[1] BHUTANI P, JOSHI G, RAJA N, et al. U.S. FDA Approved Drugs from 2015-June 2020: A Perspective[J]. Journal of Medicinal Chemistry, 2021, 64: 2339-2381.
[2] MINISCI F, BERNARDI R, BERTINI F, et al. Nucleophilic character of alkyl radicals-VI[J]. Tetrahedron, 1971, 27: 3575-3579.
[3] DOLL M K. A Short Synthesis of the 8-Azaergoline Ring System by Intramolecular Tandem Decarboxylation−Cyclization of the Minisci-Type Reaction[J]. The Journal of Organic Chemistry, 1999, 64(4): 1372-1374.
[4] CARLING R W, MADIN A, GUIBLIN A, et al. 7-(1,1-Dimethylethyl)-6-(2-ethyl-2H-1,2,4- triazol-3-ylmethoxy)-3-(2-fluorophenyl)- 1,2,4-triazolo
[4,3-b]pyridazine: A Functionally Selective γ-Aminobutyric AcidA (GABAA) α2/α3-Subtype Selective Agonist That Exhibits Potent Anxiolytic Activity but Is Not Sedating in Animal Models [J]. Journal of Medicinal Chemistry, 2005, 48: 7089-7092.
[5] MONGA V, MEENA C L, KAUR N, et al. Facile synthesis of N-α-boc-1,2-dialkyl-l-histidines: Utility in the synthesis of thyrotropin-releasing hormone (trh) analogs and evaluation of the cns activity [J]. Journal of Heterocyclic Chemistry, 2008, 45: 1603-1608.
[6] SAWADA, OKAJIMA. Synthesis and antitumor activity of 20(S)-camptothecin derivatives: carbamate-linked, water-soluble derivatives of 7-ethyl-10-hydroxycamptothecin.[J]. Chem. Pharm. Bull., 1991, 10: 1446-1450.
[7] ZAHRT A F, HENLE J J, ROSE B T, et al. Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning[J]. Science, 2019, 363: 247-247.
[8] AHNEMAN D T, ESTRADA J G, LIN S, et al. Predicting reaction performance in C–N cross-coupling using machine learning[J]. Science, 2018, 360: 186-190.
[9] MOON S, CHATTERJEE S, SEEBERGER P H, et al. Predicting glycosylation stereoselectivity using machine learning[J]. Chemical Science, 2020, 12: 2931-2939.
[10] FRANCOIS-LAVET V, HENDERSON P, ISLAM R, et al. An Introduction to Deep Reinforcement Learning[J]. Foundations and Trends® in Machine Learning, 2018, 11: 219-354.
[11] LIU Y, YANG Q, LI Y, et al. Application of Machine Learning in Organic Chemistry[J]. Chinese Journal of Organic Chemistry, 2020, 40: 3812-3812.
[12] BAIRD S G, SPARKS T D. What is a minimal working example for a self-driving laboratory?[J]. Matter, 2022, 5: 4170-4178.
[13] TAYLOR C J, FELTON K C, WIGH D, et al. Accelerated Chemical Reaction Optimization Using Multi-Task Learning[J]. Acs Central Science, 2023, 9: 957-968.
[14] DAVIES I W. The digitization of organic synthesis[J]. Nature, 2019, 570: 175-181.
[15] JI Y, BRUECKL T, BAXTER R D, et al. Innate C-H trifluoromethylation of heterocycles[J]. Proceedings of the National Academy of Sciences, 2011, 108(35): 14411-14415.
[16] COWDEN C J. Use of N-Protected Amino Acids in the Minisci Radical Alkylation[J]. Organic Letters, 2003, 5: 4497-4499.
[17] KAN J, HUANG S, LIN J, et al. Silver‐Catalyzed Arylation of (Hetero)arenes by Oxidative Decarboxylation of Aromatic Carboxylic Acids[J]. Angewandte Chemie, 2014, 127: 2227-2231.
[18] ZHAO W, CHEN X, YUAN J, et al. Silver catalyzed decarboxylative direct C2-alkylation of benzothiazoles with carboxylic acids[J]. Chemical Communications, 2014, 50: 2018-2020.
[19] MAI D N, BAXTER R D. Unprotected Amino Acids as Stable Radical Precursors for Heterocycle C–H Functionalization[J]. Organic Letters, 2016, 18: 3738-3741.
[20] GALLOWAY J D, MAI D N, BAXTER R D. Silver-Catalyzed Minisci Reactions Using Selectfluor as a Mild Oxidant[J]. Organic Letters, 2017, 19: 5772-5775.
[21] SUTHERLAND D R, VEGUILLAS M, OATES C L, et al. Metal-, Photocatalyst-, and Light-Free, Late-Stage C–H Alkylation of Heteroarenes and 1,4-Quinones Using Carboxylic Acids[J]. Organic Letters, 2018, 20: 6863-6867.
[22] REN P, SALIHU I, SCOPELLITI R, et al. Copper-Catalyzed Alkylation of Benzoxazoles with Secondary Alkyl Halides[J]. Organic Letters, 2012, 14: 1748-1751.
[23] XIAO B, LIU Z, LIU L, et al. Palladium-Catalyzed C–H Activation/Cross-Coupling of Pyridine N-Oxides with Nonactivated Secondary Alkyl Bromides [J]. Journal of the American Chemical Society, 2013, 135: 616-619.
[24] WU X, SEE J W T, XU K, et al. A General Palladium‐Catalyzed Method for Alkylation of Heteroarenes Using Secondary and Tertiary Alkyl Halides[J]. Angewandte Chemie, 2014, 126: 13791-13795.
[25] DONG J, LYU X, WANG Z, et al. Visible-light-mediated Minisci C–H alkylation of heteroarenes with unactivated alkyl halides using O2 as an oxidant[J]. Chemical Science, 2018, 10: 976-982.
[26] MOLANDER G A, COLOMBEL V, BRAZ V A. Direct Alkylation of Heteroaryls Using Potassium Alkyl- and Alkoxymethyltrifluoroborates[J]. Organic Letters, 2011, 13: 1852-1855.
[27] SEIPLE I B, SU S, RODRIGUEZ R A, et al. Direct C−H Arylation of Electron-Deficient Heterocycles with Arylboronic Acids[J]. Journal of the American Chemical Society, 2010, 132: 13194-13196.
[28] ZHANG L, LIU Z. Molecular Oxygen-Mediated Minisci-Type Radical Alkylation of Heteroarenes with Boronic Acids[J]. Organic Letters, 2017, 19: 6594-6597.
[29] MCCARTHY J, MINSKY M L, ROCHESTER N, et al. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence[J]. Ai Magazine, 2006, 27(4): 12-14.
[30] ASAHARA R, MIYAO T. Extended Connectivity Fingerprints as a Chemical Reaction Representation for Enantioselective Organophosphorus-Catalyzed Asymmetric Reaction Prediction[J]. Acs Omega, 2022, 7: 26952-26964.
[31] YANG J, CAI Y, ZHAO K, et al. Concepts and applications of chemical fingerprint for hit and lead screening[J]. Drug Discovery Today, 2022, 27: 103356-103372.
[32] MOSKAL M, BEKER W, SZYMKUć S, et al. Scaffold‐Directed Face Selectivity Machine‐Learned from Vectors of Non‐covalent Interactions[J]. Angewandte Chemie International Edition, 2021, 60: 15230-15235.
[33] QIU J, XIE J, SU S, et al. Selective functionalization of hindered meta-C–H bond of o-alkylaryl ketones promoted by automation and deep learning[J]. Chem, 2022, 8: 3275-3287.
[34] QIU J, XU Y, SU S, et al. Auto Machine Learning Assisted Preparation of Carboxylic Acid by TEMPO-Catalyzed Primary Alcohol Oxidation [J]. Chinese Journal of Chemistry, 2022, 41: 143-150.
[35] SANTANILLA A B, REGALADO E L, PEREIRA T, et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules[J]. Science, 2014, 347: 49-53.
[36] GESMUNDO N J,SAUVAGNAT B,CURRAN P J, et al. Nanoscale synthesis and affinity ranking[J]. Nature, 2018, 557: 228-232.
[37] DAVIES I W. The digitization of organic synthesis[J]. Nature, 2019, 570: 175-181.
[38] PERERA D,TUCKER J W,BRAHMBHATT S, et al. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow[J]. Science, 2018, 359: 429-434.
[39] ICHIISHI N, MOORE K P, WASSERMANN A M, et al. Reducing Limitation in Probe Design: The Development of a Diazirine-Compatible Suzuki–Miyaura Cross Coupling Reaction[J]. Acs Medicinal Chemistry Letters, 2018, 10: 56-61.
[40] LEE G M, LOECHTEFELD R, MENSSEN R, et al. Synthesis of bromodifluoromethyl(arylsulfonyl) compounds and microwave-assisted nickel catalyzed cross coupling with arylboronic acids[J]. Tetrahedron Lett., 2016, 5464-5468.
[41] GESMUNDO N J, SAUVAGNAT B, CURRAN P J, et al. Nanoscale synthesis and affinity ranking[J]. Nature, 2018, 557: 228-232.
[42] PERERA D, TUCKER J W, BRAHMBHATT S, et al. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow[J]. Science, 2018, 359: 429-434.
[43] KING-SMITH E, FABER F A, REILLY U, et al. Predictive Minisci late stage functionalization with transfer learning[J]. Nature Communications, 2024, 15: 426-439.
[44] NIPPA D F, ATZ K, MüLLER A T, et al. Identifying opportunities for late-stage C-H alkylation with high-throughput experimentation and in silico reaction screening[J]. Communications Chemistry, 2023, 6: 256-267.
[45] BREIMAN L. Random Forests[J]. Machine Learning, 2001, 45: 5-32.
[46] GUESTRIN T C A C. XGBoost: A Scalable Tree Boosting System[J]. Association for Computing Machinery, 2016: 785-794.
[47] FRIEDMAN J H. Stochastic gradient boosting[J]. Computational Statistics & Data Analysis, 2002, 38: 367-378.
[48] SANDFORT F, STRIETH-KALTHOFF F, KüHNEMUND M, et al. A Structure-Based Platform for Predicting Chemical Reactivity[J]. Chem, 2020, 6: 1379-1390.
[49] MEANWELL N A. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design[J]. Journal of Medicinal Chemistry, 2018, 61: 5822-5880.
[50] PINKERTON A B, PEDDIBHOTLA S, YAMAMOTO F, et al. Discovery of β-Arrestin Biased, Orally Bioavailable, and CNS Penetrant Neurotensin Receptor 1 (NTR1) Allosteric Modulators[J]. Journal of Medicinal Chemistry, 2019, 62: 8357-8363.
[51] YE S, YOSHIDA S, FRöHLICH R, et al. Fluorinated phenylcyclopropylamines. Part 4: effects of aryl substituents and stereochemistry on the inhibition of monoamine oxidases by 1-aryl-2-fluoro-cyclopropylamines.[J]. Bioorganic & Medicinal Chemistry, 2005, 13: 2489-2499.
[52] SHEN X, ZHANG W, ZHANG L, et al. Berichtigung: Enantioselective Synthesis of Cyclopropanes That Contain Fluorinated Tertiary Stereogenic Carbon Centers: A Chiral α‐Fluoro Carbanion Strategy[J]. Angewandte Chemie, 2012, 125: 508-508.
[53] BEAULIEU L B, SCHNEIDER J F, CHARETTE A B. Highly Enantioselective Simmons–Smith Fluorocyclopropanation of Allylic Alcohols via the Halogen Scrambling Strategy of Zinc Carbenoids[J]. Journal of the American Chemical Society, 2013, 135: 7819-7822.
[54] MEYER O G J, FRöHLICH R, HAUFE G. Asymmetric Cyclopropanation of Vinyl Fluorides: Access to Enantiopure Monofluorinated Cyclopropane Carboxylates[J]. Synthesis, 2000, 2000: 1479-1490.
[55] HRUSCHKA S, FRöHLICH R, KIRSCH P, et al. Synthesis of New Enantiopure Fluorinated Phenylcyclopropanecarboxylates – Potential Chiral Dopants for Liquid‐Crystal Compositions[J]. European Journal of Organic Chemistry, 2007, 2007: 141-148.
[56] SU Y, BAI M, QIAO J, et al. Diastereo- and enantioselective cyclopropanation of alkyenyl fluorides with benzyl diazoarylacetates[J]. Tetrahedron Letters, 2015, 56: 1805-1807.
[57] ADOLFSSON A,ACKERMAN M,BROWNSTEIN N C. To cluster, or not to cluster: An analysis of clusterability methods[J]. Pattern Recognition, 2019, 88: 13-26.
[58] WEI B, SHARLAND J C, LIN P, et al. In Situ Kinetic Studies of Rh(II)-Catalyzed Asymmetric Cyclopropanation with Low Catalyst Loadings[J]. Acs Catalysis, 2019, 10: 1161-1170.
[59] DAVIES H M L, BECKWITH R E J. Catalytic Enantioselective C−H Activation by Means of Metal−Carbenoid-Induced C−H Insertion[J]. Chemical Reviews, 2003, 103: 2861-2904.
修改评论