[1] Miller K A, Thompson K F, Johnston P, et al. An overview of seabed mining including the current state of development, environmental impacts, and knowledge gaps[J]. Frontiers in Marine Science, 2018, 4: 312755.
[2] 李怀亮, 黄山田, 王晓飞, 等. 南海和阿拉伯湾钙质砂工程特性对比研究[J]. 海洋地质与第四纪地质, 2018, 38(02): 72-78. DOI:10.16562/j.cnki.0256-1492.2018.02.007.
[3] YAO K, CHEN Q, XIAO H, et al. Small-strain shear modulus of cement-treated marine clay[J]. Journal of Materials in Civil Engineering, 2020, 32(6): 04020114.
[4] WU C, CHU J. Biogrouting method for stronger bond strength for aggregates[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 06020021.
[5] CHEN S, ZHANG J, LONG Z, et al. Effects of particle size on the particle breakage of calcareous sands under impact loadings[J]. Construction and Building Materials, 2022, 341: 127809.
[6] WAN Z, DAI G, GONG W. Study on the response of postside-grouted piles subjected to lateral loading in calcareous sand[J]. Acta Geotechnica, 2022, 17(7): 3099-3115.
[7] WAN Z, LIU H, ZHOU F, et al. Axial Bearing Mechanism of Post-Grouted Piles in Calcareous Sand[J]. Applied Sciences, 2022, 12(5): 2731.
[8] WANG X, LIU J Q, CUI J, et al. Particle breakage characteristics of a foundation filling material on island-reefs in the South China Sea[J]. Construction and Building Materials, 2021, 306: 124690.
[9] WANG X, DING H, MENG Q, et al. Engineering characteristics of coral reef and site assessment of hydraulic reclamation in the South China Sea[J]. Construction and Building Materials, 2021, 300: 124263.
[10] WANG X Z, JIAO Y Y, WANG R, et al. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea[J]. Engineering geology, 2011, 120(1-4): 40-47.
[11] ZHU C Q, LIU H F, WANG X, et al. Engineering geotechnical investigation for coral reef site of the cross-sea bridge between Malé and Airport Island[J]. Ocean Engineering, 2017, 146: 298-310.
[12] FU Q, BU M, XU W, et al. Comparative analysis of dynamic constitutive response of hybrid fibre-reinforced concrete with different matrix strengths[J]. International Journal of Impact Engineering, 2021, 148: 103763.
[13] LI Y, WU C, JANG B A. Effect of bedding plane on the permeability evolution of typical sedimentary rocks under triaxial compression[J]. Rock Mechanics and Rock Engineering, 2020: 1-9.
[14] ZHANG F, LI M, PENG M, et al. Three-dimensional DEM modeling of the stress–strain behavior for the gap-graded soils subjected to internal erosion[J]. Acta Geotechnica, 2019, 14: 487-503.
[15] 饶秋华, 刘泽霖, 许锋, 等. 深海稀软底质特性及采矿车行走性能研究进展[J]. 中国有色金属学报, 2021, 31(10): 2795-2816.
[16] Li L , Jue Z .Research of China’s Pilot-miner In the Mining System of Poly-metallic Nodule[J]. International Society of Offshore & Polar Engineers Ocean Mining Sym, 2005.
[17] Uesugi M, Kishida H. Frictional resistance at yield between dry sand and mild steel[J]. Soils and foundations, 1986, 26(4): 139-149.
[18] Airey D W, Fahey M. Cyclic response of calcareous soil from the North-West Shelf of Australia[J]. Geotechnique, 1991, 41(1): 101-121.
[19] Fujikubo M, Kaeding P. New simplified approach to collapse analysis of stiffened plates[J]. Marine Structures, 2002, 15(3): 251-283.
[20] DEJONG J T, WHITE D J, RANDOLPH M F. Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry[J]. Soils and foundations, 2006, 46(1): 15-28.
[21] MENADI B, KENAI S, KHATIB J, et al. Strength and durability of concrete incorporating crushed limestone sand[J]. Construction and Building Materials, 2009, 23(2): 625-633.
[22] HEMMAT A, AGHILINATEGH N, SADEGHI M. Shear strength of repacked remoulded samples of a calcareous soil as affected by long-term incorporation of three organic manures in central Iran[J]. Biosystems engineering, 2010, 107(3): 251-261.
[23] BAI Y, NIEDZWECKI J M. Modeling deepwater seabed steady-state thermal fields around buried pipeline including trenching and backfill effects[J]. Computers and Geotechnics, 2014, 61: 221-229.
[24] QUINTEROS V S, DYVIK R, Mortensen N. Interface friction angle soil-on-steel from ring shear tests on offshore north sea sands[M]//Geotechnical Frontiers 2017. 2017: 358-367.
[25] WANG X, WANG X Z, ZHU C Q, et al. Shear tests of interfaces between calcareous sand and steel[J]. Marine Georesources & Geotechnology, 2019, 37(9): 1095-1104.
[26] KOU H, DIAO W, ZHANG W, et al. Experimental study of interface shearing between calcareous sand and steel plate considering surface roughness and particle size[J]. Applied Ocean Research, 2021, 107: 102490.
[27] 殷勇, 李富荣. 滨海土体与钢材接触面剪切特性试验[J]. 土工基础, 2014, 28(06): 123-125.
[28] 吴梦喜,楼志刚. 钙质砂与钢板接触面力学特性试验研究[J]. 岩土力学, 2003, (03): 369-371.
[29] 李金戈, 况辉. 珊瑚碎屑钙质砂的抗剪特性[J]. 土工基础, 2017, 31(02): 226-230.
[30] 钱炜. 某岛礁珊瑚砂力学性质的室内试验研究[J]. 土工基础, 2016, 30(04): 527-532.
[31] 张早辉, 单继鹏, 曹梦. 直剪条件下含水率对钙质砂强度的影响[J]. 土工基础, 2017, 31(02): 244-246.
[32] HAN F, GANJU E, SALGADO R, et al. Effects of interface roughness, particle geometry, and gradation on the sand–steel interface friction angle[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(12): 04018096.
[33] PHAM H H G, VAN IMPE P, VAN IMPE W, et al. Shear and interface shear strengths of calcareous sand[C]//19th International Conference on Soil Mechanics and Geotechnical Engineering. 2017: 389-392.
[34] 杨大方, 刘希亮, 何军. 砂土与钢材接触面剪切特性的试验研究[J]. 路基工程, 2009, (06): 77-78.
[35] YANG, X.Q., SHI, X.B., ZHAO, J.F., et al. Bottom water temperature measurements in the South China Sea, eastern Indian Ocean and western Pacific Ocean[J]. Journal of tropical oceanography, 2018, 37(5): 86-97.
[36] 刘瑞凯, 吴明, 王同秀, 等.海底埋地热油管道泄漏扩散的数值模拟[J]. 中国安全生产科学技术, 2012, 8(08): 63-68.
[37] YAVARI N, TANG A M, PEREIRA J M, et al. Effect of temperature on the shear strength of soils and the soil–structure interface[J]. Canadian Geotechnical Journal, 2016, 53(7): 1186-1194.
[38] HONG P Y, PEREIRA J M, TANG A M, et al. On some advanced thermo‐mechanical models for saturated clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(17): 2952-2971.
[39] HAMIDI A, TOURCHI S, KHAZAEI C. Thermomechanical constitutive model for saturated clays based on critical state theory[J]. International Journal of Geomechanics, 2015, 15(1): 04014038.
[40] RECORDON E. Déformabilité des sols non saturés à diverses températures[J]. Revue française de géotechnique, 1993 (65): 37-56.
[41] SAIX C, DEVILLERS P, EL YOUSSOUFI M S. Eléments de couplage thermomécanique dans la consolidation de sols non saturés[J]. Canadian Geotechnical Journal, 2000, 37(2): 308-317.
[42] 何绍衡, 夏唐代, 李玲玲, 等. 温度效应对珊瑚礁砂抗剪强度和颗粒破碎演化特性的影响研究[J]. 岩石力学与工程学报, 2019, 38(12): 2535-2549.
[43] LIU H, LIU H, XIAO Y, et al. Effects of temperature on the shear strength of saturated sand[J]. Soils and Foundations, 2018, 58(6): 1326-1338.
[44] YU F. Particle breakage and the undrained shear behavior of sands[J]. International Journal of Geomechanics, 2018, 18(7): 04018079.
[45] Clough G W, Duncan J M. Finite element analyses of retaining wall behavior[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(12): 1657-1673.
[46] 路德春, 罗磊, 王欣, 等. 土与结构接触面土体软/硬化本构模型及数值实现[J]. 工程力学, 2017, 34(07): 41-50.
[47] Long Y, Chen J, Zhang J. Introduction and analysis of a strain-softening damage model for soil–structure interfaces considering shear thickness[J]. KSCE Journal of Civil Engineering, 2017, 21: 2634-2640.
[48] ZHU H H, SHI B, YAN J F, et al. Investigation of the evolutionary process of a reinforced model slope using a fiber-optic monitoring network[J]. Engineering Geology, 2015, 186: 34-43.
[49] CLAYTON C, BICA A. The design of diaphragm-type boundary total stress cells[J]. Geotechnique, 1993, 43(4): 523-535.
[50] TALESNICK M. Measuring soil contact pressure on a solid boundary and quantifying soil arching[J]. Geotechnical Testing Journal, 2005, 28(2): 171-179.
[51] ZHU B, JARDINE R, FORAY P. The use of miniature soil stress measuring cells in laboratory applications involving stress reversals[J]. Soils and Foundations, 2009, 49(5): 675-688.
[52] KEYKHOSROPOUR L, LEMNITZER A, STAR L, et al. Implementation of soil pressure sensors in large-scale soil-structure interaction studies[J]. Geotechnical Testing Journal, 2018, 41(4): 730-746.
[53] LEMNITZER A, KEYKHOSROPOUR L, MARINUCCI A, KEOWEN S. Large diameter pressure sensors: design, development and sample application[M]. IFCEE 2018. 2018: 557-566.
[54] LIN P, TANG L, NI P. Field evaluation of subgrade soils under dynamic loads using orthogonal earth pressure transducers[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 12-24.
[55] GRATTAN K, SUN T. Fiber optic sensor technology: an overview[J]. Sensors and Actuators A: Physical, 2000, 82(1-3): 40-61.
[56] YIN J H, ZHU H H, JIN W, et al. Performance evaluation of electrical strain gauges and optical fiber sensors in field soil nail pullout tests[C]//The HKIE Geotechnical Division Annual Seminar. 2007: 249-254.
[57] PEI H, JING J, ZHANG S. Experimental study on a new FBG-based and Terfenol-D inclinometer for slope displacement monitoring[J]. Measurement, 2020, 151: 107172.
[58] ZHU H H, SHI B, YAN J F, et al. Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage[J]. Smart Materials and Structures, 2014, 23(9): 095027.
[59] WU B, ZHU H H, CAO D, et al. Feasibility study on ice content measurement of frozen soil using actively heated FBG sensors[J]. Cold Regions Science and Technology, 2021, 189: 103332.
[60] WU Z, QIN Z, JIAN JUN Z, et al. Real-time monitoring and early warning technology for huge landslides[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1341-1350.
[61] QIN Y, WANG Q, XU D, et al. A fiber Bragg grating based earth and water pressures transducer with three-dimensional fused deposition modeling for soil mass[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2): 663-669.
[62] ZHANG F, PEI H, SONG H, ZHU H. Development of an FBG–MEMS-Based 3-D Principal Stress Monitoring Device in Soil[J]. IEEE Sensors Journal, 2022, 23(3): 1972-1981.
[63] XU D, LIU H, LUO W. Evaluation of interface shear behavior of GFRP soil nails with a strain-transfer model and distributed fiber-optic sensors[J]. Computers and Geotechnics, 2018, 95: 180-190.
[64] HONG C, ZHANG Y, BORANA L. Design, fabrication and testing of a 3D printed FBG pressure sensor[J]. IEEE Access, 2019, 7: 38577-38583.
[65] ZHENG Y, ZHU Z-W, LI W-J, et al. Experimental research on a novel optic fiber sensor based on OTDR for landslide monitoring[J]. Measurement, 2019, 148: 106926.
[66] CHANG C C, JOHNSON G, VOHRA S T, et al. Development of fiber Bragg-grating-based soil pressure transducer for measuring pavement response[C]//Smart Structures and Materials 2000: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials. SPIE, 2000, 3986: 480-488.
[67] REN G, LI T, HU Z, ZHANG C. Research on new FBG soil pressure sensor and its application in engineering[J]. Optik, 2019, 185: 759-771.
[68] LIANG M, FANG X, NING Y. Temperature compensation fiber Bragg grating pressure sensor based on plane diaphragm[J]. Photonic Sensors, 2018, 8: 157-167.
[69] 蒋善超, 曹玉强, 隋青美, 等. 微型高精度光纤布拉格光栅土压力传感器研究[J]. 中国激光, 2013, 40(04): 122-127.
[70] LI F, DU Y, ZHANG W, LI F. Fiber Bragg grating soil-pressure sensor based on dual L-shaped levers[J]. Optical Engineering, 2013, 52(1): 014403.
[71] WEI H Z, XU D S, MENG Q S. A newly designed fiber-optic based earth pressure transducer with adjustable measurement range[J]. Sensors, 2018, 18(4): 932.
[72] CORREIA R, LI J, STAINES S, et al. Fibre Bragg grating based effective soil pressure sensor for geotechnical applications[C]//20th International Conference on Optical Fibre Sensors. SPIE, 2009, 7503: 74-77.
[73] QIN J Q, FENG W Q, WU P C, YIN J H. Fabrication and performance evaluation of a novel FBG-based effective stress cell for directly measuring effective stress in saturated soils[J]. Measurement, 2020, 155: 107491.
[74] YIN J H, QIN J Q, FENG W Q. Novel FBG-based effective stress cell for direct measurement of effective stress in saturated soil[J]. International Journal of Geomechanics, 2020, 20(8): 04020107.
[75] YANG X Q, SHI X B, ZHAO J F, et al. Bottom water temperature measurements in the South China Sea, eastern Indian Ocean and western Pacific Ocean[J]. Journal of tropical oceanography, 2018, 37(5): 86-97.
[76] ZHOU Z, WANG H, OU J. A new kind of FBG-based soil-pressure sensor[C]//Optical Fiber Sensors. Optica Publishing Group, 2006: ThE90.
[77] TOVAR-VALENCIA R D, GALVIS-CASTRO A, SALGADO R, et al. Effect of surface roughness on the shaft resistance of displacement model piles in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(3): 04017120.
[78] SHOUSHTARI M R, LASHKARI A, MARTINEZ A. Effect of gas-oil contamination on the mechanical behavior of sand-woven geotextile interface: Experimental investigation and constitutive modeling[J]. Geotextiles and Geomembranes, 2023, 51(4): 56-71.
[79] ARI A, AKBULUT S. Effect of fractal dimension on sand-geosynthetic interface shear strength[J]. Powder Technology, 2022, 401: 117349.
[80] FARHADI B, LASHKARI A. Influence of soil inherent anisotropy on behavior of crushed sand-steel interfaces[J]. Soils and Foundations, 2017, 57(1): 111-125.
[81] SU L J, ZHOU W H, CHEN W B, et al. Effects of relative roughness and mean particle size on the shear strength of sand-steel interface[J]. Measurement, 2018, 122: 339-346.
[82] WANG X, SHAN Y, CUI J, et al. Dilatancy of the foundation filling material of island-reefs in the South China Sea[J]. Construction and Building Materials, 2022, 323: 126524.
[83] WANG X, LIU J Q, CUI J, et al. Particle breakage characteristics of a foundation filling material on island-reefs in the South China Sea[J]. Construction and Building Materials, 2021, 306: 124690.
[84] XU D S, TANG J Y, ZOU Y, et al. Macro and micro investigation of gravel content on simple shear behavior of sand-gravel mixture[J]. Construction and Building Materials, 2019, 221: 730-744.
[85] WANG J, YING M, LIU F, et al. Experimental investigation on the stress-dilatancy response of aggregate-geogrid interface using parameterized shapes[J]. Construction and Building Materials, 2021, 289: 123170.
[86] KONDNER R L. Hyperbolic stress-strain response: cohesive soils[J]. Journal of the Soil Mechanics and Foundations Division, 1963, 89(1): 115-143.
[87] HILL K O, MELTZ G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of lightwave technology, 1997, 15(8): 1263-1276.
[88] KERSEY A D, DAVIS M A, PATRICK H J, et al. Fiber grating sensors[J]. Journal of lightwave technology, 1997, 15(8): 1442-1463.
[89] OTHONOS A. Fiber bragg gratings[J]. Review of scientific instruments, 1997, 68(12): 4309-4341.
[90] TIMOSHENKO S, WOINOWSKY-KRIEGER S. Theory of plates and shells[M]. McGraw-hill New York, 1959.
[91] GOODNO B J, GERE J. Statics and mechanics of materials[M]. Cengage Learning, 2018.
[92] HONG C Y, ZHANG Y F, ZHANG M X, et al. Application of FBG sensors for geotechnical health monitoring, a review of sensor design, implementation methods and packaging techniques[J]. Sensors and Actuators A: Physical, 2016, 244: 184-197.
[93] ZHANG Y F, HONG C Y, AHMED R, AHMED Z. A fiber Bragg grating based sensing platform fabricated by fused deposition modeling process for plantar pressure measurement[J]. Measurement, 2017, 112: 74-79.
[94] YANG Y, HONG C, ABRO Z A, et al. A new Fiber Bragg Grating sensor based circumferential strain sensor fabricated using 3D printing method[J]. Sensors and Actuators A: Physical, 2019, 295: 663-670.
[95] HONG C, YUAN Y, YANG Y, et al. A simple FBG pressure sensor fabricated using fused deposition modelling process[J]. Sensors and Actuators A: Physical, 2019, 285: 269-274.
[96] Ferreira R T L, Amatte I C, Dutra T A, et al. Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers[J]. Composites Part B: Engineering, 2017, 124: 88-100.
[97] Wong J Y. Theory of ground vehicles[M]. 3rd ed. New York: Wiley, 2001: 391−412.
[98] 宋连清. 大洋多金属结核矿区沉积物土工性质[J]. 海洋学报(中文版), 1999(06): 47-54.
[99] 陈秉正. “鲲龙 500”采矿车履带行驶机构的研制与试验研究[J]. 采矿技术, 2019, 19(5): 125−128.
修改评论