[1] WANG Y, LIU J, BURROWS P D, et al. B cell development and maturation[J]. B Cells in Immunity and Tolerance, 2020, 1254: 1-22.
[2] LI J, LUO Y, WANG X, et al. Regulatory B cells and advances in transplantation[J]. Journal of Leukocyte Biology, 2019, 105(4): 657-668.
[3] ROSSER E C, MAURI C. Regulatory B cells: origin, phenotype, and function[J]. Immunity, 2015, 42(4): 607-612.
[4] LAIDLAW B J, ELLEBEDY A H. The germinal centre B cell response to SARS-CoV-2[J]. Nature Reviews Immunology, 2022, 22(1): 7-18.
[5] WANG K, JIA Z, BAO L, et al. Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants[J]. Nature, 2022, 603(7903): 919-925.
[6] RÖLTGEN K, BOYD S D. Antibody and B cell responses to SARS-CoV-2 infection and vaccination[J]. Cell Host & Microbe, 2021, 29(7): 1063-1075.
[7] LEBIEN T W, TEDDER T F. B lymphocytes: how they develop and function[J]. Blood, The Journal of the American Society of Hematology, 2008, 112(5): 1570-1580.
[8] LKHAGVASUREN E. Janeway’s Immunobiology[J]. Central Asian Journal of Medical Sciences, 2017, 3(1): 100-101.
[9] BUSSLINGER M. Transcriptional control of early B cell development[J]. Annual Review of Immunology, 2004, 22: 55-79.
[10] HARDY R R, KINCADE P W, DORSHKIND K. The protean nature of cells in the B lymphocyte lineage[J]. Immunity, 2007, 26(6): 703-714.
[11] ROTHENBERG E V. Transcriptional control of early T and B cell developmental choices[J]. Annual Review of Immunology, 2014, 32: 283-321.
[12] SLABODKIN A, CHERNIGOVSKAYA M, MIKOCZIOVA I, et al. Individualized VDJ recombination predisposes the available Ig sequence space[J]. Genome Research, 2021, 31(12): 2209-2224.
[13] SHINODA K, MAMAN Y, CANELA A, et al. Intra-Vκ cluster recombination shapes the Ig kappa locus repertoire[J]. Cell Reports, 2019, 29(13): 4471 -4481. e6.
[14] NUSSENZWEIG M C, ALT F W. Antibody diversity: one enzyme to rule them all[J]. Nature Medicine, 2004, 10(12): 1304-1305.
[15] BATISTA C R, LI S K H, XU L S, et al. PU. 1 regulates Ig light chain transcription and rearrangement in pre-B cells during B cell development[J]. The Journal of Immunology, 2017, 198(4): 1565-1574.
[16] KEE B L, QUONG M W, MURRE C. E2A proteins: Essential regulators at multiple stages of B‐cell development[J]. Immunological Reviews, 2000, 175(1): 138 -149.
[17] KWON K, HUTTER C, SUN Q, et al. Instructive role of the transcription factor E2A in early B lymphopoiesis and germinal center B cell development[J]. Immunity, 2008, 28(6): 751-762.
[18] CALDERÓN L, SCHINDLER K, MALIN S G, et al. Pax5 regulates B cell immunity by promoting PI3K signaling via PTEN down-regulation[J]. Science Immunology, 2021, 6(61): eabg5003.
[19] WANG S, LI H, LIAN Z, et al. The Role of m6A Modifications in B-Cell Development and B-Cell-Related Diseases[J]. International Journal of Molecular Sciences, 2023, 24(5): 4721.
[20] HUANG H, ZHANG G, RUAN G X, et al. Mettl14-mediated m6A modification is essential for germinal center B cell response[J]. The Journal of Immunology, 2022, 208(8): 1924-1936.
[21] FENG L, YAN Q, PAN H, et al. Retracted: METTL3 enhances the effect of YTHDF1 on NEDD1 mRNA stability by m6A modification in diffuse large B‐cell lymphoma cells[J]. Immunity, Inflammation and Disease, 2023, 11(2): e789.
[22] ZHENG Z, ZHANG L, CUI X L, et al. Control of early B cell development by the RNA N6-methyladenosine methylation[J]. Cell Reports, 2020, 31(13): 107819.
[23] LI Y, RUAN G X, CHEN W, et al. RNA-editing enzyme ADAR1 p150 isoform is critical for germinal center B cell response[J]. The Journal of Immunology, 2022, 209(6): 1071-1082.
[24] MAKITA S, TAKATORI H, NAKAJIMA H. Post-transcriptional regulation of immune responses and inflammatory diseases by RNA-binding ZFP36 family proteins[J]. Frontiers in Immunology, 2021, 12: 711633.
[25] O’GRADY T M, BADDOO M, FLEMINGTON S A, et al. Reversal of splicing infidelity is a pre-activation step in B cell differentiation[J]. Frontiers in Immunology, 2022, 13: 1060114.
[26] GEUENS T, BOUHY D, TIMMERMAN V. The hnRNP family: insights into their role in health and disease[J]. Human Genetics, 2016, 135: 851-867.
[27] WANG E, CAMBI F. Heterogeneous nuclear ribonucleoproteins H and F regulate the proteolipid protein/DM20 ratio by recruiting U1 small nuclear ribonucleoprotein through a complex array of G runs[J]. Journal of Biological Chemistry, 2009, 284(17): 11194-11204.
[28] WANG E, DIMOVA N, CAMBI F. PLP/DM20 ratio is regulated by hnRNPH and F and a novel G-rich enhancer in oligodendrocytes[J]. Nucleic Acids Research, 2007, 35(12): 4164-4178.
[29] WANG E, ASLANZADEH V, PAPA F, et al. Global profiling of alternative splicing events and gene expression regulated by hnRNPH/F[J]. PloS One, 2012, 7(12): e51266.
[30] YAMAZAKI T, LIU L, LAZAREV D, et al. TCF3 alternative splicing controlled by hnRNP H/F regulates E-cadherin expression and hESC pluripotency[J]. Genes & Development, 2018, 32(17-18).
[31] CHEN X, YANG H T, ZHANG B, et al. The RNA-binding proteins hnRNP H and F regulate splicing of a MYC-dependent HRAS exon in prostate cancer cells[J]. Proceedings of the National Academy of Sciences, 2023, 120(28): e2220190120.
[32] GRAMMATIKAKIS I, ZHANG P, PANDA A C, et al. Alternative splicing of neuronal differentiation factor TRF2 regulated by HNRNPH1/H2[J]. Cell Reports, 2016, 15(5): 926-934.
[33] CESARI E, LOIARRO M, NARO C, et al. Combinatorial control of Spo11 alternative splicing by modulation of RNA polymerase II dynamics and splicing factor recruitment during meiosis[J]. Cell Death & Disease, 2020, 11(4): 240.
[34] MOORE K S, VON LINDERN M. RNA binding proteins and regulation of mRNA translation in erythropoiesis[J]. Frontiers in Physiology, 2018, 9: 910.
[35] DHATARIYA K. Diabetes: the place of new therapies[J]. Therapeutic Advances in Endocrinology and Metabolism, 2019, 10: 1-7.
[36] TAKAHASHI K, FUJIYA M, KONISHI H, et al. Heterogenous nuclear ribonucleoprotein H1 promotes colorectal cancer progression through the stabilization of mRNA of sphingosine-1-phosphate lyase 1[J]. International Journal of Molecular Sciences, 2020, 21(12): 4514.
[37] LI F, ZHAO H, SU M, et al. HnRNP-F regulates EMT in bladder cancer by mediating the stabilization of Snail1 mRNA by binding to its 3′ UTR[J]. EBioMedicine, 2019, 45: 208-219.
[38] KHAN M I, ZHANG J, LIU Q. HnRNP F and hnRNP H1 regulate mRNA stability of amyloid precursor protein[J]. Neuroreport, 2021, 32(9): 824-832.
[39] ZHENG F, CHEN J, ZHANG X, et al. The HIF-1α antisense long non-coding RNA drives a positive feedback loop of HIF-1α mediated transactivation and glycolysis[J]. Nature Communications, 2021, 12(1): 1341.
[40] XU C, XIE N, SU Y, et al. HnRNP F/H associate with hTERC and telomerase holoenzyme to modulate telomerase function and promote cell proliferation[J]. Cell Death & Differentiation, 2020, 27(6): 1998-2013.
[41] ULE J, BLENCOWE B J. Alternative splicing regulatory networks: functions, mechanisms, and evolution[J]. Molecular Cell, 2019, 76(2): 329-345.
[42] MARASCO L E, KORNBLIHTT A R. The physiology of alternative splicing[J]. Nature Reviews Molecular Cell Biology, 2023, 24(4): 242-254.
[43] WRIGHT C J, SMITH C W J, JIGGINS C D. Alternative splicing as a source of phenotypic diversity[J]. Nature Reviews Genetics, 2022, 23(11): 697 -710.
[44] GALLARDO M, MALANEY P, AITKEN M J L, et al. Uncovering the role of RNA binding protein hnRNP K in B-cell lymphomas[J]. JNCI: Journal of the National Cancer Institute, 2020, 112(1): 95-106.
[45] KISHOR A, GE Z, HOGG J R. hnRNP L‐dependent protection of normal mRNAs from NMD subverts quality control in B cell lymphoma[J]. The EMBO Journal, 2019, 38(3): e99128.
[46] BLACK K L, NAQVI A S, ASNANI M, et al. Aberrant splicing in B-cell acute lymphoblastic leukemia[J]. Nucleic Acids research, 2018, 46(21): 11357 -11369.
[47] DUMORTIER H, MONNEAUX F, JAHN-SCHMID B, et al. B and T cell responses to the spliceosomal heterogeneous nuclear ribonucleoproteins A2 and B1 in normal and lupus mice[J]. The Journal of Immunology, 2000, 165(4): 2297 -2305.
[48] FURIE R A, AROCA G, CASCINO M D, et al. B-cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: a randomised, double -blind, placebo-controlled trial[J]. Annals of the Rheumatic Diseases, 2022, 81(1): 100 -107.
[49] HIRAYAMA A V, KIMBLE E L, WRIGHT J H, et al. Timing of anti–PD-L1 antibody initiation affects efficacy/toxicity of CD19 CAR T-cell therapy for large B-cell lymphoma[J]. Blood Advances, 2024, 8(2): 453-467.
[50] KANTARJIAN H M, O’BRIEN S, SMITH T L, et al. Results of treatment with hyper-CVAD, a dose-intensive regimen, in adult acute lymphocytic leukemia[J]. Journal of Clinical Oncology, 2000, 18(3): 547-561.
[51] BROWNMILLER T, CAPLEN N J. The HNRNPF/H RNA binding proteins and disease[J]. Wiley Interdisciplinary Reviews: RNA, 2023, 14(5): e1788.
[52] SUBRAHMANYAM R, DU H, IVANOVA I, et al. Localized epigenetic changes induced by DH recombination restricts recombinase to DJH junctions[J]. Nature Immunology, 2012, 13(12): 1205-1212.
[53] GUO C, YOON H S, FRANKLIN A, et al. CTCF-binding elements mediate control of V (D) J recombination[J]. Nature, 2011, 477(7365): 424-430.
[54] BOLOTIN D A, POSLAVSKY S, MITROPHANOV I, et al. MiXCR: software for comprehensive adaptive immunity profiling[J]. Nature Methods, 2015, 12(5): 380 -381.
[55] HOBEIKA E, THIEMANN S, STORCH B, et al. Testing gene function early in the B cell lineage in Mb1-cre mice[J]. Proceedings of the National Academy of Sciences, 2006, 103(37): 13789-13794.
[56] RYU H G, JUNG Y, LEE N, et al. HNRNP A1 promotes lung cancer cell proliferation by modulating VRK1 translation[J]. International Journal of Molecular Sciences, 2021, 22(11): 5506.
[57] SHI X, RAN L, LIU Y, et al. Knockdown of hnRNP A2/B1 inhibits cell proliferation, invasion and cell cycle triggering apoptosis in cervical cancer via PI3K/AKT signaling pathway[J]. Oncology Reports, 2018, 39(3): 939-950.
[58] VU N T, PARK M A, SHULTZ J C, et al. hnRNP U enhances caspase-9 splicing and is modulated by AKT-dependent phosphorylation of hnRNP L[J]. Journal of Biological Chemistry, 2013, 288(12): 8575-8584.
[59] XIAO Z, KO H L, GOH E H, et al. hnRNP K suppresses apoptosis independent of p53 status by maintaining high levels of endogenous caspase inhibitors[J]. Carcinogenesis, 2013, 34(7): 1458-1467.
[60] ZHAO T T, ZHAN D D, QU S, et al. Transcriptomics-proteomics Integration reveals alternative polyadenylation driving inflammation-related protein translation in patients with diabetic nephropathy[J]. Journal of Translational Medicine, 2023, 21(1):86.
[61] WANG K, SHI M, CHENG H. Microinjection and Fluorescence In Situ Hybridization Assay for Studying mRNA Export in Mammalian Cells[J]. Methods in Molecular Biology, 2017, 1648:95-102.
[62] RUAN G X, LI Y X, CHEN W J, et al. The spliceosome component Usp39 controls B cell development by regulating immunoglobulin gene rearrangement[J]. Cell Reports, 2022, 38(6):110338.
修改评论