[1] MERTON R C. Option pricing when underlying stock returns are discontinuous[J/OL]. Journalof Financial Economics, 1976, 3(1): 125-144. https://www.sciencedirect.com/science/article/pii/0304405X76900222. DOI: https://doi.org/10.1016/0304-405X(76)90022-2.
[2] ENGLE R F. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance ofUnited Kingdom Inflation[J/OL]. Econometrica, 1982, 50(4): 987-1007
[2024-03-28]. http://www.jstor.org/stable/1912773.
[3] BOLLERSLEV T. Generalized autoregressive conditional heteroskedasticity[J/OL]. Journal ofEconometrics, 1986, 31: 307-327. DOI: 10.1016/0304-4076(86)90063-1.
[4] NELSON D B. CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEWAPPROACH[J/OL]. Econometrica, 1991, 59: 347-370. https://api.semanticscholar.org/CorpusID:153810026.
[5] ANDERSEN T G, BOLLERSLEV T, DIEBOLD F X, et al. The distribution of realized stockreturn volatility[J/OL]. Journal of Financial Economics, 2001, 61: 43-76. DOI: 10.1016/S0304-405X(01)00055-1.
[6] AïT-SAHALIA Y. Disentangling diffusion from jumps[J/OL]. Journal of Financial Economics,2004, 74: 487-528. DOI: 10.1016/J.JFINECO.2003.09.005.
[7] BARNDORFF-NIELSEN O E, SHEPHARD N. Power and Bipower Variation with StochasticVolatility and Jumps[J/OL]. Journal of Financial Econometrics, 2004, 2: 1-37. https://academic.oup.com/jfec/article/2/1/1/960705. DOI: 10.1093/JJFINEC/NBH001.
[8] BARNDORFF-NIELSEN O E, SHEPHARD N. Econometrics of Testing for Jumps in FinancialEconomics Using Bipower Variation[J/OL]. Journal of Financial Econometrics, 2006, 4: 1-30.https://academic.oup.com/jfec/article/4/1/1/833043. DOI: 10.1093/JJFINEC/NBI022.
[9] AïT-SAHALIA Y, JACOD J. Estimating the degree of activity of jumps in high frequency data[J/OL]. Annals of Statistics, 2009, 37: 2202-2244. https://projecteuclid.org/journals/annals-of-statistics/volume-37/issue-5A/Estimating-the-degree-of-activity-of-jumps-in-high-frequency/10.1214/08-AOS640.fullhttps://projecteuclid.org/journals/annals-of-statistics/volume-37/issue-5A/Estimating-the-degree-of-activity-of-jumps-in-high-frequency/10.1214/08-AOS640.short.
[10] LEE S S, MYKLAND P A. Jumps in Financial Markets: A New Nonparametric Test and JumpDynamics[J/OL]. The Review of Financial Studies, 2008, 21: 2535-2563. https://academic.oup.com/rfs/article/21/6/2535/1574138. DOI: 10.1093/RFS/HHM056.
[11] JIANG G J, OOMEN R C. Testing for jumps when asset prices are observed with noise–a “swapvariance” approach[J/OL]. Journal of Econometrics, 2008, 144: 352-370. DOI: 10.1016/J.JECONOM.2008.04.009.
[12] AïT-SAHALIA Y, JACOD J, LI J. Testing for jumps in noisy high frequency data[J/OL]. Journalof Econometrics, 2012, 168: 207-222. DOI: 10.1016/J.JECONOM.2011.12.004.
[13] LI J. Robust Estimation and Inference for Jumps in Noisy High Frequency Data: A Localto-Continuity Theory for the Pre-Averaging Method[J/OL]. Econometrica, 2013, 81: 1673-1693. https://onlinelibrary.wiley.com/doi/full/10.3982/ECTA10534https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA10534https://onlinelibrary.wiley.com/doi/10.3982/ECTA10534.
[14] Aı¨TAı¨T-SAHALIA Y, MYKLAND P A, ZHANG L. How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise[J/OL]. The Review of FinancialStudies, 2005, 18. DOI: 10.1093/rfs/hhi016.
[15] XIU D. Quasi-maximum likelihood estimation of volatility with high frequency data[J/OL].Journal of Econometrics, 2010, 159: 235-250. DOI: 10.1016/J.JECONOM.2010.07.002.
[16] SHEPHARD N, XIU D. Econometric analysis of multivariate realised QML: Estimation of thecovariation of equity prices under asynchronous trading[J/OL]. Journal of Econometrics, 2017,201: 19-42. DOI: 10.1016/j.jeconom.2017.04.003.
[17] ZHANG L, MYKLAND P A, AïT-SAHALIA Y. A tale of two time scales: Determining integratedvolatility with noisy high-frequency data[J/OL]. Journal of the American StatisticalAssociation, 2005, 100: 1394-1411. DOI: 10.1198/016214505000000169.
[18] ZHANG L. Efficient estimation of stochastic volatility using noisy observations: a multi-scaleapproach[J/OL]. Bernoulli, 2006, 12: 1019-1043. https://projecteuclid.org/journals/bernoulli/volume-12/issue-6/Efficient-estimation-of-stochastic-volatility-using-noisy-observations--a/10.3150/bj/1165269149.fullhttps://projecteuclid.org/journals/bernoulli/volume-12/issue-6/Efficient-estimation-of-stochastic-volatility-using-noisy-observations--a/10.3150/bj/1165269149.short. DOI: 10.3150/BJ/1165269149.
[19] BARNDORFF-NIELSEN O, HANSEN P, LUNDE A, et al. Designing realized Kernels tomeasure the ex post variation of equity prices in the presence of noise[J/OL]. Econometrica,2008, 76: 1481-1536. DOI: 10.3982/ECTA6495.
[20] AïT-SAHALIA Y, JACOD J. Is Brownian motion necessary to model high-frequency data?[J/OL]. https://doi.org/10.1214/09-AOS749, 2010, 38: 3093-3128. https://projecteuclid.org/journals/annals-of-statistics/volume-38/issue-5/Is-Brownian-motion-necessary-to-model-high-frequency-data/10.1214/09-AOS749.fullhttps://projecteuclid.org/journals/annals-of-statistics/volume-38/issue-5/Is-Brownian-motion-necessary-to-model-high-frequency-data/10.1214/09-AOS749.short.
[21] JACOD J, LI Y, ZHENG X. Statistical Properties of Microstructure Noise[J/OL]. Econometrica,2017, 85: 1133-1174. https://onlinelibrary.wiley.com/doi/full/10.3982/ECTA13085https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA13085https://onlinelibrary.wiley.com/doi/10.3982/ECTA13085.
[22] LI Z M, LINTON O. A ReMeDI for Microstructure Noise[J/OL]. Econometrica, 2022, 90: 367-389. https://onlinelibrary.wiley.com/doi/full/10.3982/ECTA17505https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA17505https://onlinelibrary.wiley.com/doi/10.3982/ECTA17505.
[23] TAUCHEN G, ZHOU H. Realized jumps on financial markets and predicting credit spreads[J/OL]. Journal of Econometrics, 2011, 160: 102-118. DOI: 10.1016/J.JECONOM.2010.03.023.
[24] JIANG G J, YAO T. Stock Price Jumps and Cross-Sectional Return Predictability[J/OL]. TheJournal of Financial and Quantitative Analysis, 2013, 48(5): 1519-1544
[2024-03-30]. http://www.jstor.org/stable/43303850.
[25] BOLLERSLEV T, LI S Z, ZHAO B. Good Volatility, Bad Volatility, and the Cross Sectionof Stock Returns[J/OL]. Journal of Financial and Quantitative Analysis, 2020, 55: 751-781.https://www.cambridge.org/core/journals/journal-of-financial-and-quantitative-analysis/article/good-volatility-bad-volatility-and-the-cross-section-of-stock-returns/B9203F87AB93D8DEAD51CB692587350E. DOI: 10.1017/S0022109019000097.
[26] JIANG G J, ZHU K X. Information Shocks and Short-Term Market Underreaction[J/OL].Journal of Financial Economics, 2017, 124: 43-64. DOI: 10.1016/J.JFINECO.2016.06.006.
[27] CUI X, SENSOY A, NGUYEN D K, et al. Positive information shocks, investor behaviorand stock price crash risk[J/OL]. Journal of Economic Behavior & Organization, 2022, 197:493-518. DOI: 10.1016/J.JEBO.2022.03.016.
[28] AïT-SAHALIA Y, JACOD J. Analyzing the Spectrum of Asset Returns: Jump and VolatilityComponents in High Frequency Data[J/OL]. Journal of Economic Literature, 2012, 50: 1007-50. DOI: 10.1257/JEL.50.4.1007.
[29] ÇINLAR E. Probability and Stochastics: Vol. 261[M/OL]. Springer New York, 2011. https://link.springer.com/10.1007/978-0-387-87859-1.
[30] GALL J F L. Brownian Motion, Martingales, and Stochastic Calculus: Vol. 274[M/OL].Springer International Publishing, 2016. http://link.springer.com/10.1007/978-3-319-31089-3.
[31] JACOD J, SHIRYAEV A N. Limit Theorems for Stochastic Processes: Vol. 288[M/OL].Springer Berlin Heidelberg, 2003. http://link.springer.com/10.1007/978-3-662-05265-5.
[32] JACOD J, LI Y, ZHENG X. Estimating the integrated volatility with tick observations[J/OL].Journal of Econometrics, 2019, 208: 80-100. DOI: 10.1016/j.jeconom.2018.09.006.
[33] AïT-SAHALIA Y, JACOD J. High-frequency financial econometrics[M/OL]. Princeton UniversityPress, 2014: 1-659. DOI: 10.3390/risks4010005.
[34] AïT-SAHALIA Y, MYKLAND P, ZHANG L. How often to sample a continuous-time processin the presence of market microstructure noise[J/OL]. Review of Financial Studies, 2005, 18:351-416. DOI: 10.1093/rfs/hhi016.
[35] AïT-SAHALIA Y, MYKLAND P. The effects of random and discrete sampling when estimatingcontinuous-time diffusions[J/OL]. Econometrica, 2003, 71: 483-549. DOI: 10.1111/1468-0262.t01-1-00416.
[36] BARNDORFF-NIELSEN O E, SHEPHARD N, WINKEL M. Limit theorems for multipowervariation in the presence of jumps[J/OL]. Stochastic Processes and their Applications, 2006,116: 796-806. DOI: 10.1016/J.SPA.2006.01.007.
[37] FAN Y, FAN J. Testing and detecting jumps based on a discretely observed process[J/OL].Journal of Econometrics, 2011, 164: 331-344. DOI: 10.1016/J.JECONOM.2011.06.014.
[38] LIU Z, KONG X B, JING B Y. Estimating the integrated volatility using high-frequency datawith zero durations[J/OL]. Journal of Econometrics, 2018, 204: 18-32. DOI: 10.1016/J.JECONOM.2017.12.008.50REFERENCES
[39] JACOD J. Limit of Random measures associated with the increments of a Brownian semimartingale[J/OL]. Journal of Financial Econometrics, 2018, 16: 526-569. DOI: 10.1093/jjfinec/nbx021.
[40] BARNDORFF-NIELSEN O E, KINNEBROUK S, SHEPHARD N. Measuring downside risk:realised semivariance[M]. (edited by t. bollerslev, j. russell and m. watson) ed. Oxford UniversityPress, 2010: 117-136.
[41] BOLLERSLEV T. Realized Semi(co)variation: Signs That All Volatilities are Not CreatedEqual[J/OL]. Journal of Financial Econometrics, 2022, 20: 219-252. https://dx.doi.org/10.1093/jjfinec/nbab025. DOI: 10.1093/JJFINEC/NBAB025.
[42] DUONG D, SWANSON N R. Empirical evidence on the importance of aggregation, asymmetry,and jumps for volatility prediction[J/OL]. Journal of Econometrics, 2015, 187: 606-621. DOI:10.1016/J.JECONOM.2015.02.042.
[43] HUANG X, TAUCHEN G. The Relative Contribution of Jumps to Total Price Variance[J/OL].Journal of Financial Econometrics, 2005, 3(4): 456-499. https://doi.org/10.1093/jjfinec/nbi025.
[44] CORSI F, PIRINO D, RENò R. Threshold bipower variation and the impact of jumps on volatilityforecasting[J/OL]. Journal of Econometrics, 2010, 159: 276-288. DOI: 10.1016/J.JECONOM.2010.07.008.
[45] ANDERSEN T G, BOLLERSLEV T, DIEBOLD F X. Roughing It Up: Including Jump Componentsin the Measurement, Modeling, and Forecasting of Return Volatility[J/OL]. The Reviewof Economics and Statistics, 2007, 89: 701-720. https://dx.doi.org/10.1162/rest.89.4.701. DOI:10.1162/REST.89.4.701.
[46] KOLOKOLOV A, RENò R. Efficient Multipowers[J/OL]. Journal of Financial Econometrics,2018, 16: 629-659. https://dx.doi.org/10.1093/jjfinec/nbx018. DOI: 10.1093/JJFINEC/NBX018.
[47] MANCINI C. Non-parametric threshold estimation for models with stochastic diffusion coefficientand jumps[J/OL]. Scandinavian Journal of Statistics, 2009, 36. DOI: 10.1111/j.1467-9469.2008.00622.x.
[48] ANDERSEN T G, DOBREV D, SCHAUMBURG E. Jump-robust volatility estimation usingnearest neighbor truncation[J/OL]. Journal of Econometrics, 2012, 169: 75-93. DOI: 10.1016/J.JECONOM.2012.01.011.
[49] AïT-SAHALIA Y, JACOD J. Testing for jumps in a discretely observed process[J/OL]. Annalsof Statistics, 2009, 37: 184-222. https://projecteuclid.org/journals/annals-of-statistics/volume-37/issue-1/Testing-for-jumps-in-a-discretely-observed-process/10.1214/07-AOS568.fullhttps://projecteuclid.org/journals/annals-of-statistics/volume-37/issue-1/Testing-for-jumps-in-a-discretely-observed-process/10.1214/07-AOS568.short.
[50] JACOD J, MYKLAND P A. Microstructure noise in the continuous case: Approximate efficiencyof the adaptive pre-averaging method[J/OL]. Stochastic Processes and their Applications,2015, 125: 2910-2936. DOI: 10.1016/J.SPA.2015.02.005.
[51] NEUBERGER A. The Log Contract[J/OL]. The Journal of Portfolio Management, 1994, 20:74-80. https://www.pm-research.com/content/iijpormgmt/20/2/74. DOI: 10.3905/JPM.1994.409478.
修改评论