[1] Tovar-Facio J, Martín M, Ponce-Ortega J M. Sustainable energy transition: modeling and optimization[J]. Current Opinion in Chemical Engineering, 2021, 31: 100661.
[2] Wrublewski D T. Analysis for science librarians of the 2019 Nobel Prize in chemistry: Lithium-ion batteries[J]. Science & Technology Libraries, 2020, 39(1): 51-67.
[3] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[4] MICHAEL J LEE, JUNGHUN HAN, KYUNGBIN LEE, et al. Elastomeric electrolytes for high-energy solid-state lithium batteries[J]. Nature. 2022(601): 217-222.
[5] HOU J, LU L, WANG L, et al. Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes[J]. Nature Communications, 2020, 11:5100.
[6] HE Y, REN X, XU Y, et al. Origin of lithium whisker formation and growth under stress[J]. Nature Nanotechnology, 2019, 14(11): 1042-1047.
[7] Langdon J, Manthiram A. Crossover effects in lithium‐metal batteries with a localized high concentration electrolyte and high‐nickel cathodes[J]. Advanced Materials, 2022, 34(41): 2205188.
[8] 李卓, 郭新. 面向高比能固态电池的聚合物基电解质固化技术[J]. 储能科学与技术, 2024,13(01):212-230.
[9] Xu L, Li J, Deng W, et al. Garnet Solid Electrolyte for Advanced All-olid-tate Li Batteries[J]. Advanced Energy Materials, 2020, 11(2).
[10] Janek, Jürgen, Zeier W G. A solid future for battery development[J]. Nature Energy, 2016, 1(9):16141.
[11] ZHANG Q, LIU K, LIU K, et al. Imidazole containing solid polymer electrolyte for lithium ion conduction and the effects of two lithium salts[J]. Electrochimica Acta, 2020, 351:136342.
[12] ZHOU D, SHANMUKARAJ D, TKACHEVA A, et al. Polymer electrolytes for lithium-based batteries: advances and prospects[J]. Chem, 2019, 5(9): 2326-2352.
[13] VERMA M L, SAHU H D. Study on ionic conductivity and dielectric properties of PEO-based solid nanocomposite polymer electrolytes[J]. Ionics, 2017, 23(9): 2339-2350.
[14] XUE Z, HE D, XIE X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38).
[15] CHA J H, DIDWAL P N, KIM J M, et al. Poly (ethylene oxide)-based composite solid polymer electrolyte containing Li7La3Zr2O12 and poly (ethylene glycol) dimethyl ether[J]. Journal of Membrane Science, 2020, 595: 117538.
[16] LI J, ZHU L, XU J, et al. Boosting the performance of poly (ethylene oxide)-based solid polymer electrolytes by blending with poly (vinylidene fluoride-co‐hexafluoropropylene) for solid-state lithium-ion batteries[J]. International Journal of Energy Research, 2020, 44(9): 7831-7840.
[17] MA Q, YUE J, FAN M, et al. Formulating the electrolyte towards high‐energy and safe rechargeable lithium-metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(30): 16554-16560.
[18] LIU Y, ZOU H, HUANG Z, et al. In situ polymerization of 1,3-dioxane as a highly compatible polymer electrolyte to enable the stable operation of 4.5 V Li-metal batteries[J]. Energy & Environmental Science, 2023, 16(12): 6110-6119.
[19] LI Z, YU R, WENG S, et al. Tailoring polymer electrolyte ionic conductivity for production of low-temperature operating quasi-all-solid-state lithium metal batteries[J]. Nature Communications, 2023, 14(1): 482.
[20] WU H, TANG B, DU X, et al. LiDFOB initiated in situ polymerization of novel eutectic solution enables room-temperature solid lithium metal batteries[J]. Advanced Science, 2020, 7(23): 2003370.
[21] REN Z, LI J, CAI M, et al. An in situ formed copolymer electrolyte with high ionic conductivity and high lithium-ion transference number for dendrite-free solid-state lithium metal batteries[J]. Journal of Materials Chemistry A, 2023, 11(4): 1966-1977.
[22] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618.
[23] ZHANG J, YANG J, DONG T, et al. Aliphatic polycarbonate-based solid-state polymer electrolytes for advanced lithium batteries: advances and perspective[J]. Small, 2018, 14(36): 1800821.
[24] CHAI J, LIU Z, MA J, et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Advanced Science, 2017, 4(2): 1600377.
[25] SUN B, MINDEMARK J, MOROZOV E V, et al. Ion transport in polycarbonate based solid polymer electrolytes: experimental and computational investigations[J]. Physical Chemistry Chemical Physics, 2016, 18(14): 9504-9513.
[26] YANG T, WANG C, ZHANG W, et al. A critical review on composite solid electrolytes for lithium batteries: Design strategies and interface engineering[J]. Journal of Energy Chemistry, 2023, 84: 189-209
[27] DING F, ZHANG J, YANG K. Research progress of inorganic lithium-ion solid electrolytes[J]. Chinese Journal of Power Sources, 2007, 31(6): 496.
[28] LAU J, DEBLOCK R H, BUTTS D M, et al. Sulfide solid electrolytes for lithium battery applications[J]. Advanced Energy Materials, 2018, 8(27): 1800933.
[29] A S C, A D X, B G L A, et al. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14:58-74.
[30] CHANG D, OH K, KIM S J, et al. Super-ionic conduction in solid-state Li7P3S11-type sulfide electrolytes[J]. Chemistry of Materials, 2018, 30(24): 8764-8770.
[31] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686.
[32] KUDU KUDU Ö U, FAMPRIKIS T, FLEUTOT B, et al. A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S-P2S5 binary system[J]. Journal of Power Sources, 2018, 407: 31-43.
[33] ZHANG Q, CAO D, MA Y, et al. Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries[J]. Advanced Materials, 2019, 31(44): 1901131.
[34] DEISEROTH H J, KONG S T, ECKERT H, et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angewandte Chemie, 2008, 120(4): 767-770.
[35] LIANG F, SUN Y, YUAN Y, et al. Designing inorganic electrolytes for solid-state Li-ion batteries: a perspective of LGPS and garnet[J]. Materials Today, 2021, 50: 418-441.
[36] YANG X, LIU J, PEI N, et al. The critical role of fillers in composite polymer electrolytes for lithium battery[J]. Nano-Micro Letters, 2023, 15(1): 74.
[37] WANG C, LIANG J, LUO J, et al. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries[J]. Science Advances, 2021, 7(37): 96-127.
[38] THANGADURAI V, KAACK H, WEPPNER W J F. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M=Nb, Ta)[J]. Journal of the American Ceramic Society, 2003, 86(3): 437-440.
[39] PARAMESWARAN A K, PAZHANISWAMY S, DEKANOVSKY L, et al. An integrated study on the ionic migration across the nano lithium lanthanum titanate (LLTO) and lithium iron phosphate-carbon (LFP-C) interface in all-solid-state Li-ion batteries[J]. Journal of Power Sources, 2023, 565: 232907.
[40] INAGUMA Y, LIQUAN C, ITOH M, et al. High ionic conductivity in lithium lanthanum titanate[J]. Solid State Communications, 1993, 86(10): 689-693.
[41] YU K, GU R, WU L, et al. Ionic and electronic conductivity of solid electrolyte Li0.5La0.5TiO3 doped with LiO2-SiO2-B2O3 glass[J]. Journal of Alloys and Compounds, 2018, 739: 892-896.
[42] LU J, LI Y. Perovskite-type Li-ion solid electrolytes: a review[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(8): 9736-9754.
[43] CHEN K, HUANG M, SHEN Y, et al. Improving ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12 sol into the precursor powder[J]. Solid State Ionics, 2013, 235: 8-13.
[44] YAN G, YU S, YANG W, et al. Anisotropy of the mechanical properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte material[J]. Journal of Power Sources, 2019, 437: 226940.
[45] SIYAL S H, SHAH S S A, NAJAM T, et al. Significant reduction in interface resistance and super-enhanced performance of lithium-metal battery by in situ construction of poly (vinylidene fluoride)-based solid-state membrane with dual ceramic fillers[J]. ACS Applied Energy Materials, 2021, 4(8): 8604-8614.
[46] BAO W, ZHAO L, ZHAO H, et al. Vapor phase infiltration of ZnO quantum dots for all-solid-state PEO-based lithium batteries[J]. Energy Storage Materials, 2021, 43: 258-265.
[47] GUO Z, PANG Y, XIA S, et al. Uniform and Anisotropic Solid Electrolyte Membrane Enables Superior Solid-tate Li Metal Batteries[J]. Advanced Science, 2021: 2100899.
[48] LIN Y, WANG X, LIU J, et al. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries[J]. Nano Energy, 2017, 31: 478-485.
[49] LI J, ZHU K, YAO Z, et al. A promising composite solid electrolyte incorporating LLZO into PEO/PVDF matrix for all-solid-state lithium-ion batteries[J]. Ionics, 2020, 26: 1101-1108.
[50] ZHENG X, YANG T, WEI J, et al. Co-contribution of quenching and nanocrystallization on ionic-conductivity improvement of a composite electrolyte of polyethylene Oxide/Li7La3Zr2O12 nanofibers at 45°C for all-solid-state Li metal batteries[J] Journal of Power Sources, 2021, 496: 229843.
[51] YANG G, LEHMANN M L, ZHAO S, et al. Anomalously high elastic modulus of a poly (ethylene oxide)-based composite electrolyte[J]. Energy Storage Materials, 2021, 35: 431-442.
[52] CAO B, HUANG Y, CAO W, et al. Layer-Structured Composite Solid-State Electrolyte with a Li1.3Al0.3Ti1.7(PO4)3-Coated Separator for High-Voltage Lithium Metal Batteries by In Situ Polymerization[J]. ACS Applied Energy Materials, 2023, 6(16): 8626-8633.
[53] 王蓉蓉, 朱振东, 彭文. 恒电位极化法测量LiPF6基电解液离子迁移数[J]. 电池工业, 2020(6):283-287.
[54] ZHANG X, TAN Q H, WU J B, et al. Review on the Raman spectroscopy of different types of layered materials[J]. Nanoscale, 2016, 8(12): 6435-6450.
[55] 赵亮, 胡勇胜, 李泓, 等. 拉曼光谱在锂离子电池研究中的应用[J]. 电化学, 2011, 17(1): 12
[56] GRISSA R, FERNANDEZ V, FAIRLEY N, et al. XPS and SEM-EDX Study of Electrolyte Nature Effect on Li Electrode in Lithium Metal Batteries[J]. Acs Applied Energy Materials, 2018, 1:5694-5702.
[57] 刘玉龙, 辛明杨, 丛丽娜, 等. 聚氧乙烯基聚合物固态电池的界面研究进展[J]. 物理学报, 2020, 69(22): 79-98.
[58] 张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展[J]. 物理学报, 2020,69(22):159-186.
[59] 陈静允, 梁朋, 马琳鸽, 等. 利用XPS氩离子刻蚀表征锂离子电池Si/C负极材料中含硅的活性物质[J]. 化学通报, 2023,86(07): 873-877.
[60] LIANG J, LUO J, SUN Q, et al. Recent Progress on Solid-State Hybrid Electrolytes for Solid-State Lithium Batteries[J]. Energy Storage Materials, 2019, 21: 308-334
[61] TAO X, LIU Y, LIU W, et al. Solid-state lithium–sulfur batteries operated at 37°C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer[J]. Nano letters, 2017, 17(5): 2967-2972.
[62] Fu K, Gong Y, Dai J, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries[J]. Proceedings of the National Academy of Sciences, 2016, 113(26): 7094-7099.
[63] RAGHAVAN P, ZHAO X, KIM J K, et al. Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly (vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers[J]. Electrochimica Acta, 2008, 54(2): 228-234.
[64] KIM S K, JUNG Y C, KIM D H, et al. Lithium-ion cells assembled with flexible hybrid membrane containing Li+ conducting lithium aluminum germanium phosphate[J]. Journal of The Electrochemical Society, 2016, 163(6): A974.
[65] HUO H, ZHAO N, SUN J, et al. Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery[J]. Journal of Power Sources, 2017, 372: 1-7.
[66] 米成. 锂离子电池界面反应活化能应用研究[J]. 湖南有色金属, 2023,39(01): 55-58+83.
[67] WU J, GAO Z, WANG Y, et al. Electrostatic interaction tailored anion-rich solvation sheath stabilizing high-voltage lithium metal batteries[J]. Nano-Micro Letters, 2022, 14(1): 147.
[68] DIEDERICHSEN K M, MCSHANE E J, MCCLOSKEY B D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries[J]. ACS Energy Letters, 2017, 2(11): 2563-2575.
[69] LI Q, WANG Y, WANG X, et al. Investigations on the Fundamental Process of Cathode Electrolyte Interphase Formation and Evolution of High-Voltage Cathodes[J]. ACS Applied Materials & Interfaces, 2020, 12, 2319-2326.
[70] A Z S, C H R W A, D J W, et al. Oxygen-free cell formation process obtaining LiF protected electrodes for improved stability in lithium-oxygen batteries[J]. Energy Storage Materials, 2019, 23:670-677.
[71] PELJO, PEKKA, GIRAULT, et al. Electrochemical potential window of battery electrolytes: the HOMO-LUMO misconception[J]. Energy & Environmental Science Ees, 2018, 11: 2306-2309
修改评论