[RÖNTGEN W C. On a new kind of rays[J]. Science, 1896, 3(59): 227-231.
[2] GOLDMAN L W. Principles of CT and CT technology[J]. Journal of Nuclear Medicine Technology, 2007, 35(3): 115-128.
[3] PLEWES D B, KUCHARCZYK W. Physics of MRI: a primer[J]. Journal of Magnetic Resonance Imaging, 2012, 35(5): 1038-1054.
[4] HESS S, BLOMBERG B A, ZHU H J, et al. The pivotal role of FDG-PET/CT in modernmedicine[J]. Academic Radiology, 2014, 21(2): 232-249.
[5] MCAULIFFE M J, LALONDE F M, MCGARRY D, et al. Medical image processing, analysis and visualization in clinical research[C]//Proceedings 14th IEEE Symposium on ComputerBased Medical Systems. CBMS 2001. IEEE, 2001: 381-386.
[6] KIDWELL C S, CHALELA J A, SAVER J L, et al. Comparison of MRI and CT for detectionof acute intracerebral hemorrhage[J]. Jama, 2004, 292(15): 1823-1830.
[7] SCHUSTER D M. Clinical utility of PET scanning in breast cancer management[J]. Am. J.Hematol. Oncol, 2015, 11: 20-25.
[8] ZHOU S K, GREENSPAN H, DAVATZIKOS C, et al. A review of deep learning in medicalimaging: Imaging traits, technology trends, case studies with progress highlights, and futurepromises[J]. Proceedings of the IEEE, 2021, 109(5): 820-838.
[9] LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical imageanalysis[J]. Medical Image Analysis, 2017, 42: 60-88.
[10] RANJBARZADEH R, CAPUTO A, TIRKOLAEE E B, et al. Brain tumor segmentation of MRIimages: A comprehensive review on the application of artificial intelligence tools[J]. Computersin Biology and Medicine, 2023, 152: 106405.
[11] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer, 2015: 234-241.
[12] JIANG H, DIAO Z, SHI T, et al. A review of deep learning-based multiple-lesion recognitionfrom medical images: classification, detection and segmentation[J]. Computers in Biology andMedicine, 2023: 106726.
[13] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[14] BEAUDOIN N, BEAUCHEMIN S S. An accurate discrete Fourier transform for image processing[C]//2002 International Conference on Pattern Recognition: volume 3. IEEE, 2002:935-939.53参考文献
[15] POPA C A, CERNĂZANU-GLĂVAN C. Fourier transform-based image classification usingcomplex-valued convolutional neural networks[C]//Advances in Neural Networks–ISNN 2018:15th International Symposium on Neural Networks, ISNN 2018, Minsk, Belarus, June 25–28,2018, Proceedings 15. Springer, 2018: 300-309.
[16] HAN Y, HONG B W. Deep learning based on fourier convolutional neural network incorporating random kernels[J]. Electronics, 2021, 10(16): 2004.
[17] QIAO C, LI D, LIU Y, et al. Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes[J]. Nature Biotechnology, 2023, 41(3): 367-377.
[18] CASTLEMAN K R. Digital image processing[M]. Prentice Hall Press, 1996.
[19] PHAM D L, XU C, PRINCE J L. Current methods in medical image segmentation[J]. AnnualReview of Biomedical Engineering, 2000, 2(1): 315-337.
[20] CANNY J. A computational approach to edge detection[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 1986(6): 679-698.
[21] ZITOVA B, FLUSSER J. Image registration methods: a survey[J]. Image and Vision Computing, 2003, 21(11): 977-1000.
[22] JAIN A K, DUBES R C. Algorithms for clustering data[M]. Prentice-Hall, Inc., 1988.
[23] CHEN X, WANG X, ZHANG K, et al. Recent advances and clinical applications of deeplearning in medical image analysis[J]. Medical Image Analysis, 2022, 79: 102444.
[24] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015: 3431-3440.
[25] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedingsof the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[26] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7132-7141.
[27] WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]//Proceedingsof the European conference on computer vision (ECCV). 2018: 3-19.
[28] ATIYA S U, RAMESH N. Deep Lab v3+: A novel deep learning model for accurate andefficient GTV segmentation and classification in NSCLC imaging[J]. International Journal ofIntelligent Systems and Applications in Engineering, 2024, 12(1s): 393-410.
[29] XIAO H, LI L, LIU Q, et al. Transformers in medical image segmentation: A review[J].Biomedical Signal Processing and Control, 2023, 84: 104791.
[30] GÜVEN S A, TALU M F. Brain MRI high resolution image creation and segmentation withthe new GAN method[J]. Biomedical Signal Processing and Control, 2023, 80: 104246.
[31] KAZEROONI A F, KHALILI N, LIU X, et al. The brain tumor segmentation (BRATS) challenge 2023: Focus on pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)[A]. 2023.
[32] BILIC P, CHRIST P, LI H B, et al. The liver tumor segmentation benchmark (lits)[J]. MedicalImage Analysis, 2023, 84: 102680.54参考文献
[33] SHIN H, KIM H, KIM S, et al. SDC-UDA: volumetric unsupervised domain adaptationframework for slice-direction continuous cross-modality medical image segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023:7412-7421.
[34] SHARMA N, GUPTA S, KOUNDAL D, et al. U-Net model with transfer learning model as abackbone for segmentation of gastrointestinal tract[J]. Bioengineering, 2023, 10(1): 119.
[35] GAO S, ZHOU H, GAO Y, et al. BayeSeg: Bayesian modeling for medical image segmentationwith interpretable generalizability[J]. Medical Image Analysis, 2023, 89: 102889.
[36] GOMES T, MATIAS D, CAMPOS A, et al. A survey on ground segmentation methods forautomotive LiDAR sensors[J]. Sensors, 2023, 23(2): 601.
[37] AGARWAL M, GUPTA S K, BISWAS K. Development of a compressed FCN architecture forsemantic segmentation using particle swarm optimization[J]. Neural Computing and Applications, 2023, 35(16): 11833-11846.
[38] ZHANG J, CUI Z, SHI Z, et al. A robust and efficient AI assistant for breast tumor segmentationfrom DCE-MRI via a spatial-temporal framework[J]. Patterns, 2023, 4(9).
[39] BRIGHAM E O. The fast Fourier transform and its applications[M]. Prentice-Hall, Inc., 1988.
[40] KNOLL F, HAMMERNIK K, ZHANG C, et al. Deep-learning methods for parallel magneticresonance imaging reconstruction: A survey of the current approaches, trends, and issues[J].IEEE Signal Processing Magazine, 2020, 37(1): 128-140.
[41] QIAO C, LI D, GUO Y, et al. Evaluation and development of deep neural networks for imagesuper-resolution in optical microscopy[J]. Nature Methods, 2021, 18(2): 194-202.
[42] XU K, QIN M, SUN F, et al. Learning in the frequency domain[C]//Proceedings of theIEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1740-1749.
[43] GHOSH A, CHELLAPPA R. Deep feature extraction in the DCT domain[C]//2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016: 3536-3541.
[44] QIN Z, ZHANG P, WU F, et al. Fcanet: Frequency channel attention networks[C]//Proceedingsof the IEEE/CVF International Conference on Computer Vision. 2021: 783-792.
[45] HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecturein the cat’s visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106.
[46] FUKUSHIMA K. Neocognitron: A self-organizing neural network model for a mechanismof pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36(4):193-202.
[47] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[48] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by backpropagating errors[J]. Nature, 1986, 323(6088): 533-536.
[49] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J].Neural Computation, 2006, 18(7): 1527-1554.
[50] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25.55参考文献
[51] BASHA S S, DUBEY S R, PULABAIGARI V, et al. Impact of fully connected layers onperformance of convolutional neural networks for image classification[J]. Neurocomputing,2020, 378: 112-119.
[52] HE J, LI L, XU J, et al. ReLU deep neural networks and linear finite elements[A]. 2018.
[53] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale imagerecognition[A]. 2014: 1409.1556.
[54] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of theIEEE Conference on Computer Vision and Pattern Recognition. 2015: 1-9.
[55] 李玉慧, 梁创学, 李军. 基于 Group-Depth U-Net 的电子显微图像中神经元结构分割[J]. 中国医学物理学杂志, 2020, 37(6): 6.
[56] TRAN S T, CHENG C H, LIU D G. A multiple layer U-Net, U n-Net, for liver and liver tumorsegmentation in CT[J]. IEEE Access, 2020, 9: 3752-3764.
[57] HWANG H, REHMAN H Z U, LEE S. 3D U-Net for skull stripping in brain MRI[J]. AppliedSciences, 2019, 9(3): 569.
[58] PARK D, KIM K, YOUNG CHUN S. Efficient module based single image super resolution formultiple problems[C]//Proceedings of the IEEE Conference on Computer Vision and PatternRecognition Workshops. 2018: 882-890.
[59] XU C, LU C, LIANG X, et al. Multi-loss regularized deep neural network[J]. IEEE Transactionson Circuits and Systems for Video Technology, 2015, 26(12): 2273-2283.
[60] RUBY U, YENDAPALLI V. Binary cross entropy with deep learning technique for imageclassification[J]. Int. J. Adv. Trends Comput. Sci. Eng, 2020, 9(10): 2278-3091.
[61] ZHAO R, QIAN B, ZHANG X, et al. Rethinking dice loss for medical image segmentation[C]//2020 IEEE International Conference on Data Mining (ICDM). IEEE, 2020: 851-860.
[62] KURMI Y, CHAURASIA V, KAPOOR N. Design of a histopathology image segmentationalgorithm for CAD of cancer[J]. Optik, 2020, 218: 164636.
[63] FAN X, ZHU Q, TU P, et al. A review of advances in image-guided orthopedic surgery[J].Physics in Medicine & Biology, 2023, 68(2): 02TR01.
[64] SZTILKOVICS M, GERECSEI T, PETER B, et al. Single-cell adhesion force kinetics of cellpopulations from combined label-free optical biosensor and robotic fluidic force microscopy[J]. Scientific Reports, 2020, 10(1): 61.
[65] LIN S, SCHORPP K, ROTHENAIGNER I, et al. Image-based high-content screening in drugdiscovery[J]. Drug Discovery Today, 2020, 25(8): 1348-1361.
[66] GREENWALD N F, MILLER G, MOEN E, et al. Whole-cell segmentation of tissue imageswith human-level performance using large-scale data annotation and deep learning[J]. NatureBiotechnology, 2022, 40(4): 555-565.
[67] GÓMEZ-DE MARISCAL E, GARCÍA-LÓPEZ-DE HARO C, OUYANG W, et al. DeepImageJ: A user-friendly environment to run deep learning models in ImageJ[J]. Nature Methods,2021, 18(10): 1192-1195.
[68] CAICEDO J C, GOODMAN A, KARHOHS K W, et al. Nucleus segmentation across imagingexperiments: the 2018 Data Science Bowl[J]. Nature Methods, 2019, 16(12): 1247-1253.56参考文献
[69] SIRINUKUNWATTANA K, PLUIM J P, CHEN H, et al. Gland segmentation in colon histologyimages: The glas challenge contest[J]. Medical Image Analysis, 2017, 35: 489-502.
[70] KUMAR N, VERMA R, ANAND D, et al. A multi-organ nucleus segmentation challenge[J].IEEE Transactions on Medical Imaging, 2019, 39(5): 1380-1391.
[71] ABADI M, BARHAM P, CHEN J, et al. {TensorFlow}: a system for {Large-Scale} machine learning[C]//12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 2016: 265-283.
[72] KETKAR N, KETKAR N. Introduction to keras[J]. Deep Learning with Python: a Hands-onIntroduction, 2017: 97-111.
[73] KINGMA D P, BA J. Adam: A method for stochastic optimization[A]. 2014.
[74] ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. Unet++: Redesigning skip connectionsto exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging,2019, 39(6): 1856-1867.
[75] JHA D, SMEDSRUD P H, RIEGLER M A, et al. Resunet++: An advanced architecture formedical image segmentation[C]//2019 IEEE International Symposium on Multimedia (ISM).IEEE, 2019: 225-2255.
[76] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 801-818.
[77] JHA D, RIEGLER M A, JOHANSEN D, et al. Doubleu-net: A deep convolutional neuralnetwork for medical image segmentation[C]//2020 IEEE 33rd International Symposium onComputer-based Medical Systems (CBMS). IEEE, 2020: 558-564.
[78] JHA D, ALI S, TOMAR N K, et al. Real-time polyp detection, localization and segmentationin colonoscopy using deep learning[J]. IEEE Access, 2021, 9: 40496-40510.
[79] SRIVASTAVA A, JHA D, CHANDA S, et al. MSRF-Net: a multi-scale residual fusion networkfor biomedical image segmentation[J]. IEEE Journal of Biomedical and Health Informatics,2021, 26(5): 2252-2263.
[80] VALANARASU J M J, OZA P, HACIHALILOGLU I, et al. Medical transformer: Gated axialattention for medical image segmentation[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24. Springer, 2021: 36-46.
[81] XIAO X, LIAN S, LUO Z, et al. Weighted res-unet for high-quality retina vessel segmentation[C]//2018 9th International Conference on Information Technology in Medicine and Education(ITME). IEEE, 2018: 327-331
修改评论