中文版 | English
题名

自旋空间群的列举,表示及应用

其他题名
ENUMERATION,REPRESENTATION AND APLLICATION OF SPIN SPACE GROUPS
姓名
姓名拼音
REN Jun
学号
12132936
学位类型
硕士
学位专业
07 理学
学科门类/专业学位类别
07 理学
导师
刘奇航
导师单位
物理系
论文答辩日期
2024-05-15
论文提交日期
2024-07-02
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
 磁有序材料中的基本物理性质,例如相变,能带简并和自旋激发等,
长期以来被认为是基于磁空间群的对称性理论。然而,最近的研究表明更
加全面的自旋空间群对于描述这些材料的几何与物性是必要的,遗憾的是,
自旋空间群的基础理论尚未被完全建立。在这项工作中,我们对自旋空间
群的列举与表示理论进行了系统的研究。从 230 个晶体空间群和最大阶数
为 8 的有限平移群出发,我们构建了超过 10 万个自旋空间群,并开发了四
段命名法与国际符号命名法。然后,我们确定了共线,共面与非共面磁构
型中不等价的自旋空间群。此外,我们还在自旋空间群的框架下推导出了
动量空间中小群的不可约共表示。为了说明自旋空间群的对称性和物理效
应超出了磁空间群的框架,我们提供了几个代表性的材料示例,包括著名
的交错磁体 RuO2,共面反铁磁体 CeAuAl3 中的螺旋自旋极化,以及非共面
反铁磁体 CoNb3S6 中的几何霍尔效应。我们的工作推动了磁有序材料的群
论研究,为更深入地理解和进一步探索磁性材料中的新现象铺平了道路。  
关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] DRESSELHAUS M S, DRESSELHAUS G, and JORIO A, Group theory:application to the physics of condensed matter, Springer (2008).
[2] BRADLEY C J and CRACKNELL A P, The Mathematical Theory of Symmetry in Solids Representation Theory for Point Groups and Space Groups, Oxford University Press (1972).
[3] DIMMOCK J O and WHEELER R G, Symmetry properties of wave functions in magnetic crystals, Phys. Rev. 127, 391 (1962).
[4] RIETVELD H M, A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst. 2, 65 (1969).
[5] GRIMMER H, Comments on tables of magnetic space groups, Acta Crystallogr. A. 65, 145 (2009).
[6] SLAGER R J, MESAROS A, JURIČIĆ V, and ZAANEN J, The space group classification of topological band-insulators, Nat. Phys. 9, 98 (2013).
[7] KRUTHOFF J, DE BOER J, VAN WEZEL J, et al., Topological Classification of Crystalline Insulators through Band Structure Combinatorics, Phys. Rev. X 7, 041069 (2017).
[8] WATANABE H, PO H C, and VISHWANATH A, Structure and topology of band structures in the 1651 magnetic space groups, Sci. Adv. 4, eaat8685 (2018).
[9] ELCORO L, WIEDER B J, SONG Z, et al., Magnetic topological quantum chemistry, Nat. Commun. 12, 5965 (2021).
[10] BELOV N V and TARKHOVA T N, Groups of colored symmetry, Sov. Phys. Crystallogr. 1, 5 (1956).
[11] NAISH V E, Magnetic structures of the metallic perovskites, Phys. Met. Metall. 14, 144 (1962).
[12] BLUME M and WATSON R E, Theory of spin-orbit coupling in atoms, II. Comparison of theory with experiment, Proc. R. Soc. A 271, 565 (1963).
[13] KITZ A, Über die Symmetriegruppen von Spinverteilungen Von, Phys. Status Solidi (b) 10, 455 (1965).
[14] BRINKMAN W and ELLIOTT R J, Space Group Theory for Spin Waves, J. Appl. Phys. 37, 1457 (1966).
[15] BRINKMAN W F and ELLIOTT R J, Theory of spin-space groups, Proc. R. Soc. A 294, 343 (1966).
[16] CORTICELLI A, MOESSNER R, and MCCLARTY P A, Spin-space groups and magnon band topology, Phys. Rev. B 105, 064430 (2022).
[17] LIU P F, LI J Y, HAN J Z, et al., Spin-Group Symmetry in Magnetic Materials with Negligible Spin-Orbit Coupling, Phys. Rev. X 12 (2022).
[18] SHEKHTMAN L, ENTIN-WOHLMAN O, and AHARONY A, Moriya's anisotropic superexchange interaction, frustration, and Dzyaloshinsky's weak ferromagnetism, Phys. Rev. Lett. 69, 836 (1992).
[19] BERNEVIG B A, ORENSTEIN J, and ZHANG S C, Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System, Phys. Rev. Lett. 97, 236601 (2006).
[20] CHALOUPKA J and KHALIULLIN G, Hidden symmetries of the extended Kitaev -Heisenberg model: Implications for the honeycomb-lattice iridates A2IrO3, Phys. Rev. B 92, 024413 (2015).
[21] JUNGWIRTH T, MARTI X, WADLEY P, and WUNDERLICH J, Antiferromagnetic spintronics, Nat. Nano. 11, 231 (2016).
[22] BALTZ V, MANCHON A, TSOI M, et al., Antiferromagnetic spintronics, Rev. Mod. Phys. 90, 015005 (2018).
[23] ŠMEJKAL L, MOKROUSOV Y, YAN B, and MACDONALD A H, Topological antiferromagnetic spintronics, Nat. Phys. 14, 242 (2018).
[24] BERLIJN T, SNIJDERS P C, DELAIRE O, et al., Itinerant Antiferromagnetism in RuO2, Phys. Rev. Lett. 118, 077201 (2017).
[25] HAYAMI S, YANAGI Y, and KUSUNOSE H, Momentum-Dependent Spin Splitting by Collinear Antiferromagnetic Ordering, J. Phys. Soc. Jpn. 88 (2019).
[26] NAKA M, HAYAMI S, KUSUNOSE H, et al., Spin current generation in organic antiferromagnets, Nat. Commun. 10, 4305 (2019).
[27] HAYAMI S, YANAGI Y, and KUSUNOSE H, Bottom-up design of spin-split and reshaped electronic band structures in antiferromagnets without spin -orbit coupling: Procedure on the basis of augmented multipoles, Phys. Rev. B 102, 144441 (2020).
[28] ŠMEJKAL L, GONZALEZ-HERNANDEZ R, JUNGWIRTH T, and SINOVA J, Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets, Sci. Adv. 6, eaaz8809 (2020).
[29] GONZáLEZ-HERNáNDEZ R, ŠMEJKAL L, VýBORNý K, et al., Efficient Electrical Spin Splitter Based on Nonrelativistic Collinear Antiferromagnetism, Phys. Rev. Lett. 126, 127701 (2021).
[30] MA H Y, HU M, LI N, et al., Multifunctional antiferromagnetic materials with giant piezomagnetism and noncollinear spin current, Nat. Commun. 12, 2846 (2021).
[31] MAZIN, II, KOEPERNIK K, JOHANNES M D, et al., Prediction of unconventional magnetism in doped FeSb2, Proc. Nati. Acad. Sci. 118 (2021).
[32] YUAN L D, WANG Z, LUO J W, and ZUNGER A, Prediction of low-Z collinear and noncollinear antiferromagnetic compounds having momentum-dependent spin splitting even without spin-orbit coupling, Phys. Rev. Mat. 5, 014409 (2021).
[33] BAI H, HAN L, FENG X Y, et al., Observation of Spin Splitting Torque in a Collinear Antiferromagnet RuO2, Phys. Rev. Lett. 128, 197202 (2022).
[34] BOSE A, SCHREIBER N J, JAIN R, et al., Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide, Nat. Ele. 5, 267 (2022).
[35] FENG Z, ZHOU X, ŠMEJKAL L, et al., An anomalous Hall effect in altermagnetic ruthenium dioxide, Nat. Ele. 5, 735 (2022).
[36] KARUBE S, TANAKA T, SUGAWARA D, et al., Observation of Spin-Splitter Torque in Collinear Antiferromagnetic RuO2, Phys. Rev. Lett. 129, 137201 (2022).
[37] ŠMEJKAL L, HELLENES A B, GONZáLEZ-HERNáNDEZ R, et al., Giant and Tunneling Magnetoresistance in Unconventional Collinear Antiferromagnets with Nonrelativistic Spin-Momentum Coupling, Phys. Rev. X 12, 011028 (2022).
[38] ŠMEJKAL L, SINOVA J, and JUNGWIRTH T, Emerging Research Landscape of Altermagnetism, Phys. Rev. X 12, 040501 (2022).
[39] ŠMEJKAL L, SINOVA J, and JUNGWIRTH T, Beyond Conventional Ferromagnetism and Antiferromagnetism: A Phase with Nonrelativistic Spin and Crystal Rotation Symmetry, Phys. Rev. X 12, 031042 (2022).
[40] LITVIN D B, Spin Point Groups, Acta. Crystallogr. A 33, 279 (1977).
[41] KUBLER J, HOCK K H, STICHT J, and WILLIAMS A R, Density functional theory of non-collinear magnetism, Journal of Physics F: Metal Physics 18, 469 (1988).
[42] HOBBS D, KRESSE G, and HAFNER J, Fully unconstrained noncollinear magnetism within the projector augmented-wave method, Phys. Rev. B 62, 11556 (2000).
[43] LITVIN D B and OPECHOWSKI W, Spin Groups, Physica 76, 538 (1974).
[44] ELCORO L, BRADLYN B, WANG Z, et al., Double crystallographic groups and their representations on the Bilbao Crystallographic Server, J. Appl. Cryst. 50, 1457 (2017).
[45] IVANTCHEV S, KROUMOVA E, PEREZ-MATO J, et al., SUPERGROUPS – a computer program for the determination of the supergroups of the space groups, J. Appl. Cryst. 35, 511 (2002).
[46] CHEN X B, REN J, ZHU Y Z, et al., Enumeration and representation of spin space groups, arXiv:2307.10369 (2023).
[47] AROYO M I, International Tables for Crystallography (Wiley Online Library, 2013).
[48] BELOV N, The 1651 shubnikov groups, Kristallografiya 2, 315 (1957).
[49] SHUBNIKOV A V e, BELOV N V e, and HOLSER W T, Colored symmetry, London: Pergamon Press (1964).
[50] CHEN J Q, GAO M J, and MA G Q, The Representation Group and Its Application To Space-Groups, Rev. Mod. Phys. 57, 211 (1985).
[51] CHEN J Q, PING J L, and WANG F, Group Representation Theory for Physicists (WORLD SCIENTIFIC, 2002).
[52] LI J, YAO Q, WU L, et al., Designing light-element materials with large effective spin￾orbit coupling, Nat. Commun. 13, 919 (2022).
[53] SHAO D F, ZHANG S H, LI M, et al., Spin-neutral currents for spintronics, Nat. Commun. 12, 7061 (2021).
[54] BAI H, ZHANG Y C, ZHOU Y J, et al., Efficient Spin-to-Charge Conversion via Altermagnetic Spin Splitting Effect in Antiferromagnet RuO2, Phys. Rev. Lett. 130, 216701 (2023).
[55] SHAO D F, JIANG Y Y, DING J, et al., Neel Spin Currents in Antiferromagnets, Phys. Rev. Lett. 130, 216702 (2023).
[56] LIU P, ZHANG A, HAN J, and LIU Q, Chiral Dirac-like fermion in spin-orbit-free antiferromagnetic semimetals, The Innovation 3, 100343 (2022).
[57] ZHANG A, DENG K, SHENG J M, et al., Chiral Dirac fermion in a collinear antiferromagnet, Chin. Phys. Lett. 40, 126101 (2023).
[58] ADROJA D T, DE LA FUENTE C, FRAILE A, et al., Muon spin rotation and neutron scattering study of the noncentrosymmetric tetragonal compound CeAuAl 3, Phys. Rev. B 91, 134425 (2015).
[59] YUAN L D, WANG Z, LUO J W, et al., Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets, Phys. Rev. B 102, 014422 (2020).
[60] GHIMIRE N J, BOTANA A S, JIANG J S, et al., Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6, Nat. Commun. 9, 3280 (2018).
[61] TENASINI G, MARTINO E, UBRIG N, et al., Giant anomalous Hall effect in quasi two-dimensional layered antiferromagnet Co1/3NbS2, Phys. Rev. Res 2, 023051 (2020).
[62] TANAKA H, OKAZAKI S, KURODA K, et al., Large anomalous Hall effect induced by weak ferromagnetism in the noncentrosymmetric antiferromagnet CoNb3S6, Phys. Rev. B 105, L121102 (2022).
[63] YANG X P, LABOLLITA H, CHENG Z-J, et al., Visualizing the out-of-plane electronic dispersions in an intercalated transition metal dichalcogenide, Phys. Rev. B 105, L121107 (2022).
[64] TAKAGI H, TAKAGI R, MINAMI S, et al., Spontaneous topological Hall effect induced by non-coplanar antiferromagnetic order in intercalated van der Waals materials, Nat. Phys. 19, 961 (2023).
[65] PARKIN S S P, MARSEGLIA E A, and BROWN P J, Magnetic structure of Co 1/3NbS2and Co1/3TaS2, J. Phys. C 16, 2765 (1983).
[66] NAGAOSA N, SINOVA J, ONODA S, et al., Anomalous Hall effect, Rev. Mod. Phys. 82, 1539 (2010).
[67] SHINDOU R and NAGAOSA N, Orbital Ferromagnetism and Anomalous Hall Effect in Antiferromagnets on the Distorted fcc Lattice, Phys. Rev. Lett. 87, 116801 (2001).
[68] HIRSCHBERGER M, NOMURA Y, MITAMURA H, et al., Geometrical Hall effect and momentum-space Berry curvature from spin-reversed band pairs, Phys. Rev. B 103, L041111 (2021).

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778865
专题理学院_物理系
推荐引用方式
GB/T 7714
任俊. 自旋空间群的列举,表示及应用[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132936-任俊-物理系.pdf(1903KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[任俊]的文章
百度学术
百度学术中相似的文章
[任俊]的文章
必应学术
必应学术中相似的文章
[任俊]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。