[1] CHEON Y, LEAVENS G T. A simple and practical approach to unit testing: The JML and JUnit way[C]//ECOOP 2002—Object-Oriented Programming: 16th European Conference Málaga, Spain, June 10–14, 2002 Proceedings 16. Springer, 2002: 231-255.
[2] OKKEN B. Python Testing with pytest[M]. Pragmatic Bookshelf, 2022.
[3] MEMON A M, BANERJEE I, NAGARAJAN A. GUI ripping: reverse engineering of graphical user interfaces for testing.[C]//WCRE: volume 3. 2003: 260.
[4] KIRINUKI H, TANNO H. Automating end-to-end web testing via manual testing[J]. Journal of Information Processing, 2022, 30: 294-306.
[5] CHANG X, LIANG Z, ZHANG Y, et al. A Reinforcement Learning Approach to GeneratingTest Cases for Web Applications[C]//2023 IEEE/ACM International Conference on Automation of Software Test (AST). IEEE, 2023: 13-23.
[6] LONG Z, WU G, CHEN X, et al. Webrr: self-replay enhanced robust record/replay for web application testing[C]//Proceedings of the 28th ACM Joint Meeting on European Software En- gineering Conference and Symposium on the Foundations of Software Engineering. 2020: 1498-1508.
[7] LEOTTA M, CLERISSI D, RICCA F, et al. Capture-replay vs. programmable web testing: An empirical assessment during test case evolution[C]//2013 20th Working Conference on Reverse Engineering (WCRE). IEEE, 2013: 272-281.
[8] ZHENG Y, LIU Y, XIE X, et al. Automatic web testing using curiosity-driven reinforcement learning[C]//2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 2021: 423-435.
[9] SHERIN S, MUQEET A, KHAN M U, et al. QExplore: An exploration strategy for dynamic web applications using guided search[J]. Journal of Systems and Software, 2023, 195: 111512.
[10] MESBAH A, BOZDAG E, VAN DEURSEN A. Crawling Ajax by inferring user interface state changes[C]//2008 eighth international conference on web engineering. IEEE, 2008: 122-134.
[11] MARCHETTO A, TONELLA P, RICCA F. State-based testing of Ajax web applications[C]// 2008 1st international conference on software testing, verification, and validation. IEEE, 2008: 121-130.
[12] ATHAIYA S, KOMONDOOR R. Testing and analysis of web applications using page models [C]//Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis. 2017: 181-191.
[13] BIAGIOLA M, RICCA F, TONELLA P. Search based path and input data generation for web application testing[C]//Search Based Software Engineering: 9th International Symposium, SS-BSE 2017, Paderborn, Germany, September 9-11, 2017, Proceedings 9. Springer, 2017: 18-32.
[14] MARSAGLIA G, ZAMAN A. Monkey tests for random number generators[J]. Computers & mathematics with applications, 1993, 26(9): 1-10.
[15] MORALES M. Grokking deep reinforcement learning[M]. Manning Publications, 2020.
[16] MARIANI L, PEZZÈ M, RIGANELLI O, et al. Automatic testing of GUI-based applications [J]. Software Testing, Verification and Reliability, 2014, 24(5): 341-366.
[17] BAUERSFELD S, VOS T. A reinforcement learning approach to automated gui robustness testing[C]//Fast abstracts of the 4th symposium on search-based software engineering (SSBSE 2012). 2012: 7-12.
[18] KOROGLU Y, SEN A, MUSLU O, et al. QBE: QLearning-based exploration of android ap- plications[C]//2018 IEEE 11th International Conference on Software Testing, Verification and Validation (ICST). IEEE, 2018: 105-115.
[19] VUONG T A T, TAKADA S. A reinforcement learning based approach to automated testing of android applications[C]//Proceedings of the 9th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation. 2018: 31-37.
[20] VUONG T A T, TAKADA S. Semantic Analysis for Deep Q-Network in Android GUI Testing. [C]//SEKE. 2019: 123-170.
[21] PAN M, HUANG A, WANG G, et al. Reinforcement learning based curiosity-driven testing of Android applications[C]//Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis. 2020: 153-164.
[22] ESKONEN J, KAHLES J, REIJONEN J. Automating GUI testing with image-based deep reinforcement learning[C]//2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). IEEE, 2020: 160-167.
[23] MARIANI L, PEZZÈ M, RIGANELLI O, et al. AutoBlackTest: a tool for automatic black-box testing[C]//Proceedings of the 33rd international conference on software engineering. 2011: 1013-1015.
[24] MELO F S, VELOSO M. Learning of coordination: Exploiting sparse interactions in multia- gent systems[C]//Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems-Volume 2. Citeseer, 2009: 773-780.
[25] PHAM H X, LA H M, FEIL-SEIFER D, et al. Cooperative and distributed reinforcement learn- ing of drones for field coverage[A]. 2018.
[26] SHAMSOSHOARA A, KHALEDI M, AFGHAH F, et al. A solution for dynamic spectrum management in mission-critical UAV networks[C]//2019 16th annual IEEE international con- ference on sensing, communication, and networking (SECON). IEEE, 2019: 1-6.
[27] CARINO S, ANDREWS J H. Dynamically testing GUIs using ant colony optimization (T)[C]// 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 2015: 138-148.
[28] ALSHAHWAN N, HARMAN M. Automated web application testing using search based soft- ware engineering[C]//2011 26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011). IEEE, 2011: 3-12.
[29] ESPARCIA-ALCÁZAR A I, ALMENAR F, MARTÍNEZ M, et al. Q-learning strategies for action selection in the TESTAR automated testing tool[J]. 6th International Conferenrence on Metaheuristics and nature inspired computing (META 2016), 2016: 130-137.
[30] LAN Y, LU Y, LI Z, et al. Deeply Reinforcing Android GUI Testing with Deep Reinforce- ment Learning[C]//Proceedings of the 46th IEEE/ACM International Conference on Software Engineering. 2024: 1-13.
[31] BENGIO Y, COURVILLE A, VINCENT P. Representation learning: A review and new per- spectives[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(8): 1798- 1828.
[32] JANG E, GU S, POOLE B. Categorical reparametrization with gumble-softmax[C]// International Conference on Learning Representations (ICLR 2017). OpenReview. net, 2017.
[33] ZHANG K, YANG Z, BAŞAR T. Multi-agent reinforcement learning: A selective overview of theories and algorithms[J]. Handbook of reinforcement learning and control, 2021: 321-384.
[34] SHENG J, WANG L, YANG F, et al. Learning Cooperative Oversubscription for Cloud by Chance-Constrained Multi-Agent Reinforcement Learning[C]//Proceedings of the ACM Web Conference 2023. 2023: 2927-2936.
[35] MYERS G J, BADGETT T, THOMAS T M, et al. The art of software testing: volume 2[M]. Wiley Online Library, 2004.
[36] HUO Q, ZHU H, GREENWOOD S. A multi-agent software engineering environment for test- ing Web-based applications[C]//Proceedings 27th Annual International Computer Software and Applications Conference. COMPAC 2003. IEEE, 2003: 210-215.
[37] BAI X, DAI G, XU D, et al. A multi-agent based framework for collaborative testing on web services[C]//The Fourth IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems, and the Second International Workshop on Collaborative Computing, In- tegration, and Assurance (SEUS-WCCIA’06). IEEE, 2006: 6-pp.
[38] ARTZI S, DOLBY J, JENSEN S H, et al. A framework for automated testing of JavaScript web applications[C]//Proceedings of the 33rd International Conference on Software Engineering. 2011: 571-580.
[39] MAHAJAN S, LI B, BEHNAMGHADER P, et al. Using visual symptoms for debugging presentation failures in web applications[C]//2016 IEEE International Conference on Software Testing, Verification and Validation (ICST). IEEE, 2016: 191-201.
[40] KAELBLING L P, LITTMAN M L, MOORE A W. Reinforcement learning: A survey[J]. Journal of artificial intelligence research, 1996, 4: 237-285.
[41] LEOTTA M, STOCCO A, RICCA F, et al. ROBULA+: An algorithm for generating robust XPath locators for web testing[J]. Journal of Software: Evolution and Process, 2016, 28(3): 177-204.
[42] RATCLIFF J W, METZENER D E. Pattern-matching-the gestalt approach[J]. Dr Dobbs Jour- nal, 1988, 13(7): 46.
[43] PATHAK D, AGRAWAL P, EFROS A A, et al. Curiosity-driven exploration by self-supervised prediction[C]//International conference on machine learning. PMLR, 2017: 2778-2787.
[44] SUTTON R S, BARTO A G. Reinforcement learning: An introduction[M]. MIT press, 2018.
[45] Monkey[EB/OL]. 2018. https://developer.android.com/.
[46] EVEN-DAR E, MANSOUR Y, BARTLETT P. Learning Rates for Q-learning.[J]. Journal of machine learning Research, 2003, 5(1).
[47] SELENIUMHQ. selenium: A browser automation framework and ecosystem.[EB/OL]. https: //github.com/SeleniumHQ/selenium/.
[48] W3C Working Draft: UI Events.[EB/OL]. https://www.w3.org/TR/uievents/.
[49] BIAGIOLA M, STOCCO A, RICCA F, et al. Diversity-based web test generation[C]// Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Con- ference and Symposium on the Foundations of Software Engineering. 2019: 142-153.
[50] NACHAR N, et al. The Mann-Whitney U: A test for assessing whether two independent samples come from the same distribution[J]. Tutorials in quantitative Methods for Psychology, 2008, 4 (1): 13-20.
[51] SHAPLEY L S. Stochastic games[J]. Proceedings of the national academy of sciences, 1953, 39(10): 1095-1100.
[52] HASSELT H. Double Q-learning[J]. Advances in neural information processing systems, 2010, 23.
[53] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning [A]. 2013.
[54] MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning [C]//International conference on machine learning. PMLR, 2016: 1928-1937.
修改评论