[1] 周彦平, 舒锐, 陶坤宇, 等. 空间目标光电探测与识别技术的研究[J]. 光学技术, 2007, (01):68-73+76.
[2] 吕衍秋. 航天遥感用InGaAs线列红外焦平面的研究[D]; 中国科学院上海技术物理研究所, 2007.
[3] 纪红. 红外技术基础与应用[M]. 北京: 科学出版社, 1979.
[4] JHA A R. Infrared Technology: Applications to Electro-Optics[M]. 2000.
[5] SCHWAETZER I. Multiple use of an IR missile approach warning system[C].proceedings of the Society of Photo-Optical Instrumentation Engineers Conference on Infrared Technology and Applications, 2003, 5074:630-636.
[6] 白宏刚. 红外夜视技术及其军事应用[J]. 现代物理知识, 2011, 23(06):44-46.
[7] 温欣玲, 姜金三, 赵雨斌, 等. 基于红外技术的检测控制装置[J]. 激光与红外, 2006, (01):23-25.
[8] 李树君, 林亚玲, 潘忠礼. 红外技术用于农产品灭酶和脱水干燥的研究综述[J]. 农业机械学报, 2008, (06):109-112.
[9] JUN T K. Design, modeling and fabrication of an infrared thermopile detector based on MEMS technology[D]; University of California, Los Angeles, 2002.
[10] 蔡小五, 马斌, 梁平治. 微机械非制冷红外热电堆探测器[J]. 红外技术, 2005, (01):34-38.
[11] SCHILZ J D. thermophysica minima THERMOELECTRIC INFRARED SENSORS (THERMOPILES) FOR REMOTE TEMPERATURE MEASUREMENTS; PYROMETRY[J]. 2001.
[12] LIESS M, HAUSNER M, SCHILZ J, et al. Temperature radiation sensors for automotive climate control[C]. proceedings of the SENSORS, 2004 IEEE, 2004 :5-7.
[13] ARNDT M, SAUER M. Spectroscopic carbon dioxide sensor for automotive applications[C]. proceedings of the Sensors, 2004 Proceedings of IEEE, 2004.
[14] NESTOROVA G G, CREWS N D, GUILBEAU E J. Theoretical and experimental analysis of thermoelectric lab-on-a-chip ELISA[J]. Microfluidics and nanofluidics, 2015(19-4).
[15] 帅永, 齐宏, 谈和平. 热辐射测量技术 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2014.
[16] ROGALSKI A. Infrared detectors at the beginning of the next millennium[J]. Sensors and materials: An International Journal on Sensor Technology, 2000, (5):12.65参考文献
[17] 梅遂生. 光电子技术: 信息装备的新秀[M]. 光电子技术: 信息装备的新秀, 1999.
[18] GRAF M, DUPONT E, LUO H, et al. Terahertz quantum well infrared detectors[J]. Infrared Physics & Technology, 2009, 52(6):289-293.
[19] KARUNASIRI R P G, PARK J S, WANG K L. Si 1-xGex/Si multiple quantum well infrared detector[J]. Applied Physics Letters, 1991, 59(20):2588 -2590.
[20] COON D D, KARUNASIRI R P G. New mode of IR detection using quantum wells[J]. Applied Physics Letters, 1984, 45(6):649-651.
[21] CAMPANA S B, ACCETTA J S, SHUMAKER D L. The Infrared & Electro-Optical Systems Handbook. Passive Ellectro-Optical Systems, Volume 5[J]. Infrared Information Analys, SPIE Optical Engineering Press, 1993.
[22] KIM S, MOHSENI H, ERDTMANN M, et al. Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector[J]. AppliedPhysics Letters, 1998, 73(7):963-965.
[23] LIU, H. C. Photoconductive gain mechanism of quantum-well intersubband infrared detectors[J]. Applied Physics Letters, 1992, 60(12):1507-1509.
[24] DELL J M, ANTOSZEWSKI J, RAIS M H, et al. HgCdTe mid-wavelength IR photovoltaic detectors fabricated using plasma induced junction technology[J]. Journal of Electronic Materials, 2000, 29(6):841-848.
[25] DJURIC Z, PIOTROWSKI. Room temperature IR photodetector with electromagnetic carrier depletion[J]. Electronics Letters, 1990, 26(20):1689-1691.
[26] MOONEY J M, SILVERMAN J. The theory of hot-electron photoemission in Schottky-barrier IR detectors[J]. IEEE Transactions on Electron Devices, 1985, 32(1):33-39.
[27] TSAUR B Y, CHEN C K. IrSi Schottky-barrier infrared detectors with wavelength response beyond 12 microns[J]. IEEE Electron Device Letters, 1990, 11(9):415-417.
[28] LI X, PU T, LI X, et al. Correlation Between Anode Area and Sensitivity for the TiN/GaN Schottky Barrier Diode Temperature Sensor[J]. IEEE Transactions on Electron Devices, 2020, PP(99):1-5.
[29] SCHLENKER C W, THOMPSON M E. Current Challenges in Organic Photovoltaic Solar Energy Conversion[J]. Topics in Current Chemistry, 2012, 312:175 -212.
[30] T. GANBOLD M A, G. CAUTERO. Position-sensitive multi-wavelength photon detectors based on epitaxial InGaAs/InAlAs quantum wells[J]. Journal of Crystal Growth, 2015, 425:341-345.
[31] ZHAO H, REN W, LIU X. Design and fabrication of micromachined pyroelectric infrared detector array using lead titanate zirconate (PZT) thin film[J]. Ceramics International, 2017:S0272884217310234.
[32] LIU Z, LIANG Z, TANG W, et al. Design and Fabrication of Low-Deformatio66参考文献n Micro-bolometers for THz Detectors[J]. Infrared Physics & Technology, 2020,105:103241.
[33] FATIMY A E, HAN P, QUIRK N, et al. Effect of defect-induced cooling on graphene hot-electron bolometers[J]. Carbon, 2019, 154:497-502.
[34] DJURIC Z. New generation of thermal infrared detectors[C]. proceedings of theInternational Conference on Microelectronics, 1995.
[35] SANTRA S, UDREA F, GUHA P K, et al. Ultra-high temperature (≫ 300°C) suspended thermodiode in SOI CMOS technology[J]. Microelectron J, 2010.
[36] WANG Z Q, SHI X J, TOLBERT L M, et al. A High Temperature Silicon Carbide MOSFET Power Module With Integrated Silicon-On-Insulator-Based Gate Drive[C]. proceedings of the IEEE Trans Power Electron, 2014.
[37] CORBEIL J L, LAVRIK N V, RAJIC S, et al. "Self-leveling" uncooled microcantilever thermal detector[J]. Applied Physics Letters, 2002, 81(7):1306 -1308.
[38] JHA A R. Infrared technology: applications to electrooptics[C]. photonic devices, and sensors, 2000.
[39] MATTSSON C G, THUNGSTRöM G, BERTILSSON K, et al. Design of a Micromachined Thermopile Infrared Sensor With a Self-Supported SiO2/SU-8 Membrane[J]. IEEE Sens J, 2008, 8(11-12):2044-2052.
[40] Shen C H .CMOS-compatible active thermopiles for noise-added theory[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2004, 5472:309-316.
[41] MATTSSON C G, BERTILSSON K, THUNGSTRöM G, et al. Thermal simulation and design optimization of a thermopile infrared detector with an SU-8 membrane[J]. Journal of Micromechanics & Microengineering, 2009, 19(5):055016.
[42] YOO K P, HONG H P, LEE M J, et al. Fabrication, characterization and application of a microelectromechanical system (MEMS) thermopile for non-dispersive infrared gas sensors[J]. Measurement Science & Technology, 2011, 22(11):115206.
[43] KE W, WANG Y, ZHOU H, et al. Design, fabrication, and characterization of a high-performance CMOS-compatible thermopile infrared detector with self-testfunction[J]. Journal of Micromechanics and Microengineering, 2018 (28).
[44] SHEN T W, CHANG K C, SUN C M, et al. Performance enhance of CMOSMEMS thermoelectric infrared sensor by using sensing material and structure design[J]. IOP Publishing, 2019(2).
[45] 雷程. 双端梁MEMS热电堆红外探测器关键技术研究[D], 2016.
[46] HOU H G, HUANG Q W, LIU G W, et al. Enhanced performances of CMOSMEMS thermopile infrared detectors using novel thin film stacks[J]. Infrared Physics & Technology, 2019, 102:8.
[47] HE Y Q, WANG Y L, LI T. Simultaneously controlling heat conduction and in67参考文献frared absorption with a textured dielectric film to enhance the performance of thermopiles[J]. Microsyst Nanoeng, 2021, 7(1):12.
[48] XU D, WANG Y, XIONG B, et al. MEMS-based thermoelectric infrared sensors: A review[J]. Frontiers of Mechanical Engineering, 2017, 12(4):10.
[49] GRAF A, ARNDT M, GERLACH G. Seebeck's effect in micromachined thermopiles for infrared detection. A review[J]. Estonian Journal of Engineering, 2007,13(4):338-353.
[50] BRASUNAS, C J. Measuring and modeling the frequency response of infrared detectors[J]. Infrared Physics & Technology, 1997, 38(2):69–74.
[51] STRASSER M, AIGNER R, LAUTERBACH C, et al. Micromachined CMOS thermoelectric generators as on-chip power supply[J]. Sens Actuator A-Phys, 2004, 114(2-3):362-370.
[52] IOFFE A F, STIL’BANS L S, IORDANISHVILI E K, et al. Semiconductor Thermoelements and Thermoelectric Cooling[J]. Physics Today, 1959, 12(5):42 -42.
[53] RONCAGLIA A, FERRI M. Thermoelectric Materials in MEMS and NEMS: A Review[J]. Science of Advanced Materials, 2011, 3(3):401-419.
[54] LIAO C N, CHEN C, TU K N. Thermoelectric characterization of Si thin films in silicon-on-insulator wafers[J]. Journal of Applied Physics, 1999, 86(6):3204-3208.
[55] GRAF A, ARNDT M, SAUER M, et al. Review of micromachined thermopiles for infrared detection[J]. Measurement Science and Technology, 2007, 18(7):R59-R75.
[56] SCHIEFERDECKER J, QUAD R, HOLZENKäMPFER E, et al. Infrared thermopile sensors with high sensitivity and very low temperature coefficient[J]. Sensors and Actuators A: Physical, 1995, 47(1-3):422-427.
[57] KRUSE P W. Uncooled thermal imaging: arrays, systems, and applications[M]. 2001.
[58] SHARMA S, SHAFIQUE A. Monolayer Ag2S: Ultralow Lattice Thermal Conductivity and Excellent Thermoelectric Performance[J]. ACS Applied Energy Materials, 2020, 3(10):10147-10153.
[59] CONN J B, TAYLOR R C. Thermoelectric and Crystallographic Properties of Ag2Se[J]. Journal of The Electrochemical Society, 1960, 107(12):977 -982.
[60] CONDRON C L, KAUZLARICH S M, GASCOIN F, et al. Thermoelectric properties and microstructure of Mg3Sb2[J]. J Solid State Chem, 2006, 179(8):2252-2257.
[61] PINWEN Z, YOSHIO I, YUKIHIRO I, et al. High Thermoelectric Properties ofPbTe Doped with BiTeand SbTe[J]. Chinese Physics Letters, 2005, 22(8):2103 -2105.
[62] ZHOU A J, ZHAO X B, ZHU T J, et al. Microstructure and thermoelectric pr68参考文献operties of SiGe-added higher manganese silicides[J]. Mater Chem Phys, 2010, 124(2-3):1001-1005.
[63] ZHAO L D, CHANG C, TAN G. SnSe: a remarkable new thermoelectric material[J]. Energy & Environmental Science, 2016, 9(10):3044-3060.
[64] ZHENG Z H, FAN P, LUO J T, et al. Hybridization of electronic band structure and enhancement of thermoelectric properties of ZnSb thin film by In doping[J]. J Phys Chem Solids, 2017, 103:82-86.
[65] LIU D, ZHU B, FENG J, et al. High Thermoelectric Performance of p -Type Bi0.4Sb1.6Te3+x Synthesized by Plasma-Assisted Ball Milling[J]. ACS Applied Materials & Interfaces, 2022, 14(48):54044-54050.
[66] ZHOU J, FENG J H, LI H, et al. Modulation of Vacancy Defects and Texture for High Performance n-Type Bi2Te3 via High Energy Refinement[J]. Small, 2023, 19(24):9.
[67] TAN X Y, DONG J F, JIA N, et al. Enhanced near-room-temperature thermoelectric performance in GeTe[J]. Rare Metals, 2022, 41(9):3027-3034.
[68] ZHOU M H, LI J, DONG G Y, et al. Enhancement of Thermoelectric Performance for InTe by Selective Substitution and Grain Size Modulation[J]. Crystals,2023, 13(4):11.
[69] BUX S K, YEUNG M, TOBERER E S, et al. Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide[J]. Journal of Materials Chemistry, 2011, 21(33):12259-12266.
[70] MAO J, ZHU H T, DING Z W, et al. High thermoelectric cooling performanceof n-type Mg3Bi2-based materials[J]. Science, 2019, 365(6452):495-498.
[71] MINNICH A J, LEE H, WANG X W, et al. Modeling study of thermoelectric SiGe nanocomposites[J]. Physical Review B, 2009, 80(15):14.
[72] WANG H, SCHECHTEL E, PEI Y, et al. High Thermoelectric Efficiency of n-type PbS[J]. Advanced Energy Materials, 2013, 3(4):488-495.
[73] LIN S Q, LI W, CHEN Z W, et al. Tellurium as a high-performance elementalthermoelectric[J]. Nature Communications, 2016, 7:6.
[74] PANG H J, YU H, LI W J, et al. Topological states of thermoelectric Yb-filled skutterudites[J]. Physical Review B, 2023, 107(12):10.
[75] QIU G, LI J, LING Y, et al. Carrier concentration and orientation optimizationfor high performance (Sb,Bi) 2Te3 thermoelectric films via magnetron co-sputtering[J]. Journal of Alloys and Compounds, 2023, 950:169916.
[76] DRUMMOND A J. Precision Radiometry and Its Significance in Atmospheric and Space Physics[J]. Advances in Geophysics, 1970, 14:1-52.
[77] GEBALLE T H, HULL G W. Seebeck Effect in Silicon[J]. Physical Review, 1955.69参考文献
[78] HERRING C. Theory of Thermoelectric Power of Kondo Semiconductors[J]. Physical Review, 2001, 96(5):1163-1187.
[79] SHEN H, LEE H, HAN S. Optimization and fabrication of a planar thermoelectric generator for a high-performance solar thermoelectric generator[J]. Current Applied Physics, 2021, 22:6-13.
[80] ZHANG Z, WANG Y, DENG Y, et al. The effect of (00l) crystal plane orientation on the thermoelectric properties of Bi 2Te3 thin film[J]. Solid State Communications, 2011, 151(21):1520-1523.
[81] MAO H Y, CHEN Y J, OU Y, et al. Fabrication of nanopillar forests with high infrared absorptance based on rough poly-Si and spacer technology[J]. Journal of Micromechanics and Microengineering, 2013, 23(9):6.
[82] TAN Q L, TANG L C, MAO H Y, et al. Nanoforest of black silicon fabricated by AIC and RIE method[J]. Mater Lett, 2016, 164:613-617.
[83] LEI C, MAO H Y, OU W, et al. A CMOS-MEMS IR device based on doublelayer thermocouples[J]. Microsyst Technol, 2016, 22(5):1163-1171.
[84] XU D H, XIONG B, WANG Y L. Design, fabrication and characterization of afront-etched micromachined thermopile for IR detection[J]. Journal of Micromechanics and Microengineering, 2010, 20(11):10.
[85] 王楷群. 热电堆红外探测器的设计与性能测试[D], 2010.
[86] A. DEHé F K, HARTNAGEL H LHARTNAGEL. Infrared thermopile sensor based on AlGaAs—GasAs micromachining[J]. Sensors & Actuators A Physical, 1995.
[87] LI Y. Improved Vertical Silicon Nanowire Based Thermoelectric Power Generator With Polyimide Filling[J]. IEEE Electron Device Letters, 2012, 33(5):715 -717.
[88] LIU S, HU B, LI D, et al. Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference[J].Applied Energy, 2018, 225(SEP.1):600-610.
[89] WANG Z Y, LEONOV V, FIORINI P, et al. Realization of a wearable miniaturized thermoelectric generator for human body applications [J]. Sens Actuator A-Phys, 2009, 156(1):95-102.
[90] YANLONG L I, ZHOU H, TIE L I, et al. CMOS-compatible 8×2 thermopile array[J]. Sensors Actuators A Physical, 2010, 161(1–2):120-126.
修改评论