中文版 | English
题名

RACK1蛋白调控拟南芥干旱胁迫应答的功能研究

其他题名
THE FUNCTION OF RACK1 PROTEIN IN REGULATING THE RESPONSES OF ARABIDOPSIS TO DROUGHT STRESS
姓名
姓名拼音
GAN Shijie
学号
12133026
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
梁建生
导师单位
生命科学学院
论文答辩日期
2024-05-10
论文提交日期
2024-07-03
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

干旱是植物面临的主要胁迫之一,其在全球范围内极大影响了农作物的生长和产量。为此,研究发掘抗旱基因是培育抗旱作物的重要基础。本文主要研究了RACK1蛋白在拟南芥中的耐旱功能和调控机制。

在拟南芥中,RACK1蛋白是一种关键的受体支架蛋白。本研究表明,RACK1蛋白在拟南芥抗旱响应中发挥着重要功能。通过对野生型Col-0、突变体rack1arack1abc和过表达转基因株系GFP-RACK1A #6GFP-RACK1A #17这5种遗传材料进行干旱胁迫处理,其表型分析表明rack1突变体的耐旱能力显著增强,在极度干旱胁迫条件下仍然具有较高的存活率,并表现出了较强的干旱胁迫恢复能力。通过观察统计这5种rack1基因型拟南芥幼苗的叶片失水表型,以及利用光合仪测定它们的各项植物生理参数,如叶绿素荧光Fv/Fm、气孔导度和净光合速率,结果表明rack1突变体通过降低叶片蒸腾速率,从而提高耐旱性和存活率。此外,测定不同干旱处理时期的拟南芥幼苗地上部组织的ABA含量,以及分析甘露醇或ABA诱导处理下的气孔特性,结果表明RACK1蛋白功能缺失导致抑制植物叶片的气孔发育,并通过参与调控ABA生物合成途径,促进干旱胁迫条件下叶片气孔的闭合。为了探究RACK1在拟南芥地下部的作用机制,对5种rack1基因型拟南芥的根部进行了甘露醇模拟干旱胁迫处理,并检测了植株根部组织中15种水孔蛋白的基因表达量,这些结果表明RACK1蛋白主要通过调控根系生长,进而提高拟南芥植株的耐旱能力。

综上所述,拟南芥RACK1蛋白作用于植物地上部和地下部,参与调控植物的耐旱性。rack1突变体优于野生型和过表达转基因材料的各项耐旱结果也表明了RACK1是拟南芥耐旱性的负调控因子。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-05
参考文献列表

[1] 饶玉春, 戴志俊, 朱怡彤等. 水稻抗干旱胁迫的研究进展[J]. 浙江师范大学学报(自然科学版), 2020, 43(04): 417-429.
[2] 景蕊莲. 作物抗旱节水研究进展[J]. 中国农业科技导报, 2007, (01): 1-5.
[3] 王英, 张浩, 马军韬, 等. 水稻抗旱研究进展与展望[J]. 热带作物学报, 2018, 39(5): 1038-1043.
[4] 杨瑰丽, 杨美娜, 陈志强, 等. 水稻抗旱机理和抗旱育种研究进展[J]. 中国农学通报, 2012, 28(21): 1-6.
[5] MUKARRAM M, CHOUDHARY S, KURJAK D, et al. Drought: Sensing, signalling, effects and tolerance in higher plants[J]. Physiologia Plantarum, 2021 Jun, 172(2): 1291-1300.
[6] SHELP B J, AGHDAM M S, FLAHERTY E J. γ-Aminobutyrate (GABA) Regulated Plant Defense: Mechanisms and Opportunities[J]. Plants, 2021 Sep 17, 10(9): 1939.
[7] MUBARIK M S, KHAN S H, SAJJAD M, et al. A manipulative interplay between positive and negative regulators of phytohormones: A way forward for improving drought tolerance in plants[J]. Physiologia Plantarum, 2021 Jun, 172(2): 1269-1290.
[8] XIONG D, NADAL M. Linking water relations and hydraulics with photosynthesis[J]. The Plant Journal, 2020 Feb, 101(4): 800-815.
[9] TOSCANO S, FERRANTE A, ROMANO D. Response of Mediterranean Ornamental Plants to Drought Stress[J]. Horticulturae, 2019, 5(1): 6.
[10] KIM Y, CHUNG Y S, LEE E, et al. Root Response to Drought Stress in Rice (Oryza sativa L.)[J]. International Journal of Molecular Sciences, 2020 Feb 22, 21(4): 1513.
[11] RAZI K, MUNEER S. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops[J]. Critical Reviews in Biotechnology, 2021 Aug, 41(5): 669-691.
[12] KOU X, HAN W, KANG J. Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions[J]. Frontiers in Plant Science, 2022 Dec 9, 13: 1085409.
[13] MENSAH E O, RÆBILD A, ASARE R, et al. Combined effects of shade and drought on physiology, growth, and yield of mature cocoa trees[J]. Science of The Total Environment, 2023 Nov 15, 899: 165657.
[14] RICO-CAMBRON T Y, BELLO-BELLO E, MARTÍNEZ O, et al. A non-invasive method to predict drought survival in Arabidopsis using quantum yield under light conditions[J]. Plant Methods, 2023 Nov 15, 19(1): 127.
[15] MALNOË A. Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH[J]. Environmental and Experimental Botany, 2018, 154: 123-133.
[16] TOWNSEND AJ, WARE MA, RUBAN AV. Dynamic interplay between photodamage and photoprotection in photosystem II. Plant Cell Environ. 2018 May; 41(5): 1098-1112.
[17] BASHIR N, ATHAR H U, KALAJI H M, et al. Is Photoprotection of PSII One of the Key Mechanisms for Drought Tolerance in Maize? [J]. International Journal of Molecular Sciences, 2021 Dec 16, 22(24): 13490.
[18] WERNER L M, et al. Local and systemic metabolic adjustments to drought in maize: Hydraulic redistribution in a split-root system[J]. Journal of Plant Nutrition and Soil Science, 2022, 185(5): 632-642.
[19] WAADT R, SELLER C A, HSU P K, et al. Plant hormone regulation of abiotic stress responses[J]. Nature Reviews Molecular Cell Biology, 2022 Oct, 23(10): 680-694.
[20] MUHAMMAD ASLAM M, WASEEM M, JAKADA B H, et al. Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants[J]. Int J Mol Sci. 2022 Jan 19;23(3): 1084.
[21] ZHANG H, ZHU J, GONG Z, et al. Abiotic stress responses in plants[J]. Nature Reviews Genetics, 2022 Feb, 23(2): 104-119.
[22] CRUZ DE CARVALHO M H. Drought stress and reactive oxygen species: Production, scavenging and signaling[J]. Plant Signaling & Behavior, 2008 Mar, 3(3): 156-165.
[23] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010 Dec, 48(12): 909-930.
[24] ESTRAVIS-BARCALA M, MATTERA M G, SOLIANI C, et al. Molecular bases of responses to abiotic stress in trees[J]. Journal of Experimental Botany, 2020 Jun 26, 71(13): 3765-3779.
[25] WAHAB A, ABDI G, SALEEM MH, et al. Plants’ Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review[J]. Plants. 2022; 11(13): 1620.
[26] OH J E, KWON Y, KIM J H, et al. A dual role for MYB60 in stomatal regulation and root growth of Arabidopsis thaliana under drought stress[J]. Plant Molecular Biology, 2011 Sep, 77(1-2): 91-103.
[27] GONG Z. Plant abiotic stress: New insights into the factors that activate and modulate plant responses[J]. Journal of Integrative Plant Biology, 2021 Mar, 63(3): 429-430.
[28] SINGH R K, PRASAD M. Delineating the epigenetic regulation of heat and drought response in plants[J]. Critical Reviews in Biotechnology, 2022 Jun, 42(4): 548-561.
[29] SMOZCYNSKA A, PACAK A M, NUC P, et al. A Functional Network of Novel Barley MicroRNAs and Their Targets in Response to Drought[J]. Genes, 2020 Apr 29, 11(5): 488.
[30] ZHU J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53: 247-273.
[31] MCADAM S A M, MANANDHAR A, KANE C N, et al. Passive stomatal closure under extreme drought in an angiosperm species[J]. Journal of Experimental Botany, 2023 Dec 29, erad510.
[32] LI Q, SHEN C, ZHANG Y, et al. PePYL4 enhances drought tolerance by modulating water-use efficiency and ROS scavenging in Populus[J]. Tree Physiology, 2023 Jan 5, 43(1): 102-117.
[33] LIM C, KANG K, SHIM Y, et al. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways[J]. Plant Physiology, 2022 Mar 28, 188(4): 1900-1916.
[34] VERMA D, et al. MKK3-MPK6-MYC2 module positively regulates ABA biosynthesis and signalling in Arabidopsis[J]. Journal of Plant Biochemistry and Biotechnology, 2020, 29(4): 785-795.
[35] LI Q, SHEN C, ZHANG Y, et al. PePYL4 enhances drought tolerance by modulating water-use efficiency and ROS scavenging in Populus[J]. Tree Physiology, 2023 Jan 5, 43(1): 102-117.
[36] CHANG Y N, WANG Z, REN Z, et al. NUCLEAR PORE ANCHOR and EARLY IN SHORT DAYS 4 negatively regulate abscisic acid signaling by inhibiting Snf1-related protein kinase2 activity and stability in Arabidopsis[J]. Journal of Integrative Plant Biology, 2022 Nov, 64(11): 2060-2074.
[37] ZENG J, WU C, YE X, et al. MePP2C24, a cassava (Manihot esculenta) gene encoding protein phosphatase 2C, negatively regulates drought stress and abscisic acid responses in transgenic Arabidopsis thaliana[J]. Plant Physiology and Biochemistry, 2024 Jan, 206: 108291.
[38] DONG T, PARK Y, HWANG I. Abscisic acid: biosynthesis, inactivation, homeostasis and signalling[J]. Essays in Biochemistry, 2015, 58: 29-48.
[39] LAWSON T, MATTHEWS J. Guard Cell Metabolism and Stomatal Function[J]. Annu Rev Plant Biol. 2020 Apr 29; 71: 273-302.
[40] GONG Z, XIONG L, SHI H, et al. Plant abiotic stress response and nutrient use efficiency[J]. Science China Life Sciences, 2020 May, 63(5): 635-674.
[41] CHATER C C C, OLIVER J, CASSON S, et al. Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development[J]. New Phytologist, 2014 Apr, 202(2): 376-391.
[42] TAKAHASHI F, KUROMORI T, URANO K, et al. Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication[J]. Frontiers in Plant Science, 2020 Sep 10, 11: 556972.
[43] FINKELSTEIN R. Abscisic Acid synthesis and response[J]. The Arabidopsis Book, 2013 Nov 1, 11: e0166.
[44] NAMBARA E, MARION-POLL A. Abscisic acid biosynthesis and catabolism[J]. Annual Review of Plant Biology, 2005, 56: 165-185.
[45] MUNEMASA S, HAUSER F, PARK J, et al. Mechanisms of abscisic acid-mediated control of stomatal aperture[J]. Current Opinion in Plant Biology, 2015 Dec, 28: 154-162.
[46] LEE S C, LUAN S. ABA signal transduction at the crossroad of biotic and abiotic stress responses[J]. Plant, Cell & Environment, 2012 Jan, 35(1): 53-60.
[47] MEYER S, MUMM P, IMES D, et al. AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells[J]. The Plant Journal, 2010 Sep, 63(6): 1054-1062.
[48] TAKAHASHI Y, EBISU Y, KINOSHITA T, et al. bHLH transcription factors that facilitate K⁺ uptake during stomatal opening are repressed by abscisic acid through phosphorylation[J]. Science Signaling, 2013 Jun 18, 6(280): ra48.
[49] CHEN K, LI G J, BRESSAN R A, et al. Abscisic acid dynamics, signaling, and functions in plants[J]. Journal of Integrative Plant Biology, 2020 Jan, 62(1): 25-54.
[50] MUSTILLI A C, MERLOT S, VAVASSEUR A, et al. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production[J]. The Plant Cell, 2002 Dec, 14(12): 3089-3099.
[51] YOSHIDA R, HOBO T, ICHIMURA K, et al. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis[J]. Plant Cell Physiology, 2002 Dec, 43(12): 1473-1483.
[52] NAKASHIMA K, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat[J]. Frontiers in Plant Science, 2014 May 16, 5: 170.
[53] YU Q, AN L, LI W. The CBL-CIPK network mediates different signaling pathways in plants[J]. Plant Cell Reports, 2014 Feb, 33(2): 203-214.
[54] TYERMAN S D, MCGAUGHEY S A, QIU J, et al. Adaptable and Multifunctional Ion-Conducting Aquaporins[J]. Annual Review of Plant Biology, 2021 Jun 17, 72: 703-736.
[55] CHRISTMANN A, HOFFMANN T, TEPLOVA I, et al. Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis[J]. Plant Physiology, 2005 Jan, 137(1): 209-219.
[56] ALEXANDERSSON E, FRAVSSE L, SJÖVALL L S, et al. Whole gene family expression and drought stress regulation of aquaporins[J]. Plant Molecular Biology, 2005 Oct, 59(3): 469-484.
[57] ALEXANDERSSON E, FRAVSSE L, SJÖVALL L S, et al. Whole gene family expression and drought stress regulation of aquaporins[J]. Plant Molecular Biology, 2005 Oct, 59(3): 469-484.
[58] TYERMAN S D, NIEMIETZ C M, BRAMLEY H. Plant aquaporins: multifunctional water and solute channels with expanding roles[J]. Plant, Cell & Environment, 2002 Feb, 25(2): 173-194.
[59] YAARAN A, MOSHELION M. Role of Aquaporins in a Composite Model of Water Transport in the Leaf[J]. International Journal of Molecular Sciences, 2016 Jun 30, 17(7): 1045.
[60] GUERRERO F D, JONES J T, MULLET J E. Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes[J]. Plant Molecular Biology, 1990 Jul, 15(1): 11-26.
[61] MAHDIEH M, MOSTAJERAN A, HORIE T, et al. Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants[J]. Plant Cell Physiology, 2008 May, 49(5): 801-813.
[62] SECCHI F, LOVISOLO C, UEHLEIN N, et al. Isolation and functional characterization of three aquaporins from olive (Olea europaea L.)[J]. Planta, 2007 Jan, 225(2): 381-392.
[63] SUGA S, KOMATSU S, MAESHIMA M. Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings[J]. Plant Cell Physiology, 2002 Oct, 43(10): 1229-1237.
[64] SIEFRITZ F, BIELA A, ECKERT M, et al. The tobacco plasma membrane aquaporin NtAQP1[J]. Journal of Experimental Botany, 2001 Oct, 52(363): 1953-1957.
[65] SMITH T F, GAITATZES C, SAXENA K, et al. The WD repeat: a common architecture for diverse functions[J]. Trends in Biochemical Sciences, 1999 May, 24(5): 181-185.
[66] WALL M A, COLEMAN D E, LEE E, et al. The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2[J]. Cell, 1995 Dec 15, 83(6): 1047-1058.
[67] LABRIGHT D G, SONDEK J, BOHM A, et al. The 2.0 A crystal structure of a heterotrimeric G protein[J]. Nature, 1996 Jan 25, 379(6563): 311-319.
[68] ULLAH H, SCAPPINI E L, MOON A F, et al. Structure of a signal transduction regulator, RACK1, from Arabidopsis thaliana[J]. Protein Science, 2008 Oct, 17(10): 1771-1780.
[69] ADAMS D R, RON D, KIELY P A. RACK1, A multifaceted scaffolding protein: Structure and function[J]. Cell Communication and Signaling, 2011 Oct 6, 9: 22.
[70] GUO J, WANG J, XI L, et al. RACK1 is a negative regulator of ABA responses in Arabidopsis[J]. Journal of Experimental Botany, 2009, 60(13): 3819-3833.
[71] BERTOLINO LT, CAINE RS, GRAY JE. Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World[J]. Front Plant Sci. 2019 Mar 6; 10: 225.
[72] ZHOU Y, ZHANG Y, WANG X, et al. Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus[J]. New Phytol, 2020 Jul, 227(2): 407-426.

所在学位评定分委会
生物学
国内图书分类号
Q94
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778896
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
甘世杰. RACK1蛋白调控拟南芥干旱胁迫应答的功能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12133026-甘世杰-生物系.pdf(3064KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[甘世杰]的文章
百度学术
百度学术中相似的文章
[甘世杰]的文章
必应学术
必应学术中相似的文章
[甘世杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。