[1] 昝乡镇, 姚翔宇, 许鹏, 等. DNA 存储中的纠错方法综述[J]. 广州大学学报 (自然科学版), 2021, 20(2): 13-22.
[2] REINSEL D,GANTZ J, RYDNING J. The Digital World: From Edge to Core[EB/OL]. 2020. ht tps://www.seagate.com/files/www-content/our-story/trends/files/dataage-idc-report-final.pdf.
[3] PANDA D, MOLLA KA, BAIG M J, et al. DNA as a digital information storage device: hope or hype?[J]. 3 Biotech, 2018, 8: 1-9.
[4] BONNET J, COLOTTE M, COUDY D, et al. Chain and conformation stability of solid-state DNA: implications for room temperature storage[J]. Nucleic Acids Research, 2010, 38(5): 1531-1546.
[5] CHURCH G M, GAO Y, KOSURI S. Next-generation digital information storage in DNA[J]. Science, 2012, 337(6102): 1628-1628.
[6] GOLDMAN N, BERTONE P, CHEN S, et al. Towards practical, high-capacity, low- maintenance information storage in synthesized DNA[J]. Nature, 2013, 494(7435): 77-80.
[7] ZAN X, YAO X, XU P, et al. A hierarchical error correction strategy for text DNA storage[J]. Interdisciplinary Sciences: Computational Life Sciences, 2022, 14(1): 141-150.
[8] PING Z, MA D, HUANG X, et al. Carbon-based archiving: current progress and future prospects of DNA-based data storage[J]. GigaScience, 2019, 8(6): giz075.
[9] HAKAMIHA, CHACZKOZ, KALE A. Review of big data storage based on DNA computing [C]//2015 Asia-Pacific Conference on Computer Aided System Engineering. IEEE, 2015: 113- 117.
[10] 许鹏, 方刚, 石晓龙, 等. DNA 存储及其研究进展[J]. 电子与信息学报, 2020, 42(6): 1326- 1331.
[11] HECKEL R, MIKUTIS G, GRASS R N. A characterization of the DNA data storage channel [J]. Scientific Reports, 2019, 9(1): 9663.
[12] TRAVERS K J, CHIN C S, RANK D R, et al. A flexible and efficient template format for circular consensus sequencing and SNP detection[J]. Nucleic Acids Research, 2010, 38(15): e159-e159.
[13] CRETU STANCU M, VAN ROOSMALEN M J, RENKENS I, et al. Mapping and phasing of structural variation inpatient genomes using nanopore sequencing[J]. Nature Communications, 2017, 8(1): 1326.
[14] WATSON J D, CRICK F H. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid[J]. Nature, 1953, 171(4356): 737-738.
[15] NEIMAN M S. Some fundamental issues of microminiaturization[J]. Radiotekhnika, 1964, 1(1): 3-12.
[16] WIENER N. Interview: machines smarter than men[J]. US News World Rep, 1964, 56: 84-6.
[17] NEIMAN M. On the molecular memory systems and the directed mutations[J]. Radiotekhnika, 1965, 6(1): 8.
[18] RICHARDS C. The blind watchmaker[J]. Bristol Medico-Chirurgical Journal, 1987, 102(2): 54.
[19] DAVIS J. Microvenus[J]. Art Journal, 1996, 55(1): 70-74.
[20] CLELLAND C T, RISCA V, BANCROFT C. Hiding messages in DNA microdots[J]. Nature, 1999, 399(6736): 533-534.
[21] GRASS RN, HECKEL R, PUDDU M, et al. Robust chemical preservation of digital informa- tion on DNA in silica with error-correcting codes[J]. Angewandte Chemie International Edition, 2015, 54(8): 2552-2555.
[22] BLAWAT M, GAEDKE K, HUETTER I, et al. Forward error correction for DNA data storage [J]. Procedia Computer Science, 2016, 80: 1011-1022.
[23] BORNHOLT J, LOPEZ R, CARMEAN D M, et al. A DNA-based archival storage system[C]// Proceedings of the Twenty-First International Conference on Architectural Support for Pro- gramming Languages and Operating Systems. 2016: 637-649.
[24] ERLICH Y, ZIELINSKI D. DNA Fountain enables a robust and efficient storage architecture [J]. Science, 2017, 355(6328): 950-954.
[25] SHIPMAN S L, NIVALA J, MACKLIS J D, et al. CRISPR–Cas encoding of a digital movie into the genomes of a population of living bacteria[J]. Nature, 2017, 547(7663): 345-349.
[26] ORGANICK L, ANG S D, CHEN Y J, et al. Random access in large-scale DNA data storage [J]. Nature Biotechnology, 2018, 36(3): 242-248.
[27] KOCH J, GANTENBEIN S, MASANIA K, et al. A DNA-of-things storage architecture to create materials with embedded memory[J]. Nature Biotechnology, 2020, 38(1): 39-43.
[28] BANAL J L, SHEPHERD T R, BERLEANT J, et al. Random access DNA memory using Boolean search in an archival file storage system[J]. Nature Materials, 2021, 20(9): 1272-1280.
[29] TABATABAEI S K, PHAM B, PAN C, et al. Expanding the molecular alphabet of DNA-based data storage systems with neural network nanopore readout processing[J]. Nano Letters, 2022, 22(5): 1905-1914.
[30] ANTKOWIAK P L, KOCH J,NGUYEN B H, et al. Integrating DNA encapsulates and digital microfluidics for automated data storage in DNA[J]. Small, 2022, 18(15): 2107381.
[31] 杨平, 孙德斌, 柳伟强, 等. 带有编码信息的人工合成 DNA 存储介质及信息的存储读取方 法和应用: CN104850760A[P]. 2015.
[32] PING Z, CHEN S, HUANG X, et al. Towards practical and robust DNA-based data archiving by codec system named ‘Yin-Yang ’[J]. BioRxiv, 2019: 829721.
[33] HAO M, QIAOH, GAO Y, et al. A mixed culture of bacterial cells enables an economic DNA storage on a large scale[J]. Communications Biology, 2020, 3(1): 416.
[34] 平质, 张颢龄, 陈世宏, 等. Chamaeleo: DNA 存储碱基编解码算法的可拓展集成与系统评 估平台[J]. 合成生物学, 2021, 2(3): 412.
[35] SCHWARZ P M, FREISLEBEN B. NOREC4DNA: using near-optimal rateless erasure codes for DNA storage[J]. BMC Bioinformatics, 2021, 22(1): 1-28.
[36] LUBY M. LT codes[C]//The 43rd Annual IEEE Symposium on Foundations of Computer Sci- ence, 2002. Proceedings. IEEE Computer Society, 2002: 271-271.
[37] SHOKROLLAHI A. Raptor codes[J]. IEEE Transactions on Information Theory, 2006, 52(6): 2551-2567.
[38] ZHANG S, PENG K. DNA information storage technology based on raptor code[J]. Laser & Optoelectronics Progress, 2020, 57(15): 151701.
[39] LUBY M, SHOKROLLAHI A, WATSON M, et al. RFC 5053: Raptor forward error correction scheme for object delivery[M]. RFC Editor, 2007.
[40] GARZON MH, DEATON RJ. Codeword design and information encoding in DNA ensembles [J]. Natural Computing, 2004, 3: 253-292.
[41] ZHANG Q, WANG B, WEI X, et al. DNA word set design based on minimum free energy[J]. IEEE Transactions on Nanobioscience, 2010, 9(4): 273-277.
[42] LIMBACHIYA D, GUPTA M K, AGGARWAL V. Family of constrained codes for archival DNA data storage[J]. IEEE Communications Letters, 2018, 22(10): 1972-1975.
[43] LAEHNEMANN D, BORKHARDT A, MCHARDY A C. Denoising DNA deep sequencing data—high-throughput sequencing errors and their correction[J]. Briefings in Bioinformatics, 2016, 17(1): 154-179.
[44] CAO B, ZHAO S, LI X, et al. K-means multi-verse optimizer (KMVO) algorithm to construct DNA storage codes[J]. IEEE Access, 2020, 8: 29547-29556.
[45] CAO B, II X, ZHANG X, et al. Designing uncorrelated address constrain for DNA storage by DMVO algorithm[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 19(2): 866-877.
[46] LEVY M, YAAKOBI E. Mutually uncorrelated codes for DNA storage[J]. IEEE Transactions on Information Theory, 2018, 65(6): 3671-3691.
[47] CAO B, ZHANG X, WU J, et al. Minimum free energy coding for DNA storage[J]. IEEE Transactions on Nanobioscience, 2021, 20(2): 212-222.
[48] TULPAN D, ANDRONESCU M, CHANG S B, et al. Thermodynamically based DNA strand design[J]. Nucleic Acids Research, 2005, 33(15): 4951-4964.
[49] ZHIRNOV V, ZADEGAN R M, SANDHU G S, et al. Nucleic acid memory[J]. Nature Mate- rials, 2016, 15(4): 366-370.
[50] CEZE L, NIVALA J, STRAUSS K. Molecular digital data storage using DNA[J]. Nature Reviews Genetics, 2019, 20(8): 456-466.
[51] GAO Y, CHEN X, QIAO H, et al. Low-bias manipulation of DNA oligo pool for robust data storage[J]. ACS Synthetic Biology, 2020, 9(12): 3344-3352.
[52] CHEN Y J, TAKAHASHI CN, ORGANICKL, et al. Quantifying molecular bias in DNA data storage[J]. Nature Communications, 2020, 11(1): 3264.
[53] EDGAR R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput [J]. Nucleic Acids Research, 2004, 32(5): 1792-1797.
[54] 陈为刚, 葛奇, 王盼盼, 等. 细胞内大片段 DNA 数据存储的多RS 码交织编码[J]. 合成生 物学, 2021, 2(3): 428.
[55] CHEN W, WANG L, HAN M, et al. Sequencing barcode construction and identification meth- ods based on block error-correction codes[J]. Science China Life Sciences, 2020, 63: 1580- 1592.
[56] 宋香明. 基于 Huffman 编码的 DNA 信息存储方法研究[D]. 天津大学, 2019.
[57] CHEN W, HAN M, ZHOU J, et al. An artificial chromosome for data storage[J]. National Science Review, 2021, 8(5): nwab028.
[58] PRESS W H, HAWKINS J A, JONES JR S K, et al. HEDGES error-correcting code for DNA storage corrects indels and allows sequence constraints[J]. Proceedings of the National Academy of Sciences, 2020, 117(31): 18489-18496.
[59] SONG L, GENG F, GONG ZY, et al. Robust data storage in DNA by deBruijn graph-based de novo strand assembly: volume 13[EB/OL]. Nature Publishing Group UK London, 2022: 5361.
[60] SHARMA D, KUMAR R, GUPTA M, et al. Encoding scheme for data storage and retrieval on DNA computers[J]. IET Nanobiotechnology, 2020, 14(7): 635-641.
[61] WELZEL M, SCHWARZ P M, LÖCHEL H F, et al. DNA-Aeon provides flexible arithmetic coding for constraint adherence and error correction in DNA storage[J]. Nature Communica- tions, 2023, 14(1): 628.
[62] LINK N, VOLKELK, TUCK JM, et al. Dynamic and scalable DNA-based information storage [J]. Nature communications, 2020, 11(1): 2981.
[63] TABATABAEI YAZDI S, YUAN Y, MA J, et al. A rewritable, random-access DNA-based storage system[J]. Scientific reports, 2015, 5(1): 1-10.
[64] BRYKSIN A V, MATSUMURA I. Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids[J]. Biotechniques, 2010, 48(6): 463-465.
[65] APPUSWAMY R, LEBRIGAND K, BARBRY P, et al. OligoArchive: Using DNA in the DBMS storage hierarchy[C]//Biennal Conference on Innovative Data Systems Research (CIDR 2019). 2019: p98.
[66] LEE U J, HWANG S, KIM K E, et al. DNA data storage in Perl[J]. Biotechnology and Biopro- cess Engineering, 2020, 25: 607-615.
[67] YANG J, MA J, LIU S, et al. A molecular cryptography model based on structures of DNA self-assembly[J]. Chinese Science Bulletin, 2014, 59: 1192-1198.
[68] ZAKERI B, CARR P A, LU T K. Multiplexed sequence encoding: a framework for DNA communication[J]. PLoS One, 2016, 11(4): e0152774.
[69] ZHANG Y, WANG F, CHAO J, et al. DNA origami cryptography for secure communication [J]. Nature Communications, 2019, 10(1): 5469.
[70] ZHU E, LUO X, LIU C, et al. An operational DNA strand displacement encryption approach [J]. Nanomaterials, 2022, 12(5): 877.
[71] WU X, KAN H, KURTHS J. A new color image encryption scheme based on DNA sequences and multiple improved 1D chaotic maps[J]. Applied Soft Computing, 2015, 37: 24-39.
[72] WU X, WANG K, WANG X, et al. Color image DNA encryption using NCA map-based CML and one-time keys[J]. Signal Processing, 2018, 148: 272-287.
[73] WU J, LIAO X,YANG B. Image encryption using 2DHénon-Sine map and DNA approach[J]. Signal Processing, 2018, 153: 11-23.
[74] WANG X, SU Y. Image encryption based on compressed sensing and DNA encoding[J]. Signal Processing: Image Communication, 2021, 95: 116246.
[75] GRASS R N, HECKEL R, DESSIMOZ C, et al. Genomic encryption of digital data stored in synthetic DNA[J]. Angewandte Chemie International Edition, 2020, 59(22): 8476-8480.
[76] PENG W, CUI S, SONG C. One-time-pad cipher algorithm based on confusion mapping and DNA storage technology[J]. Plos One, 2021, 16(1): e0245506.
[77] ZAN X, CHU L, XIE R, et al. An image cryptography method by highly error-prone DNA storage channel[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1173763.
[78] YAO X, XIE R, ZAN X, et al. A novel image encryption scheme for DNA storage systems based on DNA hybridization and gene mutation[J]. Interdisciplinary Sciences: Computational Life Sciences, 2023, 15(3): 419-432.
[79] 姚翔宇, 苏燕青, 昝乡镇, 等. 一种基于前向纠错码的图像 DNA 加密存储算法[J]. 信息安 全学报, 2023, 8(6): 28-36.
[80] MATTHEWS R. On the derivation of a“chaotic ”encryption algorithm[J]. Cryptologia, 1989, 13(1): 29-42.
[81] XU Q, SUNK, CAO C, et al. A fast image encryption algorithm based on compressive sensing and hyperchaotic map[J]. Optics and Lasers in Engineering, 2019, 121: 203-214.
[82] MASOOD F, MASOOD J, ZHANG L, et al. A new color image encryption technique using DNA computing and Chaos-based substitution box[J]. Soft Computing, 2022: 1-17.
[83] ZHU H, GE J, QI W, et al. Dynamic analysis and image encryption application of a sinusoidal- polynomial composite chaotic system[J]. Mathematics and Computers in Simulation, 2022, 198: 188-210.
[84] LUO L, LI Y, LI T, et al. Research and simulation of Lyapunov ’s exponents[J]. Computer Simulation, 2005, 22(12): 285-288.
[85] CHEN Z, YANG Y, YUAN Z. A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system[J]. Chaos, Solitons & Fractals, 2008, 38(4): 1187-1196.
[86] LIU J, TONG X, LIU Y, et al. A joint encryption and error correction scheme based on chaos and LDPC[J]. Nonlinear Dynamics, 2018, 93: 1149-1163.
[87] LORENZ E N. Deterministic nonperiodic flow[J]. Journal of Atmospheric Sciences, 1963, 20(2): 130-141.
[88] GAO S, WU R, WANG X, et al. A 3D model encryption scheme based on a cascaded chaotic system[J]. Signal Processing, 2023, 202: 108745.
[89] DONG Y, ZHAO G, MA Y, et al. A novel image encryption scheme based on pseudo-random coupled map lattices with hybrid elementary cellular automata[J]. Information Sciences, 2022, 593: 121-154.
修改评论