[1] Bhushan B, Israelachvili J N, Landman U. Nanotribology: friction, wear and lubrication at the atomic scale[J]. Nature, 1995, 374(6523): 607-616.
[2] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
[3] Holmberg K, Erdemir A. Influence of tribology on global energy consumption, costs and emissions[J]. Friction, 2017, 5(3): 263-284.
[4] Lang H, Peng Y, Cao X, et al. Atomic-scale friction characteristics of graphene under conductive AFM with applied voltages[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25503-25511.
[5] Akinwande D, Brennan C J, Bunch J S, et al. A review on mechanics and mechanical properties of 2D materials—Graphene and beyond[J]. Extreme Mechanics Letters, 2017, 13: 42-77.
[6] Park J Y, Salmeron M. Fundamental aspects of energy dissipation in friction[J]. Chemical Reviews, 2014, 114(1): 677-711.
[7] Bowden F P, Tabor D. The Friction and Lubrication of Solids[M]. Oxford (UK): Oxford University Press, 1950.
[8] Urbakh M, Meyer E. The renaissance of friction[J]. Nature Materials, 2010, 9(1): 8-10.
[9] Krim J. Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films[J]. Advances in Physics, 2012, 61(3): 155-323.
[10] Dayo A, Alnasrallah W, Krim J. Superconductivity-dependent sliding friction[J]. Physical Review Letters, 1998, 80(8): 1690.
[11] Sakuma H, Kawai K, Katayama I, et al. What is the origin of macroscopic friction[J]. Science Advances, 2018, 4(12): eaav2268.
[12] Marom N, Bernstein J, Garel J, et al. Stacking and registry effects in layered materials: the case of hexagonal boron nitride[J]. Physical Review Letters, 2010, 105(4): 046801.
[13] Sun J, Zhang X, Du S, et al. Charge density evolution governing interfacial friction[J]. Journal of the American Chemical Society, 2023, 145(9): 5536-5544.
[14] Liu H, Yang B, Wang C, et al. The mechanisms and applications of friction energy dissipation[J]. Friction, 2023, 11(6): 839-864.
[15] Hod O, Meyer E, Zheng Q, et al. Structural superlubricity and ultralow friction across the length scales[J]. Nature, 2018, 563(7732): 485-492.
[16] Wang J, Cao W, Song Y, et al. Generalized scaling law of structural superlubricity[J]. Nano Letters, 2019, 19(11): 7735-7741.
[17] Liu Y, Wang K, Xu Q, et al. Superlubricity between graphite layers in ultrahigh vacuum[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 43167-43172.
[18] Gong P, Ye Z, Yuan L, et al. Evaluation of wetting transparency and surface energy of pristine and aged graphene through nanoscale friction[J]. Carbon, 2018, 132: 749-759.
[19] Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8): 2458-2462.
[20] Lin Y M, Dimitrakopoulos C, Jenkins K A, et al. 100-GHz transistors from wafer-scale epitaxial graphene[J]. Science, 2010, 327(5966): 662-662.
[21] Li H, Wang J, Gao S, et al. Superlubricity between MoS2 monolayers[J]. Advanced Materials, 2017, 29(27): 1701474.
[22] Mutyala K C, Wu Y A, Erdemir A, et al. Graphene-MoS2 ensembles to reduce friction and wear in DLC-Steel contacts[J]. Carbon, 2019, 146: 524-527.
[23] Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7): 497-501.
[24] Lee C, Li Q, Kalb W, et al. Frictional characteristics of atomically thin sheets[J]. Science, 2010, 328(5974): 76-80.
[25] Krim J. Surface science and the atomic-scale origins of friction: what once was old is new again[J]. Surface Science, 2002, 500(1-3): 741-758.
[26] Tabor D. Friction as a dissipative process[M]//Fundamentals of friction: macroscopic and microscopic processes. Springer, Dordrecht, 1992: 3-24.
[27] Wang H, Hu Y Z, Zhang T. Simulations on atomic-scale friction between self-assembled monolayers: Phononic energy dissipation[J]. Tribology International, 2007, 40(4): 680-686.
[28] Xu L, Ma T B, Hu Y Z, et al. Vanishing stick–slip friction in few-layer graphenes: the thickness effect[J]. Nanotechnology, 2011, 22(28): 285708.
[29] Duan Z, Wei Z, Huang S, et al. Resonance in atomic-scale sliding friction[J]. Nano Letters, 2021, 21(11): 4615-4621.
[30] Prandtl L. Ein Gedankenmodell zur kinetischen Theorie der festen Körper[J]. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1928, 8(2): 85-106.
[31] Tomlinson G A. CVI. A molecular theory of friction[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1929, 7(46): 905-939.
[32] Popov V L, Gray J A T. Prandtl‐Tomlinson model: History and applications in friction, plasticity, and nanotechnologies[J]. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 2012, 92(9): 683-708.
[33] Müser M H. Velocity dependence of kinetic friction in the Prandtl-Tomlinson model[J]. Physical Review B, 2011, 84(12): 125419.
[34] Müller B, Berner J, Bechinger C, et al. Properties of a nonlinear bath: experiments, theory, and a stochastic Prandtl–Tomlinson model[J]. New Journal of Physics, 2020, 22(2): 023014.
[35] Colchero J, Baro A M, Marti O. Energy dissipation in scanning force microscopy-friction on an atomic scale[J]. Tribology Letters, 1996, 2: 327-343.
[36] Kontorova T, Frenkel J. On the theory of plastic deformation and twinning. II[J]. Zh. Eksp. Teor. Fiz., 1938, 8: 1340-1348.
[37] Persson B N J. Theory of the damping of excited molecules located above a metal surface[J]. Journal of Physics C: Solid State Physics, 1978, 11(20): 4251.
[38] Persson B N J. Electronic friction on a superconductor surface[J]. Solid State Communications, 2000, 115(3): 145-148.
[39] Dayo A, Alnasrallah W, Krim J. Superconductivity-dependent sliding friction[J]. Physical Review Letters, 1998, 80(8): 1690.
[40] Kisiel M, Gnecco E, Gysin U, et al. Suppression of electronic friction on Nb films in the superconducting state[J]. Nature Materials, 2011, 10(2): 119-122.
[41] Altfeder I, Krim J. Temperature dependence of nanoscale friction for Fe on YBCO[J]. Journal of Applied Physics, 2012, 111(9).
[42] Wang W, Dietzel D, Schirmeisen A. Single-asperity sliding friction across the superconducting phase transition[J]. Science Advances, 2020, 6(12): eaay0165.
[43] Filleter T, McChesney J L, Bostwick A, et al. Friction and dissipation in epitaxial graphene films[J]. Physical Review Letters, 2009, 102(8): 086102.
[44] Nano Letters, 2022, Ogletree D F, Thiel P A, et al. Electronic control of friction in silicon pn junctions[J]. Science, 2006, 313(5784): 186-186.
[45] Lang H, Peng Y, Cao X, et al. Atomic-scale friction characteristics of graphene under conductive AFM with applied voltages[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25503-25511.
[46] Zeng Y, He F, Wang Q, et al. Friction and wear behaviors of molybdenum disulfide nanosheets under normal electric field[J]. Applied Surface Science, 2018, 455: 527-532.
[47] Song A, Shi R, Lu H, et al. Fluctuation of interfacial electronic properties induces friction tuning under an electric field[J]. Nano Letters, 2022, 22(5): 1889-1896.
[48] He F, Yang X, Bian Z, et al. In‐Plane Potential Gradient Induces Low Frictional Energy Dissipation during the Stick‐Slip Sliding on the Surfaces of 2D Materials[J]. Small, 2019, 15(49): 1904613.
[49] Wang Y, Udyavara S, Neurock M, et al. Field effect modulation of electrocatalytic hydrogen evolution at back-gated two-dimensional MoS2 electrodes[J]. Nano letters, 2019, 19(9): 6118-6123.
[50] Shi B, Gan X, Yu K, et al. Electronic friction and tuning on atomically thin MoS2[J]. Npj 2D Materials and Applications, 2022, 6(1): 39.
[51] Greenwood G, Kim J M, Nahid S M, et al. Dynamically tuning friction at the graphene interface using the field effect[J]. Nature Communications, 2023, 14(1): 5801.
[52] Parvez K. Two-dimensional nanomaterials: Crystal structure and synthesis[M]//Biomedical Applications of Graphene and 2D Nanomaterials. Elsevier, 2019: 1-25.
[53] Lu A Y, Zhu H, Xiao J, et al. Janus monolayers of transition metal dichalcogenides[J]. Nature Nanotechnology, 2017, 12(8): 744-749.
[54] Li R, Cheng Y, Huang W. Recent progress of Janus 2D transition metal chalcogenides: from theory to experiments[J]. Small, 2018, 14(45): 1802091.
[55] Guo R, Bu X, Wang S, et al. Enhanced electron–phonon scattering in Janus MoSSe[J]. New Journal of Physics, 2019, 21(11): 113040.
[56] Zuo Y, Liu C, Ding L, et al. Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply[J]. Nature Communications, 2022, 13(1): 1007.
[57] Wang J, Xu X, Cheng T, et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire[J]. Nature Nanotechnology, 2022, 17(1): 33-38.
[58] Liu C, Wang L, Qi J, et al. Designed growth of large‐size 2D single crystals[J]. Advanced Materials, 2020, 32(19): 2000046.
[59] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[60] Guo H W, Hu Z, Liu Z B, et al. Stacking of 2D materials[J]. Advanced Functional Materials, 2021, 31(4): 2007810.
[61] Sader J E, Sanelli J A, Adamson B D, et al. Spring constant calibration of atomic force microscope cantilevers of arbitrary shape[J]. Review of Scientific Instruments, 2012, 83(10).
[62] Wagner K, Cheng P, Vezenov D. Noncontact method for calibration of lateral forces in scanning force microscopy[J]. Langmuir, 2011, 27(8): 4635-4644.
[63] Sun J, Zhang X, Du S, et al. Charge density evolution governing interfacial friction[J]. Journal of the American Chemical Society, 2023, 145(9): 5536-5544.
[64] Wang Y, Cong C, Qiu C, et al. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain[J]. Small, 2013, 9(17): 2857-2861.
[65] Yuan H, Bahramy M S, Morimoto K, et al. Zeeman-type spin splitting controlled by an electric field[J]. Nature Physics, 2013, 9(9): 563-569.
[66] Guo Y, Lin Y, Xie K, et al. Designing artificial two-dimensional landscapes via atomic-layer substitution[J]. Proceedings of the National Academy of Sciences, 2021, 118(32): e2106124118.
[67] Liao M, Nicolini P, Du L, et al. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures[J]. Nature Materials, 2022, 21(1): 47-53.
[68] Gurarslan A, Yu Y, Su L, et al. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates[J]. ACS Nano, 2014, 8(11): 11522-11528.
[69] Vazirisereshk M R, Hasz K, Zhao M Q, et al. Nanoscale friction behavior of transition-metal dichalcogenides: Role of the chalcogenide[J]. ACS Nano, 2020, 14(11): 16013-16021.
[70] 张红卫, 张田忠. 原子尺度摩擦研究进展[J]. 固体力学学报, 2014, 35(5): 417-440.
[71] Wolloch M, Levita G, Restuccia P, et al. Interfacial charge density and its connection to adhesion and frictional forces[J]. Physical Review Letters, 2018, 121(2): 026804.
[72] Chen X, Huang Y, Zou K, et al. The controllable tuning of nanofriction on atomically thin hexagonal boron nitride with external electric field[J]. Applied Surface Science, 2022, 581: 152361.
[73] Sarkar D, Liu W, Xie X, et al. MoS2 field-effect transistor for next-generation label-free biosensors[J]. ACS Nano, 2014, 8(4): 3992-4003.
[74] Evstigneev M, Reimann P. Stick-slip statistics in atomic friction[J]. Physical Review B, 2013, 87(20): 205441.
[75] Filleter T, Bennewitz R. Structural and frictional properties of graphene films on SiC (0001) studied by atomic force microscopy[J]. Physical Review B, 2010, 81(15): 155412.
[76] Reguzzoni M, Fasolino A, Molinari E, et al. Potential energy surface for graphene on graphene: Ab initio derivation, analytical description, and microscopic interpretation[J]. Physical Review B, 2012, 86(24): 245434.
[77] Fundamentals of friction and wear[M]. Springer Science & Business Media, 2007.
[78] Li Q, Lee C, Carpick R W, et al. Substrate effect on thickness‐dependent friction on graphene[J]. Physica Status Solidi (b), 2010, 247(11‐12): 2909-2914.
[79] Cho D H, Wang L, Kim J S, et al. Effect of surface morphology on friction of graphene on various substrates[J]. Nanoscale, 2013, 5(7): 3063-3069.
[80] Qi Y, Park J Y, Hendriksen B L M, et al. Electronic contribution to friction on GaAs: An atomic force microscope study[J]. Physical Review B, 2008, 77(18): 184105.
[81] Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10): 722-726.
[82] Burgo T A L, Silva C A, Balestrin L B S, et al. Friction coefficient dependence on electrostatic tribocharging[J]. Scientific Reports, 2013, 3(1): 2384.
修改评论