[1] FIORENTINI D, CAPPADONE C, FARRUGGIA G, et al. Magnesium: biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency [J]. Nutrients, 2021, 13(4): 1136.
[2] YANG Y, HE C, DIANYU E, et al. Mg bone implant: Features, developments and perspectives [J]. Materials & Design, 2020, 185: 108259.
[3] GU Z, ZHOU Y, DONG Q, et al. Designing lightweight multicomponent magnesium alloys with exceptional strength and high stiffness [J]. MaterialsScience and Engineering: A, 2022, 855: 143901.
[4] TSAKIRIS V, TARDEI C, CLICINSCHI F M. Biodegradable Mg alloys fororthopedic implants–A review [J]. Journal of Magnesium and Alloys, 2021, 9(6): 1884-905.
[5] SONG M, ZENG R, DING Y, et al. Recent advances in biodegradation controls over Mg alloys for bone fracture management: A review [J]. J Mater Sci Technol, 2019, 35(4): 535-44.
[6] HE M, CHEN L, YIN M, et al. Review on magnesium and magnesium-based alloys as biomaterials for bone immobilization [J]. Journal of Materials Research and Technology, 2023, 23: 4396 -419.
[7] WITTE F. The history of biodegradable magnesium implants: A review [J].Acta Biomaterialia, 2010, 6(5): 1680 -92.
[8] AGARWAL S, CURTIN J, DUFFY B, et al. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications [J]. Materials Science and Engineering: C, 2016, 68: 948-63.
[9] ECHEVERRY-RENDON M, ALLAIN J, ROBLEDO S, et al. Coatings for biodegradable magnesium-based supports for therapy of vascular disease: Ageneral view [J]. Materials Science and Engineering: C, 2019, 102: 150 -63.
[10] BOBBY M, SINGH R. A mechanistic study ofin vitrodegradation of magnesium alloy using electrochemical techniques [J]. Journal of Biomedical Materials Research Part A, 2009, 9999A: NA-NA.
[11] ALVES M, PROSEK T, SANTOS C, et al. In vitro degradation of ZnO flowered coated Zn-Mg alloys in simulated physiological conditions [J]. Materials Science and Engineering: C, 2017, 70: 112 -20.
[12] ZHANG C, CHEN Y, YU B, et al. Effects of nucleation pretreatment on corrosion resistance of conversion coating on magnesium alloy Mg -10Gd-3Y-0.4 Zr [J]. Corrosion Communications, 2023, 10: 69 -79.
[13] WEN T, TAN S, LI R, et al. Large -Scale Integration of the Ion-ReinforcedPhytic Acid Layer Stabilizing Magnesium Metal Anode [J]. ACS nano, 2024.
[14] XUE X, LIANG C, WANG D, et al. The research progress of self-healing coatings for magnesium/magnesium alloy [J]. J Alloy Compd, 2023: 170710.
[15] WEI X, MA J, MA S, et al. Enhanced anti-corrosion and biocompatibility of a functionalized layer formed on ZK60 Mg alloy via hydroxyl (OH -) ion implantation [J]. Colloids and Surfaces B: Biointerfaces, 2022, 216: 112533.
[16] LIANG T, ZENG L, SHI Y, et al. In vitro and in vivo antibacterial performance of Zr & O PIII magnesium alloys with high concentration of oxygen vacancies [J]. Bioactive Materials, 2021, 6(10): 3049 -61.
[17] BAKHSHESHI-RAD H, HAMZAH E, DAROONPARVAR M, et al. Bi-layernano-TiO2/FHA composite coatings on Mg–Zn–Ce alloy prepared by combined physical vapour deposition and electrochemical deposition methods [J]. Vacuum, 2014, 110: 127-35.
[18] LIU Z, WANG T, XU Y, et al. Double -layer calcium phosphate sandwichedsiloxane composite coating to enhance corrosion resistance and biocompatibility of magnesium alloys for bone tissue engineering [J]. Progress in Organic Coatings, 2023, 177: 107417.
[19] TAN J, LIU L, WANG H, et al. Advances in anti-corrosion coatings on magnesium alloys and their preparation methods [J]. Journal of Coatings Technology and Research, 2024: 1-15.
[20] YU C, CUI L, ZHOU Y, et al. Self-degradation of micro-arc oxidation/chitosan composite coating on Mg-4Li-1Ca alloy [J]. Surface and Coatings Technology, 2018, 344: 1-11.
[21] QIN J, SHI X, LI H, et al. Performance and failure process of green recycling solutions for preparing high degradation resistance coating on biomedical magnesium alloys [J]. Green Chemistry, 2022, 24(20): 8113 -30.
[22] KURODA P, CARDOSO G, GRANDINI C. The effect of Nb on the formation of TiO2 anodic coating oxide on Ti –Nb alloys through MAO treatment [J]. Journal of Materials Research and Technology, 2024, 29: 1165 -71.
[23] LIU Y, CHEN C, LIANG T, et al. In vitro long -term antibacterial performance and mechanism of Zn-doped micro-arc oxidation coatings [J]. Colloidsand Surfaces B: Biointerfaces, 2024, 233: 113634.
[24] WU M, JIANG F. Preparation, interface properties and corrosion behavior of nano-modified MAO ceramic film on 5B70 Al alloy [J]. J Alloy Compd,2023, 967: 171829.
[25] MATKOVIĆ T, SLOKAR L, MATKOVIĆ P. Effect of composition on the structure and properties of Ti-Co-Cr alloys [J]. Metalurgija, 2010, 49(1): 33-6.
[26] CHEN C, SHI X, ZHANG S, et al. Mutual Impact of Four Organic CalciumSalts on the Formation and Properties of Micro -Arc Oxidation Coatings on AZ31B Magnesium Alloys [J]. Coatings, 2024, 14(1): 140.
[27] YANG C, CUI S, FU R K, et al. Optimization of the in vitro biodegradability, cytocompatibility, and wear resistance of the AZ31B alloy by micro -arc oxidation coatings doped with zinc phosphate [J]. J Mater Sci Technol, 2024, 179: 224-39.
[28] DONG H, LI Q, XIE D, et al. Forming characteristics and mechanisms of micro-arc oxidation coatings on magnesium alloys based on different types of single electrolyte solutions [J]. Ceramics International, 2023, 49(19): 32271-81.
[29] TULCHINSKY T, VARAVIKOVA E, COHEN M. Chapter 4 - Communicable diseases [M]//TULCHINSKY T H, VARAVIKOVA E A, COHEN M J. TheNew Public Health (Fourth Edition). San Diego; Academic Press. 2023: 215-366.
[30] SALEKI K, RAZI S, REZAEI N. Chapter 6 - Infection and Immunity [M]//REZAEI N. Clinical Immunology. Academic Press. 2023: 493 -598.
[31] AGUILERA J , GISBERT M, MEDIERO A, et al. Antibiotic delivery from bone-targeted mesoporous silica nanoparticles for the treatment of osteomyelitis caused by methicillin-resistant Staphylococcus aureus [J]. Acta Biomaterialia, 2022, 154: 608-25.
[32] QUARATA F, LELLI D, BIANCONE D M, et al. A urinary tract infection caused by Escherichia coli mucoid phenotype progresses to a pneumonia and respiratory failure [J]. The Lancet, 2023, 401(10380): 950.
[33] CHEN X, ZHOU J, QIAN Y, et al. Antibacterial coatings on orthopedic implants [J]. Materials Today Bio, 2023, 19: 100586.
[34] FRAVAL A, WANG J, TARABICHI S, et al. Optimal timing for reimplantation in the setting of two stage revision for prosthetic joint infection [J]. Revista espanola de cirugia ortopedica y traumatologia, 2023, 67(3): 246 -52.
[35] LI P, YIN R, CHENG J, et al. Bacterial biofilm formation on biomaterials and approaches to its treatment and prevention [J]. International Journal of Molecular Sciences, 2023, 24(14): 11680.
[36] YOON B, HA Y, LEE Y, et al. Postoperative Deep Infection After Cemented Versus Cementless Total Hip Arthroplasty: A Meta -Analysis [J]. Journal of Arthroplasty, 2015, 30(10): 1823-7.
[37] CHOI H, BEDAIR H. Mortality Following Revision Total Knee Arthroplasty: A Matched Cohort Study of Septic versus Aseptic Revisions [J]. The Journal of Arthroplasty, 2014, 29(6): 1216 -8.
[38] MORGENSTERN M, KüHL R, ECKARDT H, et al. Diagnostic challenges and future perspectives in fracture -related infection [J]. Injury, 2018, 49: S83-S90.
[39] GIULIERI S, GRABER P, OCHSNER P, et al. Management of infection associated with total hip arthroplasty according to a treatment algorithm [J]. Infection, 2004, 32: 222-8.
[40] VERKKALA K, EKLUND A, OJAJäRVI J, et al. The conventionally ventilated operating theatre and air contamination control during cardiac surgery–bacteriological and particulate matter control garment options for low level contamination [J]. European journal of cardio-thoracic surgery, 1998,14(2): 206-10.
[41] CAMPOCCIA D, MONTANARO L, ARCIOLA C R. The significance of infection related to orthopedic devices and issues of antibiotic resistance [J].Biomaterials, 2006, 27(11): 2331-9.
[42] SHI X, SHAN Y, DU M, et al. Synthesis and application of metal-organic framework films [J]. Coord Chem Rev, 2021, 444: 214060.
[43] KARAKEçILI A, TOPUZ B, KORPAYEV S, et al. Metal-organic frameworks for on-demand pH controlled delivery of vancomycin from chitosan scaffolds [J]. Materials Science and Engineering: C, 2019, 105: 110098.
[44] RAN J, ZENG H, CAI J, et al. Rational design of a stable, effective, and sustained dexamethasone delivery platform on a titanium implant: An innovative application of metal organic frameworks in bone implants [J]. Chem Eng J, 2018, 333: 20-33.
[45] LIU Y, ZHU Z, PEI X, et al. ZIF-8-Modified Multifunctional Bone -Adhesive Hydrogels Promoting Angiogenesis and Osteogenesis for Bone Regeneration [J]. ACS Applied Materials and Interfaces, 2020, 12(33): 36978 -95.
[46] KAUR H, MOHANTA G C, GUPTA V, et al. Synthesis and characterizationof ZIF-8 nanoparticles for controlled release of 6 -mercaptopurine drug [J].Journal of Drug Delivery Science and Technology, 2017, 41: 106 -12.
[47] ZHEN P, JIANDONG G, ZHANG Q, et al. Research progress and application of metal-organic frameworks antibacterial composite materials and fib ers [J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2396-403.
[48] LI R, CHEN T T, PAN X L. Metal-Organic-Framework-Based Materials for Antimicrobial Applications [J]. Acs Nano, 2021, 15(3): 3808 -48.
[49] TIMOFEEVA M, PANCHENKO V, JHUNG S. Insights into the Structure –Property–Activity Relationship of Zeolitic Imidazolate Frameworks for Acid–Base Catalysis [J]. International Journal of Molecular Sciences, 2023, 24(5): 4370.
[50] HEALY C, PATIL K, WILSON B, et al. The thermal stability of metal-organic frameworks [J]. Coord Chem Rev, 2020, 419: 213388.
[51] ZHANG D, XIAO L, XIONG G, et al. Recent progress of zeolitic imidazolate frameworks (ZIFs) in superhydrophobic and anticorrosive coatings for metals and their alloys [J]. Journal of Coatings Technology and Research, 2023, 20(4): 1157-77.
[52] PARK K, NI Z, CôTé A, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186 -91.
[53] HU Y, KAZEMIAN H, ROHANI S, et al. In situ high pressure study of ZIF-8 by FTIR spectroscopy [J]. Chemical Communications, 2011, 47(47): 12694-6.
[54] TAHERI M, ASHOK D, SEN T, et al. Stability of ZIF -8 nanopowders in bacterial culture media and its implication for antibacterial properties [J]. Chem Eng J, 2021, 413: 127511.
[55] 宋彦哲, 李庆朝. 金属-有机骨架 (MOFs) 多孔材料 ZIF-8 的性能研究 [J]. 橡胶科技, 2019, 17(11): 616-9.
[56] LUZURIAGA M, BENJAMIN C, GAERTNER M, et al. ZIF -8 degrades in cell media, serum, and some—but not all—common laboratory buffers [J]. Supramolecular Chemistry, 2019, 31(8): 485 -90.
[57] ROTMAN S, GRIJPMA D, RICHARDS R, et al. Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics [J]. Journal of Controlled Release, 2018, 269: 88 -99.
[58] WYSZOGRODZKA G, MARSZALEK B, GIL B, et al. Metal-organic frameworks: mechanisms of antibacterial action and potential applications [J]. Drug Discovery Today, 2016, 21(6): 1009 -18.
[59] LI P, LI J Z, FENG X, et al. Metal-organic frameworks with photocatalyticbactericidal activity for integrated air cleaning [J]. Nat Commun, 2019, 10.
[60] ZHANG Y, ZHANG X, SONG J, et al. Ag/H-ZIF-8 Nanocomposite as an Effective Antibacterial Agent Against Pathogenic Bacteria [J]. Nanomaterials, 2019, 9(11): 1579.
[61] LIANG Z, WANG H, ZHANG K, et al. Oxygen -defective MnO2/ZIF-8 nanorods with enhanced antibacterial activity under solar light [J]. Chem EngJ, 2022, 428: 131349.
[62] HAO C, ZHOU D, XU J, et al. One -pot synthesis of vancomycin-encapsulated ZIF-8 nanoparticles as multivalent and photocatalytic antibacterial agents for selective-killing of pathogenic gram-positive bacteria [J]. Journal of Materials Science, 2021, 56(15): 9434-44.
[63] MENG X, GUAN J, LAI S, et al. pH-responsive curcumin-based nanoscaleZIF-8 combining chemophotodynamic therapy for excellent antibacterial activity [J]. RSC Adv, 2022, 12(16): 10005 -13.
[64] CHEN J, ZHENG J, HUANG Q, et al. Carbon fibers@Co -ZIFs derivations composites as highly efficient electromagnetic wave absorbers [J]. J MaterSci Technol, 2021, 94: 239-46.
[65] SADIQ S, KHAN I, HUMAYUN M, et al. Synthesis of Metal –Organic Framework-Based ZIF-8@ZIF-67 Nanocomposites for Antibiotic Decomposition and Antibacterial Activities [J]. ACS Omega, 2023, 8(51): 49244 -58.
[66] 卜钰, 龙兴霖, 周杰, et al. ZIF-8 衍生氮掺杂多孔炭吸附剂的制备及对罗丹明B 吸附性能的研究 [J]. 化工技术与开发, 2023, 52(04): 14-9.
[67] LIU Y, WANG N, PAN J H, et al. In Situ Synthesis of MOF Membranes on ZnAl-CO3 LDH Buffer Layer-Modified Substrates [J].Journal of the American Chemical Society, 2014, 136(41): 14353 -6.
[68] ZHANG M, LIU Y. Enhancing the anti-corrosion performance of ZIF-8-based coatings via microstructural optimization [J]. New Journal of Chemistry, 2020, 44(7): 2941-6.
[69] JIN R, BIAN Z, LI J, et al. stal coatings on a polyimide substrate and their catalytic behaviours for the Knoevenagel reaction [J]. Dalton Trans, 2013, 42(11): 3936-40.
[70] KASNERYK V, POSCHMANN M, SERDECHNOVA M, et al. Formation and structure of ZIF-8@PEO coating on the surface of zinc [J]. Surf Coat Technol, 2022, 445: 10.
[71] CHEN Y N, WU L, YAO W H, et al. In situ growth of Mg -Zn-Al LDHs by ZIF-8 carrying Zn source and micro-arc oxidation integrated coating for corrosion and protection of magnesium alloys [J]. Surf Coat Technol, 2022,451: 13.
[72] CHEN Y, WU L, YAO W, et al. Development of metal-organic framework (MOF) decorated graphene oxide/MgAl-layered double hydroxide coating via microstructural optimization for anti-corrosion micro-arc oxidation coatings of magnesium alloy [J]. J Mater Sc i Technol, 2022, 130: 12-26.
[73] SUTRISNA P, PRASETYA N, HIMMA N, et al. A mini‐review and recentoutlooks on the synthesis and applications of zeolite imidazolate framework‐8 (ZIF‐8) membranes on polymeric substrate [J]. Journal of Chemical Technology & Biotechnology, 2020, 95(11): 2767 -74.
[74] YANG Y, GUO Z, HUANG W, et al. Fabrication of multifunctional textileswith durable antibacterial property and efficient oil-water separation via in situ growth of zeolitic imidazolate framework -8 (ZIF-8) on cotton fabric[J]. Appl Surf Sci, 2020, 503: 144079.
[75] DUAN C, XUE K, CUI L, et al. In vitro degradation and dual responsivelyantibacterial zeolitic imidazolate frameworks-8@Rhein composite coatingon magnesium alloy [J]. Chem Eng J, 2024, 488: 150832.
[76] LING L, CAI S, ZUO Y, et al. Copper-doped zeolitic imidazolate frameworks-8/hydroxyapatite composite coating endows magnesium alloy with excellent corrosion resistance, antibacterial ability and biocompatibility [J]. Colloid Surf B-Biointerfaces, 2022, 219: 11.
[77] LI W, TIAN A, LI T, et al. Ag/ZIF-8/Mg-Al LDH composite coating on MAO pretreated Mg alloy as a multi-ion-release platform to improve corrosion resistance, osteogenic activity, and photothermal antibacterial properties[J]. Surface and Coatings Techno logy, 2023, 464: 129555.
[78] AWANG D, AZIZ F, MOHAMED M, et al. ZIF-8 membrane: the synthesis technique and nanofiltration application [J]. Emergent Materials, 2022, 5(5): 1289-310.
[79] MIR S, SHROTRIYA V, AL-MUHIMEED T, et al. Metal and metal oxide nanostructures applied as alternatives of antibiotics [J]. Inorganic Chemistry Communications, 2023, 150: 110503.
[80] JAYALAKSHMI B. COMPARATIVE STUDY ON HEALING POTENTIAL OF 0.01% SILVER NITRATE AND 1% POVIDONE IODINE OVER CHRO参考文献89NIC ULCER [J]. Int J Acad Med Pharm, 2023, 5(1): 991 -4.
[81] CRISAN C, MOCAN T, MANOLEA M, et al. Review on Silver Nanoparticles as a Novel Class of Antibacterial Solutions [J]. Applied Sciences, 2021, 11(3): 1120.
[82] BRUNA T, MALDONADO-BRAVO F, JARA P, et al. Silver Nanoparticles and Their Antibacterial Applications [J]. International Journal of Molecular Sciences, 2021, 22(13): 7202.
[83] DAKAL T, KUMAR A, MAJUMDAR R, et al. Mechanistic basis of antimicrobial actions of silver nanoparticles [J]. Frontiers in Microbiology, 2016,7(NOV).
[84] LAMICHHANE J R, OSDAGHI E, BEHLAU F, et al. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review [J]. Agronomy for Sustainable Development, 2018, 38(3).
[85] PAVELKOVá M, VYSLOUŽIL J, KUBOVá K, et al. Biological role of copper as an essential trace element in the human organism. Biologická role mědi jako základního stopového prvku v lidském organismu [J]. Ceska Slov Farm, 2018, 67(4): 143-53.
[86] SANTO C E, QUARANTA D, GRASS G. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage [J]. Microbiologyopen, 2012, 1(1): 46-52.
[87] EMAM H, AHMED H, BECHTOLD T. In -situ deposition of Cu2O micro-needles for biologically active textiles and their release properties [J]. Carbohydrate polymers, 2017, 165: 255-65.
[88] OHSUMI Y, KITAMOTO K, ANRAKU Y. Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion [J]. Journal of Bacteriology, 1988, 170(6): 2676 -82.
[89] SANTO C, LAM E, ELOWSKY C, et al. Bacterial killing by dry metallic copper surfaces [J]. Applied and environmental microbiology, 2011, 77(3): 794-802.
[90] WARNES S, GREEN S, MICHELS H, et al. Biocidal efficacy of copper alloys against pathogenic enterococci involves degradation of genomic and plasmid DNAs [J]. Applied and environmental microbiology, 2010, 76(16): 5390-401.
[91] WARNES S, KEEVIL C. Mechanism of copper surface toxicity in vancomycin-resistant enterococci following wet or dry surface contact [J]. Appliedand environmental microbiology, 2011, 77(17): 6049 -59.
[92] LI Y, NIU J, ZHANG W, et al. Influence of aqueous media on the ROS -mediated toxicity of ZnO nanoparticles toward green fluorescent protein -expressing Escherichia coli under UV-365 irradiation [J]. Langmuir : the ACS journal of surfaces and colloids, 2014, 30 10: 2852-62.
[93] BELLANGER X, BILLARD P, SCHNEIDER R, et al. Stability and toxicityof ZnO quantum dots: Interplay between nanoparticles and bacteria [J]. Journal of Hazardous Materials, 2015, 283: 110 -6.
[94] ZHANG E, ZHAO X, HU J, et al. Antibacterial metals and alloys for potential biomedical implants [J]. Bioactive Materials, 2021, 6(8): 2569 -612.
[95] AZAM A, AHMED A, OVES M, et al. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study [J]. Int J Nanomedicine, 2012, 7: 6003 -9.
[96] XIE Y, HE Y, IRWIN P, et al. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni [J]. Appl Environ Microbiol, 2011, 77(7): 2325-31.
[97] LIU Y, YANG F, PAN Z, et al. Gallium-enabled bactericidal medicine [J]. Materials Today, 2023, 67: 548-65.
[98] BULLEN J, ROGERS H, SPALDING P, et al. Iron and infection: the heart of the matter [J]. FEMS Immunology & Medical Microbiology, 2005, 43(3):325-30.
[99] KANEKO Y, THOENDEL M, OLAKANMI O, et al. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity [J]. The Journal of clinical investigation, 2007, 117(4): 877-88.
[100]LI L, CHANG H, YONG N, et al. Superior antibacterial activity of gallium based liquid metals due to Ga 3+ induced intracellular ROS generation [J]. Journal of Materials Chemistry B, 2021, 9(1): 85 -93.
[101]PATEL S, LYONS A R, HOSKING D J. Drugs used in the treatment of metabolic bone disease: clinical pharmacology and therapeutic use [J]. Drugs,1993, 46: 594-617.
[102]CHEN J, ZHANG Y, IBRAHIM M, et al. In vitro degradation and antibacterial property of a copper-containing micro-arc oxidation coating on Mg -2Zn-1Gd-0.5Zr alloy [J]. Colloids and Surfaces B: Biointerfaces, 2019, 179:77-86.
[103]WANG X, WANG H, CHENG J, et al. Initiative ROS generation of Cu -doped ZIF-8 for excellent antibacterial performance [J]. Chem Eng J, 2023, 466: 143201.
[104]ZIF-8 CCDC :823084 [Z]. 2012.https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=823084&DatabaseToSearch=Published
[105]LI M, ZHU L, LIN D. Toxicity of ZnO Nanoparticles to Escherichia coli: Mechanism and the Influence of Medium Components [J]. Environmental Science & Technology, 2011, 45(5): 1977 -83.
[106]MALIK A, NATH M, MOHIYUDDIN S, et al. Multifunctional CdSNPs@ZIF-8: Potential Antibacterial Agent against GFP-Expressing Escherichia coli and Staphylococcus aureus and Efficient Photocatalyst for Degradation of Methylene Blue [J]. ACS Omega, 2018, 3(7 ): 8288-308.
[107]AHMAD N, MD NORDIN N A H, JAAFAR J, et al. Eco -friendly method for synthesis of zeolitic imidazolate framework 8 decorated graphene oxidefor antibacterial activity enhancement [J]. Particuology, 2020, 49: 24 -32.
[108]PANDA T, GUPTA K M, JIANG J, et al. Enhancement of CO2 uptake in iso-reticular Co based zeolitic imidazolate frameworks via metal replacement [J]. CrystEngComm, 2014, 16(22): 4677 -80.
[109]YANG T, WANG D, LIU X. Antibacterial activity of an NIR-induced Zn ion release film [J]. Journal of materials chemistry B, 2020, 8(3): 406 -15.
[110]LEóN-ALCAIDE L, LóPEZ-CABRELLES J, ESTEVE-ROCHINA M, et al.Implementing Mesoporosity in Zeolitic Imidazolate Frameworks through Clip-Off Chemistry in Heterometallic Iron –Zinc ZIF-8 [J]. Journal of the American Chemical Society, 2023, 145(42): 23249 -56.
[111]WANG Y, HAN B, XIE Y, et al. Combination of gallium(iii) with acetate for combating antibiotic resistant: Pseudomonas aeruginosa [J]. Chemical Science, 2019, 10(24): 6099-106
修改评论