中文版 | English
题名

电场下二维材料微观摩擦特性研究与摩擦调控

其他题名
STUDY AND CONTROL OF MICROSCOPIC FRICTION CHARACTERISTICS IN TWO- DIMENSIONAL MATERIALS BY ELECTRIC FIELD
姓名
姓名拼音
DENG Longhui
学号
12132917
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
赵悦
导师单位
物理系
论文答辩日期
2024-05-13
论文提交日期
2024-07-03
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

摩擦在自然界和工程系统中扮演着至关重要的角色,因此深入理解摩擦机制并实现动态调节滑动接触处的摩擦力具有显著的意义。了解材料的电子性质是研究摩擦机制的核心问题之一,但目前对电子摩擦机制的理解仍然不够充分。利用电场来改变材料的电子性质,并研究和调控电子摩擦耗散过程,是一种很好的方法。二维材料由于其低摩擦、高耐磨性、卓越的电学特性以及光滑的表面和规则的原子结构,成为理想的摩擦实验研究对象。因此,本研究基于原子力显微镜技术,分别对拥有内置电场的二维Janus过渡金属硫族化合物以及通过外部电场调控载流子浓度的二硫化钼和石墨烯进行了摩擦性质研究。以下将详细介绍这两部分的具体研究内容。

在第一部分中,通过合适的方法调整过渡金属硫族化合物(TMDs)的原子构型,得到了具有面外偶极子的Janus 结构材料。对MoS2,MoSe2,Janus MoSSeJanus MoSeS四种材料进行摩擦测试,观察到了面外偶极子引起的摩擦增强现象。通过粘附力和原子粘滑实验,提出了一个假设,即滑动能量势垒随偶极子大小的增加而线性增强。通过进一步地测试Janus TMDs在正向堆叠与反向堆叠下的摩擦力,发现实验结果符合提出的理论假设,也为实现摩擦的主动调控提供了一种可行方案。

第二部分研究了外电场调控单层二硫化钼与单层石墨烯载流子浓度对表面摩擦的影响,并通过扫描开尔文探针显微镜(Scanning Kelvin Probe Microscopy, SKPM)验证了摩擦测试中载流子的成功调控。实验发现二硫化钼载流子浓度对摩擦的影响与接触材质有关,而石墨烯的表面摩擦几乎不受载流子浓度变化影响。提出是由于静电作用导致的摩擦力变化。通过粘附力的测量中发现了静电作用对载流子浓度敏感,在高载流子浓度静电作用更强,低载流子浓度较弱。在导电材料如石墨烯或金属存在的系统中,静电荷产生受抑制,对摩擦影响微小。这些发现对设计和优化电场环境下的二维固体润滑系统具有重要意义。

其他摘要

Friction plays a crucial role in both natural phenomena and engineering systems, so gaining a deep understanding of friction mechanisms and achieving dynamic control over frictional forces at sliding interfaces is of significant importance. Understanding the electronic properties of materials is a key aspect of studying friction mechanisms, but the current understanding of electronic friction mechanisms remains incomplete. Utilizing electric fields to modify the electronic properties of materials and investigate and control the dissipation process of electronic friction is a promising approach. Two-dimensional materials are ideal subjects for experimental friction studies due to their low friction, high wear resistance, exceptional electrical properties, and smooth, regular atomic structures. Therefore, based on atomic force microscopy techniques, this study investigated the frictional properties of two-dimensional Janus transition metal dichalcogenides with built-in electric fields and monolayer molybdenum disulfide and graphene whose carrier concentrations are controlled by external electric fields. The specific research contents of these two parts are detailed below.

In the first part, Janus structured materials with out-of-plane dipoles were synthesized by adjusting the atomic configuration of transition metal dichalcogenides (TMDs). Friction tests conducted on MoS2, MoSe2, Janus MoSSe, and Janus MoSeS revealed an enhancement in friction attributed to the presence of out-of-plane dipoles. Through measurements of adhesion forces and atomic stick-slip experiments, we hypothesized that the sliding energy barrier linearly increases with the size of the dipole. Further testing of the frictional forces under forward and reverse stacking of Janus TMDs confirmed our theoretical assumption, offering a viable strategy for the active control of friction.

The second part investigated the effect of externally controlled carrier concentration on surface friction in monolayer MoS2 and monolayer graphene, with successful modulation of carrier densities verified through Scanning Kelvin Probe Microscopy (SKPM) technology. It was discovered that the influence of carrier density on friction for molybdenum disulfide is dependent on the contact material, whereas the surface friction of graphene is almost unaffected by changes in carrier density. We propose that variations in frictional force are due to electrostatic interactions, which are sensitive to carrier density; stronger at high carrier densities and weaker at low densities. In systems containing conductive materials, such as graphene or metals, the generation of static charges is suppressed, minimally affecting friction. These findings hold significant implications for the design and optimization of two-dimensional solid lubrication systems in electric field environments.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] Bhushan B, Israelachvili J N, Landman U. Nanotribology: friction, wear and lubrication at the atomic scale[J]. Nature, 1995, 374(6523): 607-616.
[2] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
[3] Holmberg K, Erdemir A. Influence of tribology on global energy consumption, costs and emissions[J]. Friction, 2017, 5(3): 263-284.
[4] Lang H, Peng Y, Cao X, et al. Atomic-scale friction characteristics of graphene under conductive AFM with applied voltages[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25503-25511.
[5] Akinwande D, Brennan C J, Bunch J S, et al. A review on mechanics and mechanical properties of 2D materials—Graphene and beyond[J]. Extreme Mechanics Letters, 2017, 13: 42-77.
[6] Park J Y, Salmeron M. Fundamental aspects of energy dissipation in friction[J]. Chemical Reviews, 2014, 114(1): 677-711.
[7] Bowden F P, Tabor D. The Friction and Lubrication of Solids[M]. Oxford (UK): Oxford University Press, 1950.
[8] Urbakh M, Meyer E. The renaissance of friction[J]. Nature Materials, 2010, 9(1): 8-10.
[9] Krim J. Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films[J]. Advances in Physics, 2012, 61(3): 155-323.
[10] Dayo A, Alnasrallah W, Krim J. Superconductivity-dependent sliding friction[J]. Physical Review Letters, 1998, 80(8): 1690.
[11] Sakuma H, Kawai K, Katayama I, et al. What is the origin of macroscopic friction[J]. Science Advances, 2018, 4(12): eaav2268.
[12] Marom N, Bernstein J, Garel J, et al. Stacking and registry effects in layered materials: the case of hexagonal boron nitride[J]. Physical Review Letters, 2010, 105(4): 046801.
[13] Sun J, Zhang X, Du S, et al. Charge density evolution governing interfacial friction[J]. Journal of the American Chemical Society, 2023, 145(9): 5536-5544.
[14] Liu H, Yang B, Wang C, et al. The mechanisms and applications of friction energy dissipation[J]. Friction, 2023, 11(6): 839-864.
[15] Hod O, Meyer E, Zheng Q, et al. Structural superlubricity and ultralow friction across the length scales[J]. Nature, 2018, 563(7732): 485-492.
[16] Wang J, Cao W, Song Y, et al. Generalized scaling law of structural superlubricity[J]. Nano Letters, 2019, 19(11): 7735-7741.
[17] Liu Y, Wang K, Xu Q, et al. Superlubricity between graphite layers in ultrahigh vacuum[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 43167-43172.
[18] Gong P, Ye Z, Yuan L, et al. Evaluation of wetting transparency and surface energy of pristine and aged graphene through nanoscale friction[J]. Carbon, 2018, 132: 749-759.
[19] Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8): 2458-2462.
[20] Lin Y M, Dimitrakopoulos C, Jenkins K A, et al. 100-GHz transistors from wafer-scale epitaxial graphene[J]. Science, 2010, 327(5966): 662-662.
[21] Li H, Wang J, Gao S, et al. Superlubricity between MoS2 monolayers[J]. Advanced Materials, 2017, 29(27): 1701474.
[22] Mutyala K C, Wu Y A, Erdemir A, et al. Graphene-MoS2 ensembles to reduce friction and wear in DLC-Steel contacts[J]. Carbon, 2019, 146: 524-527.
[23] Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7): 497-501.
[24] Lee C, Li Q, Kalb W, et al. Frictional characteristics of atomically thin sheets[J]. Science, 2010, 328(5974): 76-80.
[25] Krim J. Surface science and the atomic-scale origins of friction: what once was old is new again[J]. Surface Science, 2002, 500(1-3): 741-758.
[26] Tabor D. Friction as a dissipative process[M]//Fundamentals of friction: macroscopic and microscopic processes. Springer, Dordrecht, 1992: 3-24.
[27] Wang H, Hu Y Z, Zhang T. Simulations on atomic-scale friction between self-assembled monolayers: Phononic energy dissipation[J]. Tribology International, 2007, 40(4): 680-686.
[28] Xu L, Ma T B, Hu Y Z, et al. Vanishing stick–slip friction in few-layer graphenes: the thickness effect[J]. Nanotechnology, 2011, 22(28): 285708.
[29] Duan Z, Wei Z, Huang S, et al. Resonance in atomic-scale sliding friction[J]. Nano Letters, 2021, 21(11): 4615-4621.
[30] Prandtl L. Ein Gedankenmodell zur kinetischen Theorie der festen Körper[J]. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1928, 8(2): 85-106.
[31] Tomlinson G A. CVI. A molecular theory of friction[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1929, 7(46): 905-939.
[32] Popov V L, Gray J A T. Prandtl‐Tomlinson model: History and applications in friction, plasticity, and nanotechnologies[J]. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 2012, 92(9): 683-708.
[33] Müser M H. Velocity dependence of kinetic friction in the Prandtl-Tomlinson model[J]. Physical Review B, 2011, 84(12): 125419.
[34] Müller B, Berner J, Bechinger C, et al. Properties of a nonlinear bath: experiments, theory, and a stochastic Prandtl–Tomlinson model[J]. New Journal of Physics, 2020, 22(2): 023014.
[35] Colchero J, Baro A M, Marti O. Energy dissipation in scanning force microscopy-friction on an atomic scale[J]. Tribology Letters, 1996, 2: 327-343.
[36] Kontorova T, Frenkel J. On the theory of plastic deformation and twinning. II[J]. Zh. Eksp. Teor. Fiz., 1938, 8: 1340-1348.
[37] Persson B N J. Theory of the damping of excited molecules located above a metal surface[J]. Journal of Physics C: Solid State Physics, 1978, 11(20): 4251.
[38] Persson B N J. Electronic friction on a superconductor surface[J]. Solid State Communications, 2000, 115(3): 145-148.
[39] Dayo A, Alnasrallah W, Krim J. Superconductivity-dependent sliding friction[J]. Physical Review Letters, 1998, 80(8): 1690.
[40] Kisiel M, Gnecco E, Gysin U, et al. Suppression of electronic friction on Nb films in the superconducting state[J]. Nature Materials, 2011, 10(2): 119-122.
[41] Altfeder I, Krim J. Temperature dependence of nanoscale friction for Fe on YBCO[J]. Journal of Applied Physics, 2012, 111(9).
[42] Wang W, Dietzel D, Schirmeisen A. Single-asperity sliding friction across the superconducting phase transition[J]. Science Advances, 2020, 6(12): eaay0165.
[43] Filleter T, McChesney J L, Bostwick A, et al. Friction and dissipation in epitaxial graphene films[J]. Physical Review Letters, 2009, 102(8): 086102.
[44] Nano Letters, 2022, Ogletree D F, Thiel P A, et al. Electronic control of friction in silicon pn junctions[J]. Science, 2006, 313(5784): 186-186.
[45] Lang H, Peng Y, Cao X, et al. Atomic-scale friction characteristics of graphene under conductive AFM with applied voltages[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25503-25511.
[46] Zeng Y, He F, Wang Q, et al. Friction and wear behaviors of molybdenum disulfide nanosheets under normal electric field[J]. Applied Surface Science, 2018, 455: 527-532.
[47] Song A, Shi R, Lu H, et al. Fluctuation of interfacial electronic properties induces friction tuning under an electric field[J]. Nano Letters, 2022, 22(5): 1889-1896.
[48] He F, Yang X, Bian Z, et al. In‐Plane Potential Gradient Induces Low Frictional Energy Dissipation during the Stick‐Slip Sliding on the Surfaces of 2D Materials[J]. Small, 2019, 15(49): 1904613.
[49] Wang Y, Udyavara S, Neurock M, et al. Field effect modulation of electrocatalytic hydrogen evolution at back-gated two-dimensional MoS2 electrodes[J]. Nano letters, 2019, 19(9): 6118-6123.
[50] Shi B, Gan X, Yu K, et al. Electronic friction and tuning on atomically thin MoS2[J]. Npj 2D Materials and Applications, 2022, 6(1): 39.
[51] Greenwood G, Kim J M, Nahid S M, et al. Dynamically tuning friction at the graphene interface using the field effect[J]. Nature Communications, 2023, 14(1): 5801.
[52] Parvez K. Two-dimensional nanomaterials: Crystal structure and synthesis[M]//Biomedical Applications of Graphene and 2D Nanomaterials. Elsevier, 2019: 1-25.
[53] Lu A Y, Zhu H, Xiao J, et al. Janus monolayers of transition metal dichalcogenides[J]. Nature Nanotechnology, 2017, 12(8): 744-749.
[54] Li R, Cheng Y, Huang W. Recent progress of Janus 2D transition metal chalcogenides: from theory to experiments[J]. Small, 2018, 14(45): 1802091.
[55] Guo R, Bu X, Wang S, et al. Enhanced electron–phonon scattering in Janus MoSSe[J]. New Journal of Physics, 2019, 21(11): 113040.
[56] Zuo Y, Liu C, Ding L, et al. Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply[J]. Nature Communications, 2022, 13(1): 1007.
[57] Wang J, Xu X, Cheng T, et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire[J]. Nature Nanotechnology, 2022, 17(1): 33-38.
[58] Liu C, Wang L, Qi J, et al. Designed growth of large‐size 2D single crystals[J]. Advanced Materials, 2020, 32(19): 2000046.
[59] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[60] Guo H W, Hu Z, Liu Z B, et al. Stacking of 2D materials[J]. Advanced Functional Materials, 2021, 31(4): 2007810.
[61] Sader J E, Sanelli J A, Adamson B D, et al. Spring constant calibration of atomic force microscope cantilevers of arbitrary shape[J]. Review of Scientific Instruments, 2012, 83(10).
[62] Wagner K, Cheng P, Vezenov D. Noncontact method for calibration of lateral forces in scanning force microscopy[J]. Langmuir, 2011, 27(8): 4635-4644.
[63] Sun J, Zhang X, Du S, et al. Charge density evolution governing interfacial friction[J]. Journal of the American Chemical Society, 2023, 145(9): 5536-5544.
[64] Wang Y, Cong C, Qiu C, et al. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain[J]. Small, 2013, 9(17): 2857-2861.
[65] Yuan H, Bahramy M S, Morimoto K, et al. Zeeman-type spin splitting controlled by an electric field[J]. Nature Physics, 2013, 9(9): 563-569.
[66] Guo Y, Lin Y, Xie K, et al. Designing artificial two-dimensional landscapes via atomic-layer substitution[J]. Proceedings of the National Academy of Sciences, 2021, 118(32): e2106124118.
[67] Liao M, Nicolini P, Du L, et al. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures[J]. Nature Materials, 2022, 21(1): 47-53.
[68] Gurarslan A, Yu Y, Su L, et al. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates[J]. ACS Nano, 2014, 8(11): 11522-11528.
[69] Vazirisereshk M R, Hasz K, Zhao M Q, et al. Nanoscale friction behavior of transition-metal dichalcogenides: Role of the chalcogenide[J]. ACS Nano, 2020, 14(11): 16013-16021.
[70] 张红卫, 张田忠. 原子尺度摩擦研究进展[J]. 固体力学学报, 2014, 35(5): 417-440.
[71] Wolloch M, Levita G, Restuccia P, et al. Interfacial charge density and its connection to adhesion and frictional forces[J]. Physical Review Letters, 2018, 121(2): 026804.
[72] Chen X, Huang Y, Zou K, et al. The controllable tuning of nanofriction on atomically thin hexagonal boron nitride with external electric field[J]. Applied Surface Science, 2022, 581: 152361.
[73] Sarkar D, Liu W, Xie X, et al. MoS2 field-effect transistor for next-generation label-free biosensors[J]. ACS Nano, 2014, 8(4): 3992-4003.
[74] Evstigneev M, Reimann P. Stick-slip statistics in atomic friction[J]. Physical Review B, 2013, 87(20): 205441.
[75] Filleter T, Bennewitz R. Structural and frictional properties of graphene films on SiC (0001) studied by atomic force microscopy[J]. Physical Review B, 2010, 81(15): 155412.
[76] Reguzzoni M, Fasolino A, Molinari E, et al. Potential energy surface for graphene on graphene: Ab initio derivation, analytical description, and microscopic interpretation[J]. Physical Review B, 2012, 86(24): 245434.
[77] Fundamentals of friction and wear[M]. Springer Science & Business Media, 2007.
[78] Li Q, Lee C, Carpick R W, et al. Substrate effect on thickness‐dependent friction on graphene[J]. Physica Status Solidi (b), 2010, 247(11‐12): 2909-2914.
[79] Cho D H, Wang L, Kim J S, et al. Effect of surface morphology on friction of graphene on various substrates[J]. Nanoscale, 2013, 5(7): 3063-3069.
[80] Qi Y, Park J Y, Hendriksen B L M, et al. Electronic contribution to friction on GaAs: An atomic force microscope study[J]. Physical Review B, 2008, 77(18): 184105.
[81] Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10): 722-726.
[82] Burgo T A L, Silva C A, Balestrin L B S, et al. Friction coefficient dependence on electrostatic tribocharging[J]. Scientific Reports, 2013, 3(1): 2384.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778882
专题理学院_物理系
推荐引用方式
GB/T 7714
邓龙辉. 电场下二维材料微观摩擦特性研究与摩擦调控[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132917-邓龙辉-物理系.pdf(4252KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[邓龙辉]的文章
百度学术
百度学术中相似的文章
[邓龙辉]的文章
必应学术
必应学术中相似的文章
[邓龙辉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。