[1] 李建林, 靳文涛, 惠东, et al. 大规模储能在可再生能源发电中典型应用及技术走向 [J]. 电器与能效管理技术, 2016, (14): 9-14+61.
[2] MU T, LU H, REN Y, et al. Interface defect chemistry enables dendrite-free lithium metal anodes [J]. Chemical Engineering Journal, 2022, 437: 135109.
[3] LIU H, SUN X, CHENG X-B, et al. Working Principles of Lithium Metal Anode in Pouch Cells [J]. Advanced Energy Materials, 2022, 12(47): 2202518.
[4] XIA Q, ZAN F, ZHANG Q, et al. All-Solid-State Thin Film Lithium/Lithium-Ion Microbatteries for Powering the Internet of Things [J]. Advanced Materials, 2023, 35(2): 2200538.
[5] BATES J B, DUDNEY N J, GRUZALSKI G R, et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries [J]. Journal of Power Sources, 1993, 43(1): 103-110.
[6] LIANG C C, EPSTEIN J, BOYLE G H. A High‐Voltage, Solid‐State Battery System: II . Fabrication of Thin‐Film Cells [J]. Journal of The Electrochemical Society, 1969, 116(10): 1452.
[7] GOODENOUGH J B, MIZUSHIMA K, TAKEDA T. Solid -Solution Oxides for Storage -Battery Electrodes [J]. Japanese Journal of Applied Physics, 1980, 19(S3): 305.
[8] LI M, LU J, CHEN Z, et al. 30 Years of Lithium -Ion Batteries [J]. Advanced Materials, 2018, 30(33): 1800561.
[9] WANG B, BATES J B, HART F X, et al. Characterization of Thin‐Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes [J]. Journal of The Electrochemical Society, 1996, 143(10): 3203.
[10] BATES J B, LUBBEN D. Thin-film Li-LiMn2O4 batteries [J]. IEEE Aerospace & Electronic Systems Magazine, 1995, 10(4): 30 -32.
[11] KOBAYASHI S, NISHIO K, WILDE M, et al. Protons Inside the LiCoO2 Electrode Largely Increase Electrolyte –Electrode Interface Resistance in All-Solid-State Li Batteries [J]. The Journal of Physical Chemistry C, 2023, 127(9): 4684 -4688.
[12] LV C, YANG X, UMAR A, et al. Architecture -controlled synthesis of MxOy (M = Ni, Fe, Cu) microfibres from seaweed biomass for high -performance lithium ion battery anodes [J]. Journal of Materials Chemistry A, 2015, 3(45): 22708 -22715.
[13] WANG J, ZHANG Q, LI X, et al. Smart construction of three -dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage [J]. Nano Energy, 2015, 12: 437 -446.
[14] BHASIN V, HALANKAR K K, BISWAS A, et al. Improvement of high current performance of Li ion batteries with TiO2 thin film anodes by transition metal doping [J]. Journal of Alloys and Compounds, 2023, 942: 169118.
[15] ZHONG W, HUANG J, LIANG S, et al. New Prelithiated V 2O5Superstructure for Lithium-Ion Batteries with Long Cycle Life and High Power [J]. ACS Energy Letters, 2020, 5(1): 31 -38.
[16] XIAO C-F, KIM J H, CHO S-H, et al. Ensemble Design of Electrode –Electrolyte Interfaces: Toward High -Performance Thin-Film All-Solid-State Li–Metal Batteries [J]. ACS Nano, 2021, 15(3): 4561 -4575.
[17] ZU G, YANG Y, LI H, et al. The compactness of 2H-MoS2 thin films determines their performance on lithium storage ability [J]. Materials Characterization, 2023, 196: 112570.
[18] YANG Y, YU D, WANG H, et al. Smart Electrochemical Energy Storage Devices with Self-Protection and Self-Adaptation Abilities [J]. Advanced Materials, 2017, 29(45): 1703040.
[19] ZHANG X-Q, CHEN X, HOU L-P, et al. Regulating Anions in the Solvation Sheath of Lithium Ions for Stable Lithium Metal Batteries [J]. ACS Energy Letters, 2019, 4(2): 411 -416.
[20] ZHANG Z, WU L, ZHOU D, et al. Flexible Sulfide Electrolyte Thin Membrane with Ultrahigh Ionic Conductivity for All -Solid-State Lithium Batteries [J]. Nano Letters, 2021, 21(12): 5233 -5239.
[21] YUAN S, DING K, ZENG X, et al. Advanced Nonflammable Organic Electrolyte Promises Safer Li-Metal Batteries: From Solvation Structure Perspectives [J]. Advanced Materials, 2023, 35(13): 2206228.
[22] GUAN L, SHI Y, GAO C, et al. Interfacial contact loss and bending effects on electrochemical-mechanical modeling for all-solid-state Li-ion batteries [J]. Electrochimica Acta, 2023, 440: 141669.
[23] LU Y, LI L, ZHANG Q, et al. Electrolyte and Interface Engineering for Solid-State Sodium Batteries [J]. Joule, 2018, 2(9): 1747 -1770.
[24] XIE J, QIAO S, WANG Y, et al. Three -in-one fire-retardant poly(phosphate)-based fast ion-conductor for all-solid-state lithium batteries [J]. Journal of Energy Chemistry, 2023, 80: 324 -334.
[25] ZHAO S, JIANG W, ZHU X, et al. Understanding the synthesis of inorganic solid-state electrolytes for Li ion batteries: Features and progress [J]. Sustainable Materials and Technologies, 2022, 33: e00491.
[26] YU T, YANG X, YANG R, et al. Progress and perspectives on typical inorganic solid-state electrolytes [J]. Journal of Alloys and Compounds, 2021, 885: 161013.
[27] 王继扬, 于浩海, 吴以成, et al. 中国功能晶体研究进展 [J].Engineering, 2015, 1(02): 67 -102.
[28] SHEN X, ZHANG Q, NING T, et al. Critical challenges and progress of solid garnet electrolytes for all-solid-state batteries [J]. Materials Today Chemistry, 2020, 18: 100368.
[29] KASPER H M. Series of rare earth garnets Ln 3 +3M2Li +3O1 2 (M=Te, W) [J]. Inorganic Chemistry, 1969, 8(4): 1000 -1002.
[30] MAZZA D. Remarks on a ternary phase in the La 2O3 Me 2O5Li 2O system (Me=Nb, Ta) [J]. Materials Letters, 1988, 7(5): 205 -207.
[31] MURUGAN R, THANGADURAI V, WEPPNER W. Fast Lithium Ion Conduction in Garnet‐Type Li 7La 3Zr 2O1 2 [J]. Angewandte Chemie International Edition, 2007, 46(41): 7778 -7781.
[32] AWAKA J, KIJIMA N, HAYAKAWA H, et al. Synthesis and structure analysis of tetragonal Li 7La 3Zr 2O1 2 with the garnet-related type structure [J]. Journal of Solid State Chemistry, 2009, 182(8): 2046 -2052.
[33] GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal Chemistry and Stability of “Li 7La 3Zr 2O1 2” Garnet: A Fast Lithium-Ion Conductor [J]. Inorganic Chemistry, 2011, 50(3): 1089 -1097.
[34] DHIVYA L, MURUGAN R. Effect of Simultaneous Substitution of Y and Ta on the Stabilization of Cubic Phase, Microstructure, and Li +Conductivity of Li 7La 3Zr 2O1 2 Lithium Garnet [J]. ACS Applied Materials & Interfaces, 2014, 6(20): 17606 -17615.
[35] BUANNIC L, ORAYECH B, LóPEZ DEL AMO J-M, et al. Dual Substitution Strategy to Enhance Li +Ionic Conductivity in Li 7La 3Zr 2O1 2 Solid Electrolyte [J]. Chemistry of Materials, 2017, 29(4): 1769-1778.
[36] LU Y, MENG X, ALONSO J A, et al. Effects of Fluorine Doping on Structural and Electrochemical Properties of Li 6.25Ga 0.25La 3Zr 2O1 2as Electrolytes for Solid-State Lithium Batteries [J]. ACS Applied Materials & Interfaces, 2019, 11(2): 2042 -2049.
[37] LIU Q, GENG Z, HAN C, et al. Challenges and perspectives of garnet solid electrolytes for all solid -state lithium batteries [J]. Journal of Power Sources, 2018, 389: 120 -134.
[38] KIM S, HIRAYAMA M, TAMINATO S, et al. Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte [J]. Dalton Transactions, 2013, 42(36): 13112 -13117.
[39] KAZYAK E, CHEN K-H, WOOD K N, et al. Atomic Layer Deposition of the Solid Electrolyte Garnet Li 7La 3Zr 2O1 2 [J]. Chemistry of Materials, 2017, 29(8): 3785 -3792.
[40] SASTRE J, LIN T-Y, FILIPPIN A N, et al. Aluminum-Assisted Densification of Cosputtered Lithium Garnet Electrolyte Films for Solid-State Batteries [J]. ACS Applied Energy Materials, 2019, 2(12): 8511-8524.
[41] YAN Z, SONG Y, WU S, et al. Improving the Ionic Conductivity of the LLZO–LZO Thin Film through Indium Doping [J]. Crystals, 2021, 11(4): 426.
[42] SINGH J P, PAIDI A K, LEE S. Growth strategies of Li 7La 3Zr 2O1 2electrolytes for Li-ion thin film battery [J]. Chemical Engineering Journal Advances, 2023, 16: 100532.
[43] ZHU Y, CHON M, THOMPSON C V, et al. Time -Temperature Transformation (TTT) Diagram of Battery -Grade Li-Garnet Electrolytes for Low-Temperature Sustainable Synthesis [J]. Angewandte Chemie International Edition, 2023, 62(45): e202304581.
[44] WU Y, WANG K, LIU K, et al. Rapid Processing of Uniform, Thin, Robust, and Large -Area Garnet Solid Electrolyte by Atmospheric Plasma Spraying [J]. Advanced Energy Materials, 2023, 13(30): 2300809.
[45] KIREEVA N, TSIVADZE A Y, PERVOV V S. Predicting Ionic Conductivity in Thin Films of Garnet Electrolytes Using Machine Learning [J]. Batteries, 2023, 9(9): 430.
[46] BUSCHMANN H, BERENDTS S, MOGWITZ B, et al. Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li 7La 3Zr 2O1 2 ” and Li 7−xLa 3Zr 2−xTa xO1 2 with garnet-type structure [J]. Journal of Power Sources, 2012, 206: 236 -244.
[47] LI Y, WANG Z, LI C, et al. Densification and ionic -conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering [J]. Journal of Power Sources, 2014, 248: 642 -646.
[48] REN Y, SHEN Y, LIN Y, et al. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte [J]. Electrochemistry Communications, 2015, 57: 27 -30.
[49] XIANG W, MA R, LIU X, et al. Rapid Li compensation toward highly conductive solid state electrolyte film [J]. Nano Energy, 2023, 116: 108816.
[50] WANG Y, ZHANG H, ZHU J, et al. Antiperovskites with Exceptional Functionalities [J]. Advanced Materials, 2020, 32(7): 1905007.
[51] GOLDSCHMIDT V M. Die Gesetze der Krystallochemie [J]. Naturwissenschaften, 1926, 14(21): 477 -485.
[52] PEñA M A, FIERRO J L G. Chemical Structures and Performance of Perovskite Oxides [J]. Chemical Reviews, 2001, 101(7): 1981 -2018.
[53] BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides [J]. Science Advances, 2019, 5(2): eaav0693.
[54] DENG Z, NI D, CHEN D, et al. Anti-perovskite materials for energy storage batteries [J]. InfoMat, 2022, 4(2): e12252.
[55] WOLF G H, BUKOWINSKI M S T. Theoretical Study of the Structural Properties and Equations of State of MgSiO3 and CaSiO3Perovskites: Implications for Lower Mantle Composition [M]. High‐Pressure Research in Mineral Physics: A Volume in Honor of Syun‐iti Akimoto. 1987: 313-331.
[56] O'KEEFFE M, HYDE B G. Some structures topologically related to cubic perovskite (E21 ), ReO3 (D09) and Cu3Au (L12) [J]. Acta Crystallographica Section B, 1977, 33(12): 3802 -3813.
[57] XIA W, ZHAO Y, ZHAO F, et al. Antiperovskite Electrolytes for Solid-State Batteries [J]. Chemical Reviews, 2022, 122(3): 3763 -3819.
[58] DENG Z, OU M, WAN J, et al. Local Structural Changes and Inductive Effects on Ion Conduction in Antiperovskite Solid Electrolytes [J]. Chemistry of Materials, 2020, 32(20): 8827 -8835.
[59] SONG A-Y, XIAO Y, TURCHENIUK K, et al. Protons Enhance Conductivities in Lithium Halide Hydroxide/Lithium Oxyhalide Solid Electrolytes by Forming Rotating Hydroxy Groups [J]. Advanced Energy Materials, 2018, 8(3): 1700971.
[60] ZHU J, LI S, ZHANG Y, et al. Enhanced ionic conductivity with Li 7O2Br 3 phase in Li 3OBr anti-perovskite solid electrolyte [J]. Applied Physics Letters, 2016, 109(10).
[61] FANG H, JENA P. Li-rich antiperovskite superionic conductors based on cluster ions [J]. Proceedings of the National Academy of Sciences, 2017, 114(42): 11046 -11051.
[62] SHI S, LU P, LIU Z, et al. Direct Calculation of Li -Ion Transport in the Solid Electrolyte Interphase [J]. Journal of the American Chemical Society, 2012, 134(37): 15476 -15487.
[63] ZHAO Y, DAEMEN L L. Superionic Conductivity in Lithium -Rich Anti-Perovskites [J]. Journal of the American Chemical Society, 2012, 134(36): 15042-15047.
[64] EMLY A, KIOUPAKIS E, VAN DER VEN A. Phase Stability and Transport Mechanisms in Antiperovskite Li 3OCl and Li 3OBr Superionic Conductors [J]. Chemistry of Materials, 2013, 25(23): 4663-4670.
[65] KOEDTRUAD A, PATINO M A, ICHIKAWA N, et al. Crystal structures and ionic conductivity in Li 2OHX (X = Cl, Br) antiperovskites [J]. Journal of Solid State Chemistry, 2020, 286: 121263.
[66] GUAN C, YANG Y, OUYANG R, et al. Enhanced ionic conductivity of protonated antiperovskites via tuning lattice and rotational dynamics [J]. Journal of Materials Chemistry A, 2023, 11(12): 6157 -6167.
[67] Lü X, WU G, HOWARD J W, et al. Li-rich anti-perovskite Li 3OCl films with enhanced ionic conductivity [J]. Chemical Communications, 2014, 50(78): 11520 -11522.
[68] Lü X, HOWARD J W, CHEN A, et al. Antiperovskite Li 3OCl Superionic Conductor Films for Solid -State Li-Ion Batteries [J]. Advanced Science, 2016, 3(3): 1500359.
[69] TURRELL S J, LEE H J, SINISCALCHI M, et al. Fabrication of thin solid electrolytes containing a small volume of an Li 3OCl-type antiperovskite phase by RF magnetron sputtering [J]. Materials Advances, 2022, 3(24): 8995 -9008.
[70] TAO B, REN C, LI H, et al. Thio -/LISICON and LGPS-Type Solid Electrolytes for All-Solid-State Lithium-Ion Batteries [J]. Advanced Functional Materials, 2022, 32(34): 2203551.
[71] KUWANO J, WEST A R. New Li +ion conductors in the system, Li 4GeO4 -Li 3VO4 [J]. Materials Research Bulletin, 1980, 15(11): 1661-1667.
[72] OKUMURA T, TAKEUCHI T, KOBAYASHI H. All-Solid-State Batteries with LiCoO2-Type Electrodes: Realization of an Impurity -Free Interface by Utilizing a Cosinterable Li 3.5Ge 0.5V0.5O4Electrolyte [J]. ACS Applied Energy Materials, 2021, 4(1): 30 -34.
[73] BAI Y, ZHAO Y, LI W, et al. New Insight for Solid Sulfide Electrolytes LSiPSI by Using Si/P/S as the Raw Materials and I Doping [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12930-12937.
[74] LIANG J, CHEN N, LI X, et al. Li 1 0Ge(P1– xSbx) 2S1 2 Lithium-Ion Conductors with Enhanced Atmospheric Stability [J]. Chemistry of Materials, 2020, 32(6): 2664 -2672.
[75] OHTA N, TAKADA K, OSADA M, et al. Solid electrolyte, thio -LISICON, thin film prepared by pulsed laser deposition [J]. Journal of Power Sources, 2005, 146(1): 707 -710.
[76] WANG Y, LIU Z, ZHU X, et al. Highly lithium -ion conductive thio-LISICON thin film processed by low-temperature solution method [J]. Journal of Power Sources, 2013, 224: 225 -229.
[77] GILARDI E, MATERZANINI G, KAHLE L, et al. Li 4 –xGe 1 –xPxO4, a Potential Solid-State Electrolyte for All-Oxide Microbatteries [J]. ACS Applied Energy Materials, 2020, 3(10): 9910 -9917.
[78] FONSECA J, LU J. Single -Atom Catalysts Designed and Prepared by the Atomic Layer Deposition Technique [J]. ACS Catalysis, 2021, 11(12): 7018-7059.
[79] 田民波. 薄膜技术与薄膜材料 [M]. 薄膜技术与薄膜材料, 2006.
[80] 邓钟炀, 贾强, 冯斌, et al. 脉冲激光沉积高性能薄膜制备及其应用研究进展 [J]. 中国激光, 2021, 48(08): 108-125.
[81] MIAO X, GUAN S, MA C, et al. Role of Interfaces in Solid -State Batteries [J]. Advanced Materials, 2023, 35(50): 2206402.
[82] HUO S, SHENG L, XUE W, et al. Challenges of Stable Ion Pathways in Cathode Electrode for All-Solid-State Lithium Batteries: A Review [J]. Advanced Energy Materials, 2023, 13(15): 2204343.
[83] GU Z, MA J, ZHU F, et al. Atomic -scale study clarifying the role of space-charge layers in a Li-ion-conducting solid electrolyte [J]. Nature Communications, 2023, 14(1): 1632.
[84] MA T, NI Y, WANG Q, et al. Lithium dendrites inhibition by regulating electrodeposition kinetics [J]. Energy Storage Materials, 2022, 52: 69-75.
[85] CHENG Q, JIN T, MIAO Y, et al. Stabilizing lithium plating in polymer electrolytes by concentration -polarization-induced phase transformation [J]. Joule, 2022, 6(10): 2372 -2389.
[86] MCCONOHY G, XU X, CUI T, et al. Mechanical regulation of lithium intrusion probability in garnet solid electrolytes [J]. Nature Energy, 2023, 8(3): 241-250.
[87] FANG C, LU B, PAWAR G, et al. Pressure -tailored lithium deposition and dissolution in lithium metal batteries [J]. Nature Energy, 2021, 6(10): 987-994.
[88] NING Z, LI G, MELVIN D L R, et al. Dendrite initiation and propagation in lithium metal solid -state batteries [J]. Nature, 2023, 618(7964): 287-293.
[89] EJEIAN M, WANG R Z. Adsorption -based atmospheric water harvesting [J]. Joule, 2021, 5(7): 1678 -1703.
[90] BISWAL P, RODRIGUES J, KLUDZE A, et al. A reaction -dissolution strategy for designing solid electrolyte interphases with stable energetics for lithium metal anodes [J]. Cell Reports Physical Science, 2022, 3(7): 100948.
[91] SANTOS C S, BOTZ A, BANDARENKA A S, et al. Correlative Electrochemical Microscopy for the Elucidation of the Local Ionic and Electronic Properties of the Solid Electrolyte Interphase in Li -Ion Batteries [J]. Angewandte Chemie International Edition, 20 22, 61(26): e202202744.
[92] YU Z, CUI Y, BAO Z. Design Principles of Artificial Solid Electrolyte Interphases for Lithium-Metal Anodes [J]. Cell Reports Physical Science, 2020, 1(7): 100119.
[93] 王晗 安, 单红梅, 赵雷, 王家钧. 全固态电池界面的研究进展 [J]. 物理化学学报, 2021, 37(11): 2007070-.
[94] ZHANG D, LIU Z, WU Y, et al. In Situ Construction a Stable Protective Layer in Polymer Electrolyte for Ultralong Lifespan Solid-State Lithium Metal Batteries [J]. Advanced Science, 2022, 9(12): 2104277.
[95] SHI J, MA Z, HAN K, et al. Coupling novel Li 7TaO6 surface buffering with bulk Ta -doping to achieve long-life sulfide -based all-solid-state lithium batteries [J]. Journal of Materials Chemistry A, 2022, 10(40): 21336-21348.
[96] FU C, ZHANG X, CUI C, et al. Molecular bridges stabilize lithium metal anode and solid-state electrolyte interface [J]. Chemical Engineering Journal, 2022, 432: 134271.
[97] YANG X, TANG S, ZHENG C, et al. From Contaminated to Highly Lithiated Interfaces: A Versatile Modification Strategy for Garnet Solid Electrolytes [J]. Advanced Functional Materials, 2023, 33(3): 2209120.
[98] HE X, JI X, ZHANG B, et al. Tuning Interface Lithiophobicity for Lithium Metal Solid-State Batteries [J]. ACS Energy Letters, 2022, 7(1): 131-139.
[99] HONG B, GAO L, DI L, et al. Inducing spherical Li deposition via an indium layer at the interface between solid electrolyte and Li metal [J]. Cell Reports Physical Science, 2023, 4(12): 101729.
[100] YANG M, BI R, WANG J, et al. Decoding lithium batteries through advanced in situ characterization techniques [J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(5): 965 -989.
[101] WAN J, YAN H-J, WEN R, et al. In Situ Visualization of Electrochemical Processes in Solid -State Lithium Batteries [J]. ACS Energy Letters, 2022, 7(9): 2988 -3002.
[102] WAN J, SONG Y-X, CHEN W-P, et al. Micromechanism in All-Solid State Alloy-Metal Batteries: Regulating Homogeneous Lithium Precipitation and Flexible Solid Electrolyte Interphase Evolution [J]. Journal of the American Chemical Society, 2021, 143(2): 8 39-848.
[103] WANG C, LIN R, HE Y, et al. Tension -Induced Cavitation in Li Metal Stripping [J]. Advanced Materials, 2023, 35(7): 2209091.
[104] XU Y, JIA H, GAO P, et al. Direct in situ measurements of electrical properties of solid–electrolyte interphase on lithium metal anodes [J]. Nature Energy, 2023, 8(12): 1345 -1354.
[105] MADSEN K E, BASSETT K L, TA K, et al. Direct Observation of Interfacial Mechanical Failure in Thiophosphate Solid Electrolytes with Operando X-Ray Tomography [J]. Advanced Materials Interfaces, 2020, 7(19): 2000751.
[106] LIU X, YIN L, REN D, et al. In situ observation of thermal -driven degradation and safety concerns of lithiated graphite anode [J]. Nature Communications, 2021, 12(1): 4235.
[107] HOGREFE C, WALDMANN T, HöLZLE M, et al. Direct observation of internal short circuits by lithium dendrites in cross-sectional lithium-ion in situ full cells [J]. Journal of Power Sources, 2023, 556: 232391.
[108] LIU X, LIANG Z, XIANG Y, et al. Solid -State NMR and MRI Spectroscopy for Li/Na Batteries: Materials, Interface, and In Situ Characterization [J]. Advanced Materials, 2021, 33(50): 2005878.
[109] HOWARD W, ROBERT D, JOSEPH D, et al. In Situ Neutron Techniques for Studying Lithium Ion Batteries [Z]. Americal Chemical Society, Washington , DC. 2012
[110] RIZELL J, ZUBAYER A, SADD M, et al. Neutron Reflectometry Study of Solid Electrolyte Interphase Formation in Highly Concentrated Electrolytes [J]. Small Structures, 2023, 4(11): 2300119.
[111] WANG C, WANG R, HUANG Z, et al. Unveiling the migration behavior of lithium ions in NCM/Graphite full cell via in operando neutron diffraction [J]. Energy Storage Materials, 2022, 44: 1 -9.
[112] PREHAL C, VON MENTLEN J-M, DRVARIČ TALIAN S, et al. On the nanoscale structural evolution of solid discharge products in lithium-sulfur batteries using operando scattering [J]. Nature Communications, 2022, 13(1): 6326.
[113] ABITONZE M, YU X, DIKO C S, et al. Applications of In Situ Neutron-Based Techniques in Solid-State Lithium Batteries [J]. Batteries, 2022, 8(12): 255.
[114] LV S, VERHALLEN T, VASILEIADIS A, et al. Operando monitoring the lithium spatial distribution of lithium metal anodes [J]. Nature Communications, 2018, 9(1): 2152.
[115] BROWNING K L, WESTOVER A S, BROWNING J F, et al. In Situ Measurement of Buried Electrolyte –Electrode Interfaces for Solid State Batteries with Nanometer Level Precision [J]. ACS Energy Letters, 2023, 8(4): 1985-1991.
[116] SKODA M W A. Recent developments in the application of X -ray and neutron reflectivity to soft-matter systems [J]. Current Opinion in Colloid & Interface Science, 2019, 42: 41 -54.
[117] SCHUMI-MARECEK D, BERTRAM F, MIKULIK P, et al. Millisecond X-ray reflectometry and neural network analysis: unveiling fast processes in spin coating [J]. Journal of Applied Crystallography, 2024, 57(2): 314 -323.
[118] ARMSTRONG A J, MCCOY T M, WELBOURN R J L, et al. Towards a neutron and X-ray reflectometry environment for the study of solid–liquid interfaces under shear [J]. Scientific Reports, 2021, 11(1): 9713.
修改评论