中文版 | English
题名

基于可降解镁合金的 Cu(Ga)@ZIF-8-MAO 复合涂层的制备及其抗菌性能研究

其他题名
STUDY ON THE PREPARATION AND ANTIBACTERIAL PROPERTIES OF Cu(Ga)@ ZIF-8-MAO COMPOSITE COATING BASED ON DEGRADABLE MAGNESIUM ALLOY
姓名
姓名拼音
LIU Yiming
学号
12233306
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
学术型::08 工学
导师
赵颖
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2024-05-10
论文提交日期
2024-07-03
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

镁合金因其独特的可降解性、良好的力学性能和生物相容性,在植入器械领域具有广阔的应用前景。然而,临床上镁合金仍面临着降解速度过快和缺乏体内抗菌性能等问题。基于此,本文在WE43镁合金表面微弧氧化(MAO)涂层的基础上,基于ZIF-8 的载体特性和Cu、Ga元素的抗菌功能,在镁合金表面构建Cu@ZIF-8-MAO和Ga@ZIF-8-MAO复合涂层。

(1) 利用室温原位生长法,在含Zn(NO3 )2,CuSO4和二甲基咪唑的无水甲 醇 混 合 溶 液 中 反 应 1 , 6 , 12 和 24 h 分 别获得 Cu@ZIF-8-MAO(1h) ,Cu@ZIF-8-MAO(6h) , Cu@ZIF-8-MAO(12h) 和 Cu@ZIF-8-MAO(24h) 样品。利用SEM,EDS和XRD对样品进行表征,结果显示所有样品表面均分布着尺寸为1.5~2.8 μm、由十二面体几何结构的颗粒构成的Cu@ZIF-8涂层。Cu@ZIF-8-MAO涂层由MgO和Cu掺杂的ZIF-8构成,厚度12.5 ~78.0 μm。除Cu@ZIF-8-MAO (24h)涂层呈现较多的孔洞外,其它涂层质量较好。浸泡实验(离子溶出)和电化学腐蚀研究(动电位极化曲线,开路电位,EIS阻抗 谱 ) 结 果 显 示 , 样 品 的 腐 蚀 降 解 速 率 依 次 为 Cu@ZIF-8-MAO(12h) Cu@ZIF-8-MAO(1h)外,其他样品对E.coli和S.aureus的抗菌率均为100%。

(2) 利 用 室 温 原 位 生 长 法 和 离 子 交 换 法 ,在含Zn(NO3 )2,Hmim和Ga(NO3 )3 的 无 水 甲 醇 混 合 溶 液 中 反 应 分 别 获 得 Ga@ZIF-8-MAO(1h) ,Ga@ZIF-8-MAO(2h) 和 Ga@ZIF-8-MAO(3h) 样 品 。 结 果 显 示 , 所 有Ga@ZIF-8-MAO样品表面均分布着尺寸约为500 nm的正十二面体颗粒组成的Ga@ZIF-8涂层。涂层由MgO和Ga掺杂的ZIF-8构成,厚度11.2 ~12.8 μm。电化学研究显示,Ga@ZIF-8-MAO比MAO和ZIF-8-MAO样品的耐腐蚀性能略有降低,但其降解速率仍显著低于未处理镁合金。在Ga掺杂的样品中,Ga@ZIF-8-MAO(3h)样品表现出最佳的耐腐蚀性能。抗菌研究结果显示所有Ga@ZIF-8-MAO样品对E.coli和S.aureus的抗菌率均为100%。(3) 在 本 文 制 备 的 样 品 中 , Cu@ZIF-8-MAO (12h) 、 Cu@ZIF-8-MAO(6h)以及Ga@ZIF-8-MAO(3h)样品在涂层质量、耐腐蚀及抗菌性能方面表现出优异的综合性能,在植入器械领域具有潜在的应用前景。

 

其他摘要

Magnesium alloys have large potential for the application in the implantable devices fields due to their unique biodegradability, favorable mechanical properties, and biocompatibility. However, in the clinic, these alloys still face challenges such as rapid degradation and a lack of antibacterial property in the human body. To address these issues, Cu@ZIF-8-MAO and Ga@ZIF-8-MAO composite coatings were introduced to the surface of WE43 magnesium alloys on our previous microarc oxidation (MAO) layer in this study, considering the carrier characteristics of ZIF-8 and the antibacterial capabilities of Cu and Ga elements.

(1) Cu@ZIF-8-MAO samples were prepared by using an in-situ growth method at room temperature in an anhydrous methanol containing Zn(NO3)2, CuSO4, and Hmim. After 1, 6, 12, and 24 h of reaction, Cu@ZIF-8-MAO (1h), Cu@ZIF-8-MAO(6h), Cu@ZIF-8-MAO(12h), and Cu@ZIF-8-MAO(24h) samples were formed, respectively. SEM, EDS, and XRD results revealed that all samples surfaces were composed of uniformly distributed dodecahedral Cu@ZIF-8 particles with the size of 1.5 to 2.8 μm. Cu@ZIF-8-MAO coatings consisted of MgO and Cu-doped ZIF-8, with the thicknesses ranging from 12.5 to 78.0 μm. Apart from the Cu@ZIF-8-MAO (24h) coating showing many corrosion pores, the other Cu doped coatings revealed good quality. Immersion tests (ion release) and electrochemical corrosion studies (potentiodynamic polarization curves, open circuit potential, EIS impedance spectroscopy) showed the degradation rate of the samples in the following order: Cu@ZIF-8-MAO(12h) < Cu@ZIF-8-MAO(6h) < Cu@ZIF-8-MAO(1h) < Cu@ZIF-8-MAO(24h) < MAO < untreated magnesium alloy. Antibacterial assessments (plate counting method, live/dead staining, and SEM) indicated that all Cu-doped samples except Cu@ZIF-8-MAO(1h) achieved a 100% antibacterial efficiency against both E. coli and S. aureus.

(2) Ga@ZIF-8-MAO samples were synthesized by a combination of in-situ growth at room temperature and ion exchange in an anhydrous methanol solution containing Zn(NO3)2, Hmim, and Ga(NO3)3. The formed samples were abbreviated as Ga@ZIF-8-MAO(1h), Ga@ZIF-8-MAO(2h), and Ga@ZIF-8-MAO(3h) samples. The results revealed that all Ga@ZIF-8-MAO samples were uniformly coated with approximately dodecahedral Ga@ZIF-8 particles at the size of 500 nm. These coatings consisted of MgO and Ga-doped ZIF-8, with the thicknesses ranging from 11.2 to 12.8 μm. Electrochemical studies suggested a slight reduction in corrosion resistance for Ga@ZIF-8-MAO compared to MAO and ZIF-8-MAO samples. However, their degradation rates were still significantly lower than those of the untreated magnesium alloys. Among the Ga-doped samples, Ga@ZIF-8-MAO(3h) demonstrated the best corrosion resistance. Antibacterial studies indicated a 100% antibacterial rate against both E. coli and S. aureus for all the Ga@ZIF-8-MAO samples.

(3) All in all, Cu@ZIF-8-MAO (12h), Cu@ZIF-8-MAO (6h), and Ga@ZIF-8-MAO (3h) exhibited excellent overall performance in terms of coating quality, corrosion resistance, and antibacterial activity among all the samples in this study, showing potential applications as implantable devices in the future.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] FIORENTINI D, CAPPADONE C, FARRUGGIA G, et al. Magnesium: biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency [J]. Nutrients, 2021, 13(4): 1136.
[2] YANG Y, HE C, DIANYU E, et al. Mg bone implant: Features, developments and perspectives [J]. Materials & Design, 2020, 185: 108259.
[3] GU Z, ZHOU Y, DONG Q, et al. Designing lightweight multicomponent magnesium alloys with exceptional strength and high stiffness [J]. MaterialsScience and Engineering: A, 2022, 855: 143901.
[4] TSAKIRIS V, TARDEI C, CLICINSCHI F M. Biodegradable Mg alloys fororthopedic implants–A review [J]. Journal of Magnesium and Alloys, 2021, 9(6): 1884-905.
[5] SONG M, ZENG R, DING Y, et al. Recent advances in biodegradation controls over Mg alloys for bone fracture management: A review [J]. J Mater Sci Technol, 2019, 35(4): 535-44.
[6] HE M, CHEN L, YIN M, et al. Review on magnesium and magnesium-based alloys as biomaterials for bone immobilization [J]. Journal of Materials Research and Technology, 2023, 23: 4396 -419.
[7] WITTE F. The history of biodegradable magnesium implants: A review [J].Acta Biomaterialia, 2010, 6(5): 1680 -92.
[8] AGARWAL S, CURTIN J, DUFFY B, et al. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications [J]. Materials Science and Engineering: C, 2016, 68: 948-63.
[9] ECHEVERRY-RENDON M, ALLAIN J, ROBLEDO S, et al. Coatings for biodegradable magnesium-based supports for therapy of vascular disease: Ageneral view [J]. Materials Science and Engineering: C, 2019, 102: 150 -63.
[10] BOBBY M, SINGH R. A mechanistic study ofin vitrodegradation of magnesium alloy using electrochemical techniques [J]. Journal of Biomedical Materials Research Part A, 2009, 9999A: NA-NA.
[11] ALVES M, PROSEK T, SANTOS C, et al. In vitro degradation of ZnO flowered coated Zn-Mg alloys in simulated physiological conditions [J]. Materials Science and Engineering: C, 2017, 70: 112 -20.
[12] ZHANG C, CHEN Y, YU B, et al. Effects of nucleation pretreatment on corrosion resistance of conversion coating on magnesium alloy Mg -10Gd-3Y-0.4 Zr [J]. Corrosion Communications, 2023, 10: 69 -79.
[13] WEN T, TAN S, LI R, et al. Large -Scale Integration of the Ion-ReinforcedPhytic Acid Layer Stabilizing Magnesium Metal Anode [J]. ACS nano, 2024.
[14] XUE X, LIANG C, WANG D, et al. The research progress of self-healing coatings for magnesium/magnesium alloy [J]. J Alloy Compd, 2023: 170710.
[15] WEI X, MA J, MA S, et al. Enhanced anti-corrosion and biocompatibility of a functionalized layer formed on ZK60 Mg alloy via hydroxyl (OH -) ion implantation [J]. Colloids and Surfaces B: Biointerfaces, 2022, 216: 112533.
[16] LIANG T, ZENG L, SHI Y, et al. In vitro and in vivo antibacterial performance of Zr & O PIII magnesium alloys with high concentration of oxygen vacancies [J]. Bioactive Materials, 2021, 6(10): 3049 -61.
[17] BAKHSHESHI-RAD H, HAMZAH E, DAROONPARVAR M, et al. Bi-layernano-TiO2/FHA composite coatings on Mg–Zn–Ce alloy prepared by combined physical vapour deposition and electrochemical deposition methods [J]. Vacuum, 2014, 110: 127-35.
[18] LIU Z, WANG T, XU Y, et al. Double -layer calcium phosphate sandwichedsiloxane composite coating to enhance corrosion resistance and biocompatibility of magnesium alloys for bone tissue engineering [J]. Progress in Organic Coatings, 2023, 177: 107417.
[19] TAN J, LIU L, WANG H, et al. Advances in anti-corrosion coatings on magnesium alloys and their preparation methods [J]. Journal of Coatings Technology and Research, 2024: 1-15.
[20] YU C, CUI L, ZHOU Y, et al. Self-degradation of micro-arc oxidation/chitosan composite coating on Mg-4Li-1Ca alloy [J]. Surface and Coatings Technology, 2018, 344: 1-11.
[21] QIN J, SHI X, LI H, et al. Performance and failure process of green recycling solutions for preparing high degradation resistance coating on biomedical magnesium alloys [J]. Green Chemistry, 2022, 24(20): 8113 -30.
[22] KURODA P, CARDOSO G, GRANDINI C. The effect of Nb on the formation of TiO2 anodic coating oxide on Ti –Nb alloys through MAO treatment [J]. Journal of Materials Research and Technology, 2024, 29: 1165 -71.
[23] LIU Y, CHEN C, LIANG T, et al. In vitro long -term antibacterial performance and mechanism of Zn-doped micro-arc oxidation coatings [J]. Colloidsand Surfaces B: Biointerfaces, 2024, 233: 113634.
[24] WU M, JIANG F. Preparation, interface properties and corrosion behavior of nano-modified MAO ceramic film on 5B70 Al alloy [J]. J Alloy Compd,2023, 967: 171829.
[25] MATKOVIĆ T, SLOKAR L, MATKOVIĆ P. Effect of composition on the structure and properties of Ti-Co-Cr alloys [J]. Metalurgija, 2010, 49(1): 33-6.
[26] CHEN C, SHI X, ZHANG S, et al. Mutual Impact of Four Organic CalciumSalts on the Formation and Properties of Micro -Arc Oxidation Coatings on AZ31B Magnesium Alloys [J]. Coatings, 2024, 14(1): 140.
[27] YANG C, CUI S, FU R K, et al. Optimization of the in vitro biodegradability, cytocompatibility, and wear resistance of the AZ31B alloy by micro -arc oxidation coatings doped with zinc phosphate [J]. J Mater Sci Technol, 2024, 179: 224-39.
[28] DONG H, LI Q, XIE D, et al. Forming characteristics and mechanisms of micro-arc oxidation coatings on magnesium alloys based on different types of single electrolyte solutions [J]. Ceramics International, 2023, 49(19): 32271-81.
[29] TULCHINSKY T, VARAVIKOVA E, COHEN M. Chapter 4 - Communicable diseases [M]//TULCHINSKY T H, VARAVIKOVA E A, COHEN M J. TheNew Public Health (Fourth Edition). San Diego; Academic Press. 2023: 215-366.
[30] SALEKI K, RAZI S, REZAEI N. Chapter 6 - Infection and Immunity [M]//REZAEI N. Clinical Immunology. Academic Press. 2023: 493 -598.
[31] AGUILERA J , GISBERT M, MEDIERO A, et al. Antibiotic delivery from bone-targeted mesoporous silica nanoparticles for the treatment of osteomyelitis caused by methicillin-resistant Staphylococcus aureus [J]. Acta Biomaterialia, 2022, 154: 608-25.
[32] QUARATA F, LELLI D, BIANCONE D M, et al. A urinary tract infection caused by Escherichia coli mucoid phenotype progresses to a pneumonia and respiratory failure [J]. The Lancet, 2023, 401(10380): 950.
[33] CHEN X, ZHOU J, QIAN Y, et al. Antibacterial coatings on orthopedic implants [J]. Materials Today Bio, 2023, 19: 100586.
[34] FRAVAL A, WANG J, TARABICHI S, et al. Optimal timing for reimplantation in the setting of two stage revision for prosthetic joint infection [J]. Revista espanola de cirugia ortopedica y traumatologia, 2023, 67(3): 246 -52.
[35] LI P, YIN R, CHENG J, et al. Bacterial biofilm formation on biomaterials and approaches to its treatment and prevention [J]. International Journal of Molecular Sciences, 2023, 24(14): 11680.
[36] YOON B, HA Y, LEE Y, et al. Postoperative Deep Infection After Cemented Versus Cementless Total Hip Arthroplasty: A Meta -Analysis [J]. Journal of Arthroplasty, 2015, 30(10): 1823-7.
[37] CHOI H, BEDAIR H. Mortality Following Revision Total Knee Arthroplasty: A Matched Cohort Study of Septic versus Aseptic Revisions [J]. The Journal of Arthroplasty, 2014, 29(6): 1216 -8.
[38] MORGENSTERN M, KüHL R, ECKARDT H, et al. Diagnostic challenges and future perspectives in fracture -related infection [J]. Injury, 2018, 49: S83-S90.
[39] GIULIERI S, GRABER P, OCHSNER P, et al. Management of infection associated with total hip arthroplasty according to a treatment algorithm [J]. Infection, 2004, 32: 222-8.
[40] VERKKALA K, EKLUND A, OJAJäRVI J, et al. The conventionally ventilated operating theatre and air contamination control during cardiac surgery–bacteriological and particulate matter control garment options for low level contamination [J]. European journal of cardio-thoracic surgery, 1998,14(2): 206-10.
[41] CAMPOCCIA D, MONTANARO L, ARCIOLA C R. The significance of infection related to orthopedic devices and issues of antibiotic resistance [J].Biomaterials, 2006, 27(11): 2331-9.
[42] SHI X, SHAN Y, DU M, et al. Synthesis and application of metal-organic framework films [J]. Coord Chem Rev, 2021, 444: 214060.
[43] KARAKEçILI A, TOPUZ B, KORPAYEV S, et al. Metal-organic frameworks for on-demand pH controlled delivery of vancomycin from chitosan scaffolds [J]. Materials Science and Engineering: C, 2019, 105: 110098.
[44] RAN J, ZENG H, CAI J, et al. Rational design of a stable, effective, and sustained dexamethasone delivery platform on a titanium implant: An innovative application of metal organic frameworks in bone implants [J]. Chem Eng J, 2018, 333: 20-33.
[45] LIU Y, ZHU Z, PEI X, et al. ZIF-8-Modified Multifunctional Bone -Adhesive Hydrogels Promoting Angiogenesis and Osteogenesis for Bone Regeneration [J]. ACS Applied Materials and Interfaces, 2020, 12(33): 36978 -95.
[46] KAUR H, MOHANTA G C, GUPTA V, et al. Synthesis and characterizationof ZIF-8 nanoparticles for controlled release of 6 -mercaptopurine drug [J].Journal of Drug Delivery Science and Technology, 2017, 41: 106 -12.
[47] ZHEN P, JIANDONG G, ZHANG Q, et al. Research progress and application of metal-organic frameworks antibacterial composite materials and fib ers [J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2396-403.
[48] LI R, CHEN T T, PAN X L. Metal-Organic-Framework-Based Materials for Antimicrobial Applications [J]. Acs Nano, 2021, 15(3): 3808 -48.
[49] TIMOFEEVA M, PANCHENKO V, JHUNG S. Insights into the Structure –Property–Activity Relationship of Zeolitic Imidazolate Frameworks for Acid–Base Catalysis [J]. International Journal of Molecular Sciences, 2023, 24(5): 4370.
[50] HEALY C, PATIL K, WILSON B, et al. The thermal stability of metal-organic frameworks [J]. Coord Chem Rev, 2020, 419: 213388.
[51] ZHANG D, XIAO L, XIONG G, et al. Recent progress of zeolitic imidazolate frameworks (ZIFs) in superhydrophobic and anticorrosive coatings for metals and their alloys [J]. Journal of Coatings Technology and Research, 2023, 20(4): 1157-77.
[52] PARK K, NI Z, CôTé A, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186 -91.
[53] HU Y, KAZEMIAN H, ROHANI S, et al. In situ high pressure study of ZIF-8 by FTIR spectroscopy [J]. Chemical Communications, 2011, 47(47): 12694-6.
[54] TAHERI M, ASHOK D, SEN T, et al. Stability of ZIF -8 nanopowders in bacterial culture media and its implication for antibacterial properties [J]. Chem Eng J, 2021, 413: 127511.
[55] 宋彦哲, 李庆朝. 金属-有机骨架 (MOFs) 多孔材料 ZIF-8 的性能研究 [J]. 橡胶科技, 2019, 17(11): 616-9.
[56] LUZURIAGA M, BENJAMIN C, GAERTNER M, et al. ZIF -8 degrades in cell media, serum, and some—but not all—common laboratory buffers [J]. Supramolecular Chemistry, 2019, 31(8): 485 -90.
[57] ROTMAN S, GRIJPMA D, RICHARDS R, et al. Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics [J]. Journal of Controlled Release, 2018, 269: 88 -99.
[58] WYSZOGRODZKA G, MARSZALEK B, GIL B, et al. Metal-organic frameworks: mechanisms of antibacterial action and potential applications [J]. Drug Discovery Today, 2016, 21(6): 1009 -18.
[59] LI P, LI J Z, FENG X, et al. Metal-organic frameworks with photocatalyticbactericidal activity for integrated air cleaning [J]. Nat Commun, 2019, 10.
[60] ZHANG Y, ZHANG X, SONG J, et al. Ag/H-ZIF-8 Nanocomposite as an Effective Antibacterial Agent Against Pathogenic Bacteria [J]. Nanomaterials, 2019, 9(11): 1579.
[61] LIANG Z, WANG H, ZHANG K, et al. Oxygen -defective MnO2/ZIF-8 nanorods with enhanced antibacterial activity under solar light [J]. Chem EngJ, 2022, 428: 131349.
[62] HAO C, ZHOU D, XU J, et al. One -pot synthesis of vancomycin-encapsulated ZIF-8 nanoparticles as multivalent and photocatalytic antibacterial agents for selective-killing of pathogenic gram-positive bacteria [J]. Journal of Materials Science, 2021, 56(15): 9434-44.
[63] MENG X, GUAN J, LAI S, et al. pH-responsive curcumin-based nanoscaleZIF-8 combining chemophotodynamic therapy for excellent antibacterial activity [J]. RSC Adv, 2022, 12(16): 10005 -13.
[64] CHEN J, ZHENG J, HUANG Q, et al. Carbon fibers@Co -ZIFs derivations composites as highly efficient electromagnetic wave absorbers [J]. J MaterSci Technol, 2021, 94: 239-46.
[65] SADIQ S, KHAN I, HUMAYUN M, et al. Synthesis of Metal –Organic Framework-Based ZIF-8@ZIF-67 Nanocomposites for Antibiotic Decomposition and Antibacterial Activities [J]. ACS Omega, 2023, 8(51): 49244 -58.
[66] 卜钰, 龙兴霖, 周杰, et al. ZIF-8 衍生氮掺杂多孔炭吸附剂的制备及对罗丹明B 吸附性能的研究 [J]. 化工技术与开发, 2023, 52(04): 14-9.
[67] LIU Y, WANG N, PAN J H, et al. In Situ Synthesis of MOF Membranes on ZnAl-CO3 LDH Buffer Layer-Modified Substrates [J].Journal of the American Chemical Society, 2014, 136(41): 14353 -6.
[68] ZHANG M, LIU Y. Enhancing the anti-corrosion performance of ZIF-8-based coatings via microstructural optimization [J]. New Journal of Chemistry, 2020, 44(7): 2941-6.
[69] JIN R, BIAN Z, LI J, et al. stal coatings on a polyimide substrate and their catalytic behaviours for the Knoevenagel reaction [J]. Dalton Trans, 2013, 42(11): 3936-40.
[70] KASNERYK V, POSCHMANN M, SERDECHNOVA M, et al. Formation and structure of ZIF-8@PEO coating on the surface of zinc [J]. Surf Coat Technol, 2022, 445: 10.
[71] CHEN Y N, WU L, YAO W H, et al. In situ growth of Mg -Zn-Al LDHs by ZIF-8 carrying Zn source and micro-arc oxidation integrated coating for corrosion and protection of magnesium alloys [J]. Surf Coat Technol, 2022,451: 13.
[72] CHEN Y, WU L, YAO W, et al. Development of metal-organic framework (MOF) decorated graphene oxide/MgAl-layered double hydroxide coating via microstructural optimization for anti-corrosion micro-arc oxidation coatings of magnesium alloy [J]. J Mater Sc i Technol, 2022, 130: 12-26.
[73] SUTRISNA P, PRASETYA N, HIMMA N, et al. A mini‐review and recentoutlooks on the synthesis and applications of zeolite imidazolate framework‐8 (ZIF‐8) membranes on polymeric substrate [J]. Journal of Chemical Technology & Biotechnology, 2020, 95(11): 2767 -74.
[74] YANG Y, GUO Z, HUANG W, et al. Fabrication of multifunctional textileswith durable antibacterial property and efficient oil-water separation via in situ growth of zeolitic imidazolate framework -8 (ZIF-8) on cotton fabric[J]. Appl Surf Sci, 2020, 503: 144079.
[75] DUAN C, XUE K, CUI L, et al. In vitro degradation and dual responsivelyantibacterial zeolitic imidazolate frameworks-8@Rhein composite coatingon magnesium alloy [J]. Chem Eng J, 2024, 488: 150832.
[76] LING L, CAI S, ZUO Y, et al. Copper-doped zeolitic imidazolate frameworks-8/hydroxyapatite composite coating endows magnesium alloy with excellent corrosion resistance, antibacterial ability and biocompatibility [J]. Colloid Surf B-Biointerfaces, 2022, 219: 11.
[77] LI W, TIAN A, LI T, et al. Ag/ZIF-8/Mg-Al LDH composite coating on MAO pretreated Mg alloy as a multi-ion-release platform to improve corrosion resistance, osteogenic activity, and photothermal antibacterial properties[J]. Surface and Coatings Techno logy, 2023, 464: 129555.
[78] AWANG D, AZIZ F, MOHAMED M, et al. ZIF-8 membrane: the synthesis technique and nanofiltration application [J]. Emergent Materials, 2022, 5(5): 1289-310.
[79] MIR S, SHROTRIYA V, AL-MUHIMEED T, et al. Metal and metal oxide nanostructures applied as alternatives of antibiotics [J]. Inorganic Chemistry Communications, 2023, 150: 110503.
[80] JAYALAKSHMI B. COMPARATIVE STUDY ON HEALING POTENTIAL OF 0.01% SILVER NITRATE AND 1% POVIDONE IODINE OVER CHRO参考文献89NIC ULCER [J]. Int J Acad Med Pharm, 2023, 5(1): 991 -4.
[81] CRISAN C, MOCAN T, MANOLEA M, et al. Review on Silver Nanoparticles as a Novel Class of Antibacterial Solutions [J]. Applied Sciences, 2021, 11(3): 1120.
[82] BRUNA T, MALDONADO-BRAVO F, JARA P, et al. Silver Nanoparticles and Their Antibacterial Applications [J]. International Journal of Molecular Sciences, 2021, 22(13): 7202.
[83] DAKAL T, KUMAR A, MAJUMDAR R, et al. Mechanistic basis of antimicrobial actions of silver nanoparticles [J]. Frontiers in Microbiology, 2016,7(NOV).
[84] LAMICHHANE J R, OSDAGHI E, BEHLAU F, et al. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review [J]. Agronomy for Sustainable Development, 2018, 38(3).
[85] PAVELKOVá M, VYSLOUŽIL J, KUBOVá K, et al. Biological role of copper as an essential trace element in the human organism. Biologická role mědi jako základního stopového prvku v lidském organismu [J]. Ceska Slov Farm, 2018, 67(4): 143-53.
[86] SANTO C E, QUARANTA D, GRASS G. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage [J]. Microbiologyopen, 2012, 1(1): 46-52.
[87] EMAM H, AHMED H, BECHTOLD T. In -situ deposition of Cu2O micro-needles for biologically active textiles and their release properties [J]. Carbohydrate polymers, 2017, 165: 255-65.
[88] OHSUMI Y, KITAMOTO K, ANRAKU Y. Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion [J]. Journal of Bacteriology, 1988, 170(6): 2676 -82.
[89] SANTO C, LAM E, ELOWSKY C, et al. Bacterial killing by dry metallic copper surfaces [J]. Applied and environmental microbiology, 2011, 77(3): 794-802.
[90] WARNES S, GREEN S, MICHELS H, et al. Biocidal efficacy of copper alloys against pathogenic enterococci involves degradation of genomic and plasmid DNAs [J]. Applied and environmental microbiology, 2010, 76(16): 5390-401.
[91] WARNES S, KEEVIL C. Mechanism of copper surface toxicity in vancomycin-resistant enterococci following wet or dry surface contact [J]. Appliedand environmental microbiology, 2011, 77(17): 6049 -59.
[92] LI Y, NIU J, ZHANG W, et al. Influence of aqueous media on the ROS -mediated toxicity of ZnO nanoparticles toward green fluorescent protein -expressing Escherichia coli under UV-365 irradiation [J]. Langmuir : the ACS journal of surfaces and colloids, 2014, 30 10: 2852-62.
[93] BELLANGER X, BILLARD P, SCHNEIDER R, et al. Stability and toxicityof ZnO quantum dots: Interplay between nanoparticles and bacteria [J]. Journal of Hazardous Materials, 2015, 283: 110 -6.
[94] ZHANG E, ZHAO X, HU J, et al. Antibacterial metals and alloys for potential biomedical implants [J]. Bioactive Materials, 2021, 6(8): 2569 -612.
[95] AZAM A, AHMED A, OVES M, et al. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study [J]. Int J Nanomedicine, 2012, 7: 6003 -9.
[96] XIE Y, HE Y, IRWIN P, et al. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni [J]. Appl Environ Microbiol, 2011, 77(7): 2325-31.
[97] LIU Y, YANG F, PAN Z, et al. Gallium-enabled bactericidal medicine [J]. Materials Today, 2023, 67: 548-65.
[98] BULLEN J, ROGERS H, SPALDING P, et al. Iron and infection: the heart of the matter [J]. FEMS Immunology & Medical Microbiology, 2005, 43(3):325-30.
[99] KANEKO Y, THOENDEL M, OLAKANMI O, et al. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity [J]. The Journal of clinical investigation, 2007, 117(4): 877-88.
[100]LI L, CHANG H, YONG N, et al. Superior antibacterial activity of gallium based liquid metals due to Ga 3+ induced intracellular ROS generation [J]. Journal of Materials Chemistry B, 2021, 9(1): 85 -93.
[101]PATEL S, LYONS A R, HOSKING D J. Drugs used in the treatment of metabolic bone disease: clinical pharmacology and therapeutic use [J]. Drugs,1993, 46: 594-617.
[102]CHEN J, ZHANG Y, IBRAHIM M, et al. In vitro degradation and antibacterial property of a copper-containing micro-arc oxidation coating on Mg -2Zn-1Gd-0.5Zr alloy [J]. Colloids and Surfaces B: Biointerfaces, 2019, 179:77-86.
[103]WANG X, WANG H, CHENG J, et al. Initiative ROS generation of Cu -doped ZIF-8 for excellent antibacterial performance [J]. Chem Eng J, 2023, 466: 143201.
[104]ZIF-8 CCDC :823084 [Z]. 2012.https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=823084&DatabaseToSearch=Published
[105]LI M, ZHU L, LIN D. Toxicity of ZnO Nanoparticles to Escherichia coli: Mechanism and the Influence of Medium Components [J]. Environmental Science & Technology, 2011, 45(5): 1977 -83.
[106]MALIK A, NATH M, MOHIYUDDIN S, et al. Multifunctional CdSNPs@ZIF-8: Potential Antibacterial Agent against GFP-Expressing Escherichia coli and Staphylococcus aureus and Efficient Photocatalyst for Degradation of Methylene Blue [J]. ACS Omega, 2018, 3(7 ): 8288-308.
[107]AHMAD N, MD NORDIN N A H, JAAFAR J, et al. Eco -friendly method for synthesis of zeolitic imidazolate framework 8 decorated graphene oxidefor antibacterial activity enhancement [J]. Particuology, 2020, 49: 24 -32.
[108]PANDA T, GUPTA K M, JIANG J, et al. Enhancement of CO2 uptake in iso-reticular Co based zeolitic imidazolate frameworks via metal replacement [J]. CrystEngComm, 2014, 16(22): 4677 -80.
[109]YANG T, WANG D, LIU X. Antibacterial activity of an NIR-induced Zn ion release film [J]. Journal of materials chemistry B, 2020, 8(3): 406 -15.
[110]LEóN-ALCAIDE L, LóPEZ-CABRELLES J, ESTEVE-ROCHINA M, et al.Implementing Mesoporosity in Zeolitic Imidazolate Frameworks through Clip-Off Chemistry in Heterometallic Iron –Zinc ZIF-8 [J]. Journal of the American Chemical Society, 2023, 145(42): 23249 -56.
[111]WANG Y, HAN B, XIE Y, et al. Combination of gallium(iii) with acetate for combating antibiotic resistant: Pseudomonas aeruginosa [J]. Chemical Science, 2019, 10(24): 6099-106

所在学位评定分委会
材料与化工
国内图书分类号
TG146.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778911
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
刘益铭. 基于可降解镁合金的 Cu(Ga)@ZIF-8-MAO 复合涂层的制备及其抗菌性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233306-刘益铭-中国科学院深圳(6117KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘益铭]的文章
百度学术
百度学术中相似的文章
[刘益铭]的文章
必应学术
必应学术中相似的文章
[刘益铭]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。