S F, ZHU C J, et al. Covalent organic framework nanofluidic membrane as a platform for highly sensitive bionicthermossensation[J]. Nature Communications, 2021, 12(1): 1844.
[26] JI J Z, KANG Q, ZHOU Y, et al. Osmotic power generation with positivelyand negatively charged 2d nanofluidic membrane pairs[J]. AdvancedFunctional Materials, 2017, 27(2): 1603623.
[27] QIN S, LIU D, CHE Y, et al. Nanofluidic electric generators constructedfrom boron nitride nanosheet membranes[J]. Nano Energy, 2018, 47: 368-373.
[28] MARCOTTE A, MOUTERDE T, NIGUÈS A, et al. Mechanically activatedionic transport across single-digit carbon nanotubes[J]. Nature Materials, 2020, 19(10): 1057-1061.
[29] SECCHI E, MARBACH S, NIGUÈS A, et al. Massive radius-dependent flowslippage in carbon nanotubes[J]. Nature, 2016, 537(7619): 210-213.
[30] PEI P, JIN H, HYUN P J, et al. Origin of giant ionic currents in carbonnanotube channels[J]. ACS Nano, 2011, 5(9): 7277-7283.
[31] LIU H T, HE J, TANG J Y, et al. Translocation of single-stranded DNAthrough single-walled carbon nanotubes[J]. Science, 2010, 327(5961): 64-67.
[32] LONG R, KUANG F F, LIU Z C, et al. Ionic thermal up-diffusion innanofluidic salinity-gradient energy harvesting[J]. National Science Review, 2019, 6(6): 1266-1273.
[33] CHENG C, JIANG G P, SIMON G P, et al. Low-voltage electrostaticmodulation of ion diffusion through layered graphene-based nanoporousmembranes[J]. Nature Nanotechnology, 2018, 13(8): 685-690.
[34] LUND N J, SHAUN C. Hendy effective slip length of nanoscale mixed-slipsurfaces[J]. The Anziam Journal, 2009, 50(3): 381-394.
[35] WANG R F, CHAI J, LUO B B, et al. A review on slip boundary conditionsat the nanoscale: Recent development and applications[J]. Beilstein Journalof Nanotechnology, 2021, 12: 1237-1251.
[36] KANG B D, JAISUK Y, HYUN J K, et al. Slip-enhanced reverseelectrodialytic power generation in ion-selective nanochannels[J]. Journal ofThermal Science, 2013, 22(1): 36-41.
[37] HUANG W H, CHANG C C, YANG R J. Effect of hydrodynamic slip onthermoelectric response in negatively-charged nanofluidic channels[J]. International Journal of Heat and Mass Transfer, 2023, 214: 124454.
[38] 杨蓉婕, 刘珊珊, 周璘, 等. 离子选择性膜的热电响应:理论和实验[C]. 中国化学会(Chinese Chemical Society), 中国仪器仪表学会. 中国化学会第十四届全国电分析化学学术会议会议论文集(第二分册), 2020, (2): 287-288。
[39] 崔一凡, 郭乃理, 朱小红. 温度对还原氧化石墨烯电化学性能影响的研究[J]. 凝聚态物理学进展, 2021, 10(2): 33-44.
[40] 曹坤, 王菁潇, 董承卫, 等. 石墨烯基导热薄膜的研究进展[J]. 材料科学与工艺, 2024, 32(02): 29-43.
[41] CHEN K X, YAO L N, SU B. Bionic thermoelectric response withnanochannels[J]. Journal of the American Chemical Society, 2019, 141(21):8608-8615.
[42] LI F, LAURENT J, SAMY M. Giant thermoelectric response of nanofluidicsystems driven by water excess Enthalpy[J]. Physical Review Letters, 2019, 123(13): 138001.
[43] CHENG C, JIANG G P, SIMON G P, et al. Low-voltage electrostaticmodulation of ion diffusion through layered graphene-based nanoporousmembranes[J]. Nature Nanotechnology, 2018, 13(8): 685-690.
[44] XUE Y H, XIA Y, YANG S, et al. Atomic-scale ion transistor with ultrahighdiffusivity[J]. Science, 2021, 372(6541): 501-503.
[45] 林 洋, 冯俊玮, 张焕侠, 等. 基于两性高分子化合物/还原氧化石墨烯的离子传感器[J]. 纺织科学与工程学报, 2021, 38(4): 7-10.
[46] 朱玉方, 张慧丽, 梁丰国, 等. 还原氧化石墨烯的可控制备及表征[J]. 材料导报, 2023: 1-12.
[47] 帅骁睿, 张鹏程, 张正卿, 等. 氧化还原法石墨烯绿色制备技术研究进展[J]. 化工管理, 2020, (29): 31-34.
[48] RADHA B, ESFANDIAR A, WANG F C, et al. Molecular transport throughcapillaries made with atomic-scale precision[J]. Nature, 2016, 538(7624):222-225.
[49] THOMAS J A, MCGAUGHEY A J. Reassessing fast water transport throughcarbon nanotubes[J]. Nano Letters, 2008, 8(9): 2788-2793.
[50] FALK K, JOLY L. Molecular origin of fast water transport in carbonnanotube membranes: superlubricity versus curvature dependent friction[J]. Nano Letters, 2010, 10(10): 4067-4073.
[51] KANNAM S K, TODD B D, HANSEN J S, et al. How fast does water flow incarbon nanotubes[J]. The Journal of Chemical Physics, 2013, 138(9): 094701.
[52] XIE Q, AMIN A M, JIAO S P, et al. Fast water transport in graphenenanofluidic channels[J]. Nature Nanotechnology, 2018, 13(3): 238-245.
[53] ALOIS W. Thermal non-equilibrium transport in colloids[J]. Reports onProgress in Physics, 2010, 73(12): 126601-126638.
[54] DIETZEL M, HARDT S. Thermoelectricity in Confined LiquidElectrolytes[J]. Physical Review Letters, 2016, 116 (22): 225901.
[55] AGAR J N, MOU C Y, LIN J L. Single-ion heat of transport in electrolytesolutions. A hydrodynamic theory[J]. Journal of Physical Chemistry, 1989, 93(5): 2079-2082.
[56] LI F, SAMY M, LAURENT J. What Controls Thermo-osmosis? Molecularsimulations show the critical role of interfacial hydrodynamics[J]. PhysicalReview Letters, 2017, 119 (21): 214501.
[57] LAUGA E, BRENNER M, STONE H. Microfluidics: The no-slip boundarycondition. springer handbook of experimental fluid mechanics[J]. SpringerHandbooks. 2007, 1219-1240.
[58] BREGULLA A P, WÜRGER A, GÜNTHER K, et al. Thermo-Osmotic flow inthin films[J]. Physical Review Letters, 2016, 116 (18): 188303.
[59] FERNÁNDEZM J, GUARDIA L, PAREDES J I, et al. Vitamin-C is an idealsubstitute for hydrazine in the reduction of graphene oxide suspensions[J]. Journal of Physical Chemistry C, 2010, (14): 6426-6432.
[60] XIAO J, ZHAN H L, WANG X, et al. Electrolyte gating in graphene-basedsupercapacitors and its use for probing nanoconfined charging dynamics[J]. Nature Nanotechnology. 2020, 15(8): 683-689.
[61] MEHDI O, MICHAEL D S, HERRERO C, et al. Complex coupling betweensurface charge and thermo-osmotic phenomena[J]. Physical ChemistryChemical Physics, 2023, 25 (36): 24321-24331.
[62] ESFANDIAR A, RADHA B, WANG F C, et al. Size effect in ion transportthrough angstrom-scale slits[J]. Science, 2017, 358 (6362): 511-513.
[63] XIE Y B, FU L, THOMAS N H, et al. Liquid-Solid slip on charged walls:The dramatic impact of charge distribution[J]. Physical Review Letters, 2020, 125 (1): 014501.
[64] LAURENT J, CHRISTOPHE Y, EMMANUEL T, et al. Hydrodynamics withinthe electric double layer on slipping surfaces[J]. Physical Review Letters, 2004, 93 (25): 257805.
[65] BOUZIGUES C I, TABELING P, BOCQUET L. Nanofluidics in the Debyelayer at hydrophilic and hydrophobic surfaces[J]. Physical Review Letters, 2008, 101 (11): 114503.
[66] WANG F C, QIAN J H, FAN J C, et al. Molecular transport under extremeconfinement[J]. Science China Physics, Mechanics & Astronomy, 2022, 65(6): 264601.
[67] KAUFMAN I K, FEDORENKO O A, LUCHINSKY D G, et al. Ionic Coulombblockade and anomalous mole fraction effect in the NaChBac bacterial ionchannel and its charge-varied mutants[J]. EPJ Nonlinear Biomedical Physics, 2017, 5: 4-4.
[68] HUNTER R J, WRIGHT H J. The dependence of electrokinetic potential onconcentration of electrolyte[J]. Journal of Colloid and Interface Science, 1971, 37 (3): 564-580.

所在学位评定分委会
力学
国内图书分类号
O369
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778859
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
李国斌. 石墨烯纳米通道内热电响应的电学调控及机理研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132398-李国斌-力学与航空航天(5338KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李国斌]的文章
百度学术
百度学术中相似的文章
[李国斌]的文章
必应学术
必应学术中相似的文章
[李国斌]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。