[1] CAI S, WU C, YANG W, et al. Recent advance in surface modification for regulating cell adhesion and behaviors[J/OL]. Nanotechnology Reviews, 2020, 9(1): 971-989.
[2] YANG J, YANG K, MAN W, et al. 3D bio-printed living nerve-like fibers refine the ecological niche for long-distance spinal cord injury regeneration[J/OL]. Bioactive Materials, 2023, 25: 160-175.
[3] GIUSSANI M, TRIULZI T, SOZZI G, et al. Tumor Extracellular Matrix Remodeling: New Perspectives as a Circulating Tool in the Diagnosis and Prognosis of Solid Tumors[J/OL]. Cells, 2019, 8(2): 81.
[4] GAO J, YU X, WANG X, et al. Biomaterial–Related Cell Microenvironment in Tissue Engineering and Regenerative Medicine[J/OL]. Engineering, 2022, 13: 31-45.
[5] QUERCETO S, SANTORO R, GOWRAN A, et al. The harder the climb the better the view: The impact of substrate stiffness on cardiomyocyte fate[J/OL]. Journal of Molecular and Cellular Cardiology, 2022, 166: 36-49.
[6] GHAEMMAGHAMI A M, HANCOCK M J, HARRINGTON H, et al. Biomimetic tissues on a chip for drug discovery[J/OL]. Drug Discovery Today, 2012, 17(3–4): 173-181.
[7] ZHAO Y, RAFATIAN N, WANG E Y, et al. Engineering microenvironment for human cardiac tissue assembly in heart-on-a-chip platform[J/OL]. Matrix Biology, 2020, 85–86: 189-204.
[8] YIN D, ZHANG H, YANG C, et al. A More Biomimetic Cell Migration Assay with High Reliability and Its Applications[J/OL]. Pharmaceuticals, 2022, 15(6): 695.
[9] RIDLEY A J, SCHWARTZ M A, BURRIDGE K, et al. Cell Migration: Integrating Signals from Front to Back[J/OL]. Science, 2003, 302(5651): 1704-1709.
[10] YUAN T, GAO D, LI S, et al. Co-culture of tumor spheroids and monocytes in a collagen matrix-embedded microfluidic device to study the migration of breast cancer cells[J/OL]. Chinese Chemical Letters, 2019, 30(2): 331-336.
[11] FRIEDL P, SAHAI E, WEISS S, et al. New dimensions in cell migration[J/OL]. Nature Reviews Molecular Cell Biology, 2012, 13(11): 743-747.
[12] POLACHECK W J, ZERVANTONAKIS I K, KAMM R D. Tumor cell migration in complex microenvironments[J/OL]. Cellular and Molecular Life Sciences, 2013, 70(8): 1335-1356.
[13] SHELLARD A, MAYOR R. All Roads Lead to Directional Cell Migration[J/OL]. Trends in Cell Biology, 2020, 30(11): 852-868.
[14] DEVREOTES P, HORWITZ A R. Signaling Networks that Regulate Cell Migration[J/OL]. Cold Spring Harbor Perspectives in Biology, 2015, 7(8): a005959.
[15] DEVREOTES P, HORWITZ A R. Signaling Networks that Regulate Cell Migration[J/OL]. Cold Spring Harbor Perspectives in Biology, 2015, 7(8): a005959.
[16] SENGUPTA S, PARENT C A, BEAR J E. The principles of directed cell migration[J/OL]. Nature Reviews Molecular Cell Biology, 2021, 22(8): 529-547.
[17] IGLESIAS P A, DEVREOTES P N. Biased excitable networks: how cells direct motion in response to gradients[J/OL]. Current Opinion in Cell Biology, 2012, 24(2): 245-253.
[18] WANG C, WANG J, FU D, et al. Topography guiding the accelerated and persistently directional cell migration induced by vaccinia virus[J/OL]. Chinese Chemical Letters, 2020, 31(1): 167-171.
[19] ZHOU C, DUAN M, GUO D, et al. Microenvironmental stiffness mediates cytoskeleton re-organization in chondrocytes through laminin-FAK mechanotransduction[J/OL]. International Journal of Oral Science, 2022, 14(1): 15.
[20] LEI R, AKINS E A, WONG K C Y, et al. Multiwell Combinatorial Hydrogel Array for High-Throughput Analysis of Cell–ECM Interactions[J/OL]. ACS Biomaterials Science & Engineering, 2021, 7(6): 2453-2465.
[21] HOFFMAN-KIM D, MITCHEL J A, BELLAMKONDA R V. Topography, Cell Response, and Nerve Regeneration[J/OL]. Annual Review of Biomedical Engineering, 2010, 12(1): 203-231.
[22] NIE Y, HAN D, LI X. Fabrication of micro-nano patterned materials mimicking the topological structure of extracellular matrix for biomedical applications[J/OL]. Nano Research, 2023
[2024-02-26].
[23] SHARMA E, RATHI R, MISHARWAL J, et al. Evolution in Lithography Techniques: Microlithography to Nanolithography[J/OL]. Nanomaterials, 2022, 12(16): 2754.
[24] KANE R S, TAKAYAMA S, OSTUNI E, et al. Patterning proteins and cells using soft lithography[J]. 1999.
[25] FALCONNET D, CSUCS G, MICHELLE GRANDIN H, et al. Surface engineering approaches to micropattern surfaces for cell-based assays[J/OL]. Biomaterials, 2006, 27(16): 3044-3063.
[26] MCCAIN M L, AGARWAL A, NESMITH H W, et al. Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues[J/OL]. Biomaterials, 2014, 35(21): 5462-5471.
[27] MAEDA S, KATO T, KOGURE H, et al. Rapid response of thermo-sensitive hydrogels with porous structures[J/OL]. Applied Physics Letters, 2015, 106(17): 171909.
[28] LIND J U, BUSBEE T A, VALENTINE A D, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing[J/OL]. Nature Materials, 2017, 16(3): 303-308.
[29] FERRARIS S, SPRIANO S, SCALIA A C, et al. Topographical and Biomechanical Guidance of Electrospun Fibers for Biomedical Applications[J/OL]. Polymers, 2020, 12(12): 2896.
[30] NAVAEI A, MOORE N, SULLIVAN R T, et al. Electrically conductive hydrogel-based micro-topographies for the development of organized cardiac tissues[J/OL]. RSC Advances, 2017, 7(6): 3302-3312.
[31] ZHANG Y S, PI Q, VAN GENDEREN A M. Microfluidic Bioprinting for Engineering Vascularized Tissues and Organoids[J/OL]. Journal of Visualized Experiments, 2017(126): 55957.
[32] AHADIAN S, YAMADA S, RAMÓN-AZCÓN J, et al. Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies[J/OL]. Acta Biomaterialia, 2016, 31: 134-143.
[33] CHEN C S, MRKSICH M, HUANG S, et al. Geometric Control of Cell Life and Death[J/OL]. Science, 1997, 276(5317): 1425-1428.
[34] SUN J, GRAETER S V, YU L, et al. Technique of Surface Modification of a Cell-Adhesion-Resistant Hydrogel by a Cell-Adhesion-Available Inorganic Microarray[J/OL]. Biomacromolecules, 2008, 9(10): 2569-2572.
[35] HE Y, WANG X, CHEN L, et al. Preparation of hydroxyapatite micropatterns for the study of cell–biomaterial interactions[J/OL]. Journal of Materials Chemistry B, 2014, 2(16): 2220.
[36] PENG R, YAO X, DING J. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion[J/OL]. Biomaterials, 2011, 32(32): 8048-8057.
[37] CAO B, PENG R, LI Z, et al. Effects of spreading areas and aspect ratios of single cells on dedifferentiation of chondrocytes[J/OL]. Biomaterials, 2014, 35(25): 6871-6881.
[38] YAO X, LIU R, LIANG X, et al. Critical Areas of Proliferation of Single Cells on Micropatterned Surfaces and Corresponding Cell Type Dependence[J/OL]. ACS Applied Materials & Interfaces, 2019, 11(17): 15366-15380.
[39] ANDERSON R H, SMERUP M, SANCHEZ‐QUINTANA D, et al. The three‐dimensional arrangement of the myocytes in the ventricular walls[J/OL]. Clinical Anatomy, 2009, 22(1): 64-76.
[40] HOSSEINI V, AHADIAN S, OSTROVIDOV S, et al. Engineered Contractile Skeletal Muscle Tissue on a Microgrooved Methacrylated Gelatin Substrate[J/OL]. Tissue Engineering Part A, 2012, 18(23–24): 2453-2465.
[41] BAKHSHANDEH B, RANJBAR N, ABBASI A, et al. Recent progress in the manipulation of biochemical and biophysical cues for engineering functional tissues[J/OL]. Bioengineering & Translational Medicine, 2023, 8(2): e10383.
[42] SUN J, TANG J, DING J. Cell orientation on a stripe-micropatterned surface[J/OL]. Chinese Science Bulletin, 2009, 54(18): 3154-3159.
[43] YAO X, DING J. Effects of Microstripe Geometry on Guided Cell Migration[J/OL]. ACS Applied Materials & Interfaces, 2020, 12(25): 27971-27983.
[44] FEINBERG A W, FEIGEL A, SHEVKOPLYAS S S, et al. Muscular Thin Films for Building Actuators and Powering Devices[J/OL]. Science, 2007, 317(5843): 1366-1370.
[45] GROSBERG A, ALFORD P W, MCCAIN M L, et al. Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip[J/OL]. Lab on a Chip, 2011, 11(24): 4165.
[46] GROSBERG A, NESMITH A P, GOSS J A, et al. Muscle on a chip: In vitro contractility assays for smooth and striated muscle[J/OL]. Journal of Pharmacological and Toxicological Methods, 2012, 65(3): 126-135.
[47] NAWROTH J C, LEE H, FEINBERG A W, et al. A tissue-engineered jellyfish with biomimetic propulsion[J/OL]. Nature Biotechnology, 2012, 30(8): 792-797.
[48] PARK S J, GAZZOLA M, PARK K S, et al. Phototactic guidance of a tissue-engineered soft-robotic ray[J/OL]. Science, 2016, 353(6295): 158-162.
[49] LEE K Y, PARK S J, MATTHEWS D G, et al. An autonomously swimming biohybrid fish designed with human cardiac biophysics[J/OL]. Science, 2022, 375(6581): 639-647.
[50] GATTAZZO F, DE MARIA C, RIMESSI A, et al. Gelatin-genipin-based biomaterials for skeletal muscle tissue engineering: GELATIN-GENIPIN-BASED BIOMATERIALS[J/OL]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2018, 106(8): 2763-2777.
[51] HA M, ATHIRASALA A, TAHAYERI A, et al. Micropatterned hydrogels and cell alignment enhance the odontogenic potential of stem cells from apical papilla in-vitro[J/OL]. Dental Materials, 2020, 36(1): 88-96.
[52] TSANG K M C. Facile One-step Micropatterning Using Photodegradable Methacrylated Gelatin Hydrogels for Improved Cardiomyocyte Organization and Alignment[J]. 2016: 21.
[53] YIM E, REANO R, PANG S, et al. Nanopattern-induced changes in morphology and motility of smooth muscle cells[J/OL]. Biomaterials, 2005, 26(26): 5405-5413.
[54] YIM E K F, DARLING E M, KULANGARA K, et al. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells[J/OL]. Biomaterials, 2010, 31(6): 1299-1306.
[55] ZOU M, ZHAO X, ZHANG X, et al. Bio-inspired multiple composite film with anisotropic surface wettability and adhesion for tissue repair[J/OL]. Chemical Engineering Journal, 2020, 398: 125563.
[56] YUAN H, MARZBAN B, KIT PARKER K. Myofibrils in Cardiomyocytes Tend to Assemble Along the Maximal Principle Stress Directions[J/OL]. Journal of Biomechanical Engineering, 2017, 139(12): 121010.
[57] DUFFY D C, MCDONALD J C, SCHUELLER O J A, et al. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)[J].
[58] MORBIOLI G G, SPELLER N C, STOCKTON A M. A practical guide to rapid-prototyping of PDMS-based microfluidic devices: A tutorial[J/OL]. Analytica Chimica Acta, 2020, 1135: 150-174.
[59] LAKE M, LAKE M, NARCISO C, et al. Microfluidic device design, fabrication, and testing protocols[J/OL]. Protocol Exchange, 2015
[2024-03-07].
[60] BOUDREAU-BÉLAND J, DUVERGER J E, PETITJEAN E, et al. Spatiotemporal Stability of Neonatal Rat Cardiomyocyte Monolayers Spontaneous Activity Is Dependent on the Culture Substrate[J/OL]. PLOS ONE, 2015, 10(6): e0127977.
[61] GROSBERG A, ALFORD P W, MCCAIN M L, et al. Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip[J/OL]. Lab on a Chip, 2011, 11(24): 4165.
[62] PLIKUS M V, WANG X, SINHA S, et al. Fibroblasts: Origins, definitions, and functions in health and disease[J/OL]. Cell, 2021, 184(15): 3852-3872.
[63] MÉSZÁROS B, CSOTI A, SZANTO T G, et al. The hEag1 K+ Channel Inhibitor Astemizole Stimulates Ca2+ Deposition in SaOS-2 and MG-63 Osteosarcoma Cultures[J/OL]. International Journal of Molecular Sciences, 2022, 23(18): 10533.
[64] THÜROFF F, GOYCHUK A, REITER M, et al. Bridging the gap between single-cell migration and collective dynamics[J/OL]. eLife, 2019, 8: e46842.
[65] LIN G, QIU X, FANDEL T M, et al. Improved Penile Histology by Phalloidin Stain: Circular and Longitudinal Cavernous Smooth Muscles, Dual-endothelium Arteries, and Erectile Dysfunction-associated Changes[J/OL]. Urology, 2011, 78(4): 970.e1-970.e8.
[66] OTANI H, YOSHIOKA K, NISHIKAWA H, et al. Involvement of Protein Kinase C and RhoA in Protease-Activated Receptor 1–Mediated F-Actin Reorganization and Cell Growth in Rat Cardiomyocytes[J/OL]. Journal of Pharmacological Sciences, 2011, 115(2): 135-143.
[67] WANG Z X, ZHAO X H. The Barrier-Enhancing Function of Soluble Yam (Dioscorea opposita Thunb.) Polysaccharides in Rat Intestinal Epithelial Cells as Affected by the Covalent Se Conjugation[J/OL]. Nutrients, 2022, 14(19): 3950.
[68] DESHPANDE V S, MCMEEKING R M, EVANS A G. A bio-chemo-mechanical model for cell contractility[J/OL]. Proceedings of the National Academy of Sciences, 2006, 103(38): 14015-14020.
[69] ZEMEL A, REHFELDT F, BROWN A E X, et al. Optimal matrix rigidity for stress-fibre polarization in stem cells[J/OL]. Nature Physics, 2010, 6(6): 468-473.
[70] SADD M .Elasticity: Theory, Applications, and Numerics[J].Aaee, 2014, 191(9):1843–1860.
[71] GARG A, LAVINE K J, GREENBERG M J. Assessing Cardiac Contractility From Single Molecules to Whole Hearts[J/OL]. JACC: Basic to Translational Science, 2023: S2452302X23002966.
[72] MARZBAN B, KANG J, LI N, et al. A contraction–reaction–diffusion model: Integrating biomechanics and biochemistry in cell migration[J/OL]. Extreme Mechanics Letters, 2019, 32: 100566.
[73] SHARIF U, SUN B, HUSSAIN S, et al. Dynamic Behavior of Sandwich Structures with Magnetorheological Elastomer: A Review[J/OL]. Materials, 2021, 14(22): 7025.
[74] BERRY M F, ENGLER A J, WOO Y J, et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance[J]. 2006, 290.
[75] ARATYN-SCHAUS Y, PASQUALINI F S, YUAN H, et al. Coupling primary and stem cell–derived cardiomyocytes in an in vitro model of cardiac cell therapy[J/OL]. Journal of Cell Biology, 2016, 212(4): 389-397.
[76] WANG L, DOU W, MALHI M, et al. Microdevice Platform for Continuous Measurement of Contractility, Beating Rate, and Beating Rhythm of Human-Induced Pluripotent Stem Cell-Cardiomyocytes inside a Controlled Incubator Environment[J/OL]. ACS Applied Materials & Interfaces, 2018, 10(25): 21173-21183.
[77] BEUSSMAN K M, RODRIGUEZ M L, LEONARD A, et al. Micropost arrays for measuring stem cell-derived cardiomyocyte contractility[J/OL]. Methods, 2016, 94: 43-50.
[78] LIAO W, WU P, HUANG J, et al. Cost-Effective Engineered Cementitious Composites with Hybrid PVA and Basalt/PP Fiber: A Study on Compressive, Tensile and Impact Performance[J/OL]. Materials, 2023, 16(14): 5172.
修改评论