中文版 | English
题名

FeCN3-/4-溶液基离子热电器件的电极界面效应和离子输运研究

其他题名
INTERFACE EFFECT AND ION TRANSPORT OF THE FeCN3-/4- SOLUTION BASED IONIC THERMOELECTRIC DEVICE
姓名
姓名拼音
WANG Shuaihua
学号
12132079
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
刘玮书
导师单位
材料科学与工程系
论文答辩日期
2024-04-25
论文提交日期
2024-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
离子热电器件提供了一种小温差下的热能利用技术方案。本论文针对FeCN3-/4-基水溶液离子热电器件在0°C以下发电性能较差的技术挑战,围绕电极的界面效应和低温下的离子输运科学,系统地开展了电极亲水镀金处理优化电荷转移性能,溶剂共晶策略优化低温离子输运,以及溶液对流调控优化器件输出性能等研究工作,大幅提高了器件在低温环境下的瞬时功率和能量密度。
本文研究了亲水性以及金纳米颗粒涂敷对电极界面效应的影响,利用等离子刻蚀获取完全润湿的电极表面,随着接触角从 114 °减小到 0 °,短路电流密度从 40.2 A m-2 提高到了 146.2 A m-2。利用磁控溅射获得了纳米颗粒涂敷的电极表面,随着金纳米颗粒镀层厚度从 30 nm 增加到 180 nm,短路电流密度进一步增加到 223.9 A m-2。通过改善电极的界面效应,电极界面的电荷转移电阻和物质转移电阻大幅降低,器件的瞬时功率密度提高达 6 倍。
本文揭示了离子溶液的冰点与器件服役下限温度的关联性,并通过引入(甲酰胺/水)二元共晶溶剂,阻止水分子间形成氢键网络,降低了离子溶液 的冰点。当甲酰胺体积分数为 50%时,器件的服役下限温度从 0°C 降低到了 -35°C,并且实现了在低温下 14.4 W m-2 的高瞬时功率密度,开拓了离子热 电器件在冬季或严寒地区的应用场景。
本文研究了温度场下溶液介质对流对器件输出性能的调控作用,利用COMSOL 模拟研究发现:降低电极间距会降低对流速度,而隔膜的增设会改 变温度场分布,通过两者的协同优化,实现了器件的瞬时功率密度从 14.4 加到 17.5 W m-2,并获得 2h 放电能量密度 27 kJ m-2,该值为目前文献报道最高值,验证了离子热电器件的可实用性。
其他摘要
Ionic thermoelectric devices provide a technological solution for waste heat recovery near room temperature. This thesis addresses the technical challenge of poor power generation performance of FeCN3-/4- based aqueous ionic thermoelectric device below 0°C. It systematically investigates the interfacial effects of electrodes and the ion transport at low temperatures. The thesis encompasses the optimization of electrode with hydrophilic and gold coating treatments to enhance charge transfer performance, solvent eutectic strategies to optimize low-temperature ion transport, and solution convection regulation to improve device output performance, significantly increasing the device’s instantaneous power and energy density in cold environments.
The thesis examines the impact of hydrophilicity and gold nanoparticle coating on electrode interfacial effects. Plasma etching was utilized to achieve fully wetted electrode surfaces, and as the contact angle decreased from 114 ° to 0 °, the short-circuit current density increased from 40.2 A m-2 to 146.2 A m-2 .
Magnetron sputtering yielded nanoparticle-coated electrode surfaces, and as the thickness of the gold nanoparticle coating increased from 30 nm to 180 nm, the short-circuit current density further increased to 223.9 A m-2 . By improving the electrode’s interfacial effects, the charge transfer resistance and mass transfer resistance at the electrode interface were significantly reduced, and the device’s instantaneous power density was increased by sixfold.
 The thesis reveals the correlation between the freezing point of the ionic
solution and the lower operational temperature limit of the device. By introducinga binary eutectic solvent of formamide/water, the formation of a hydrogen bond network among water molecules is prevented, lowering the freezing point of the ionic solution. With a formamide volume fraction of 50%, the device’s operational lower temperature limit was reduced from 0°C to -35°C, achieving a high instantaneous power density of 14.4 W m-2 at low temperatures, thus expanding the application scenarios of ionic thermoelectric devices in winter or extremely cold regions.
The thesis also investigates the regulatory effect of solution mediumconvection on device output performance under a temperature field. Using COMSOL simulations, it was found that reducing the electrode spacing decreases the convection speed, while the addition of a diaphragm can alter the temperature field distribution. Through the synergistic optimization of both, the device’s instantaneous power density was increased from 14.4 to 17.5 W m-2 , and a 2-hour discharge energy density of 27 kJ m-2 was obtained. This value is the highest reported in the literature to date, validating the practicality of ionic thermoelectric devices.
关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
[2] SCHIERMEIER Q, TOLLEFSON J, SCULLY T, et al. Energy alternatives: Electricity without carbon[J]. Nature, 2008, 454(7206): 816-823.
[3] FORMAN C, MURITALA I K, PARDEMANN R, et al. Estimating the global waste heat potential[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1568 -1579.
[4] DISALVO F J. Thermoelectric cooling and power generation[J]. Science, 1999, 285(5428): 703-706.
[5] SUN S, LI M, SHI X, et al. Advances in ionic thermoelectrics: from materials to devices[J]. Advanced Energy Materials, 2023, 13(9): 2203692.
[6] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2): 105-114.
[7] ZHAO D, WÜRGER A, CRISPIN X. Ionic thermoelectric materials and devices[J]. Journal of Energy Chemistry, 2021, 61: 88-103.
[8] DUAN J, YU B, HUANG L, et al. Liquid-state thermocells: Opportunities and challenges for low-grade heat harvesting[J]. Joule, 2021, 5(4): 768-779.
[9] POUDEL B, HAO Q, MA Y, et al. High-Thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science, 2008, 320(5876): 634-638.
[10] VENKATASUBRAMANIAN R, SIIVOLA E, COLPITTS T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature, 2001, 413(6856): 597-602.
[11] SUN T, ZHOU B, ZHENG Q, et al. Stretchable fabric generates electric power from woven thermoelectric fibers[J]. Nature Communications, 2020, 11(1): 572.
[12] QUICKENDEN T I, MUA Y. A Review of power generation in aqueous thermogalvanic Cells[J]. Journal of The Electrochemical Society, 1995, 142(11): 3985.
[13] LI M, HONG M, DARGUSCH M, et al. High-efficiency thermocells driven by thermo￾electrochemical processes[J]. Trends in Chemistry, 2021, 3(7): 561-574.
[14] MASSETTI M, JIAO F, FERGUSON A J, et al. Unconventional thermoelectric materials for energy harvesting and sensing applications[J]. Chemical Reviews, 2021, 121(20): 12465-12547.
[15] LIU Y, WANG H, SHERRELL P C, et al. Potentially wearable thermo-electrochemical cells for body heat harvesting: from mechanism, materials, strategies to applications[J]. Advanced Science, 2021, 8(13): 2100669.
[16] ROMANO M S, RAZAL J M, ANTIOHOS D, et al. Nano-Carbon electrodes for thermal energy harvesting[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(1): 1-14.
[17] CHI C, AN M, QI X, et al. Selectively tuning ionic thermopower in all-solid-state flexible polymer composites for thermal sensing[J]. Nature Communications, 2022, 13(1): 221.
[18] LIU W, QIAN X, HAN C G, et al. Ionic thermoelectric materials for near ambient temperature energy harvesting[J]. Applied Physics Letters, 2021, 118(2): 020501.
[19] BOUTY E. Phénomènes thermo-électriques et électro-thermiques au contact d’un métal et d’un liquide[J]. Journal de Physique Théorique et Appliquée, 1880, 9(1): 229 -241.
[20] HOWARD R E, LIDIARD A B. Thermoelectric power of ionic crystals[J]. Discussions of the Faraday Society, 1957, 23(0): 113-121.
[21] HOWARD R E, LIDLARD A B. Thermoelectric power of ionic conducting crystats[J]. Philosophical Magazine, 1957, 2(24): 1462-1467.
[22] SENDEROFF S, BRETZ R I. Ionic transport entropy in nonisothermal molten silver chloride eells[J]. Journal of the Electrochemical Society, 1962, 109(1): 56.
[23] K CORNWELL. The thermoelectric potential of molten salt thermocells[J]. Journal of Physics D: Applied Physics, 1972, 5(7): 1199-1211.
[24] TROLLE U, KVIST A. The thermoelectric power of the molten chlorides, bromides and iodides of lead, tin and zinc with reversible molten metal electrodes[J]. Zeitschrift für Naturforschung A, 1969, 24(3): 469-470.
[25] ZHAO D, WANG H, KHAN Z U, et al. Ionic thermoelectric supercapacitors[J/OL]. Energy & Environmental Science, 2016, 9(4): 1450-1457.
[26] HAN C G, QIAN X, LI Q, et al. Giant thermopower of ionic gelatin near room temperature[J/OL]. Science, 2020, 368(6495): 1091-1098.
[27] YANG B, PORTALE G. Ionic thermoelectric materials for waste heat harvesting[J]. Colloid and Polymer Science, 2021, 299(3): 465-479.
[28] WU X, GAO N, JIA H, et al. Thermoelectric converters based on ionic conductors[J]. Chemistry – An Asian Journal, 2021, 16(2): 129-141.
[29] DEBETHUNE A J, LICHT T S, SWENDEMAN N. The temperature coefficients of electrode potentials: the isothermal and thermal coefficients—the standard ionic entropy of electrochemical transport of the hydrogen ion[J]. Journal of The Electrochemical Society, 1959, 106(7): 616.
[30] BORN M. Volumen und hydratationswärme der Ionen[J]. Zeitschrift für Physik, 1920, 1(1): 45-48.
[31] SAHAMI S, WEAVER M J. Entropic and enthalpic contributions to the solvent dependence of the thermodynamics of transition-metal redox couples: Part II. Couples containing ammine and ethylenediamine ligands[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 122: 171-181.
[32] HU R, COLA B A, HARAM N, et al. Harvesting waste thermal energy using a carbon￾nanotube-based thermo-electrochemical Cell[J]. Nano Letters, 2010, 10(3): 838-846.
[33] KIM J H, LEE J H, PALEM R R, et al. Iron (II/III) perchlorate electrolytes for electrochemically harvesting low-grade thermal energy[J]. Scientific Reports, 2019, 9(1): 8706.
[34] WU G, XUE Y, WANG L, et al. Flexible gel-state thermoelectrochemical materials with excellent mechanical and thermoelectric performances based on incorporating Sn2+/Sn4+ electrolyte into polymer/carbon nanotube composites[J]. Journal of Materials Chemistry A, 2018, 6(8): 3376-3380.
[35] YU B, XIAO H, ZENG Y, et al. Cost-effective n-type thermocells enabled by thermosensitive crystallizations and 3D multi-structured electrodes[J]. Nano Energy, 2022, 93: 106795.
[36] ZHANG L, KIM T, LI N, et al. High power density electrochemical thermocells for inexpensively harvesting low‐grade thermal energy[J]. Advanced Materials, 2017, 29(12): 1605652.
[37] WANG H, ZHUANG X, XIE W, et al. Thermosensitive-CsI3-crystal-driven high￾power I−/I3−thermocells[J/OL]. Cell Reports Physical Science, 2022, 3(3): 100737.
[38] YANG P, LIU K, CHEN Q, et al. Wearable thermocells based on gel electrolytes for the utilization of body heat[J]. Angewandte Chemie International Edition, 2016, 55(39): 12050-12053.
[39] LEI Z, GAO W, ZHU W, et al. Anti‐fatigue and highly conductive thermocells for continuous electricity generation[J]. Advanced Functional Materials, 2022, 32(25): 2201021.
[40] JIN L, GREENE G W, MACFARLANE D R, et al. Redox-active quasi-solid-state electrolytes for thermal energy harvesting[J]. ACS Energy Letters, 2016, 1(4): 654-658.
[41] WU J, BLACK J J, ALDOUS L. Thermoelectrochemistry using conventional and novel gelled electrolytes in heat-to-current thermocells[J]. Electrochimica Acta, 2017, 225: 482-492.
[42] HAN C G, ZHU Y B, YANG L J, et al. Remarkable high-temperature ionic thermoelectric performance induced by graphene in gels thermocells[J]. Energy & Environmental Science, 2023
[2024-01-04].
[43] LEI Z, GAO W, WU P. Double-network thermocells with extraordinary toughness and boosted power density for continuous heat harvesting[J]. Joule, 2021, 5(8): 2211 -2222.
[44] ZHANG D, MAO Y, YE F, et al. Stretchable thermogalvanic hydrogel thermocell with record-high specific output power density enabled by ion-induced crystallization[J]. Energy & Environmental Science, 2022, 15(7): 2974-2982.
[45] PENG P, ZHOU J, LIANG L, et al. Regulating thermogalvanic effect and mechanical robustness via redox ions for flexible quasi-solid-state thermocells[J]. Nano-Micro Letters, 2022, 14(1): 81.
[46] ZHANG D, FANG Y, LIU L, et al. Boosting thermoelectric performance of thermogalvanic hydrogels by structure engineering induced by liquid nitrogen quenching[J]. Advanced Energy Materials, n/a(n/a): 2303358.
[47] BUCKINGHAM M A, STOFFEL F, ZHANG S, et al. Nanostructuring electrode surfaces and hydrogels for enhanced thermocapacitance[J]. ACS Applied Nano Materials, 2022, 5(1): 438-445.
[48] WANG Y, ZHANG Y, XIN X, et al. In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production[J]. Science, 2023, 381(6655): 291-296.
[49] ONSAGER L. Reciprocal relations in irreversible processes. I.[J]. Physical Review, 1931, 37(4): 405-426.
[50] CALLEN H B. The application of Onsager’s reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects[J]. Physical Review, 1948, 73(11): 1349-1358.
[51] QIAN X, LIU T H, YANG R. Confinement effect on thermopower of electrolytes[J]. Materials Today Physics, 2022, 23: 100627.
[52] DELAHAY P, VIJH A K. Advances in electrochemistry and electrochemical engineering[J]. Journal of The Electrochemical Society, 1970, 117(10): 367C.
[53] DE GROOT S R. Sur la thermodynamique de quelques processus irréversibles. II. Diffusion thermique et phénomènes connexes[J]. Journal de Physique et le Radium, 1947, 8(7): 193-200.
[54] EASTMAN E D. Thermodynamics of non-isothermal systems[J]. Journal of the American Chemical Society, 1926, 48(6): 1482-1493.
[55] CHENG H, HE X, FAN Z, et al. Flexible quasi-solid state ionogels with remarkable seebeck coefficient and high thermoelectric properties[J]. Advanced Energy Materials, 2019, 9(32): 1901085.
[56] LI Q, HAN C G, WANG S, et al. Anionic entanglement-induced giant thermopower in ionic thermoelectric material Gelatin-CF3SO3K–CH3SO3K[J/OL]. eScience, 2023: 100169.
[57] LI Q, YU D, WANG S, et al. High Thermopower of agarose‐based ionic thermoelectric gel through micellization effect eecoupling the cation/anion thermodiffusion[J]. Advanced Functional Materials, 2023: 2305835.
[58] LI T, ZHANG X, LACEY S D, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting[J]. Nature Materials, 2019, 18(6): 608-613.
[59] WU Z, WANG B, LI J, et al. Advanced bacterial cellulose ionic conductors with gigantic thermopower for low-grade heat harvesting[J]. Nano Letters, 2022, 22(20): 8152-8160.
[60] LIAO M, BANERJEE D, HALLBERG T, et al. Cellulose-based radiative cooling and solar heating powers ionic thermoelectrics[J]. Advanced Science, 2023, 10(8): 2206510.
[61] CHEN B, ZHANG X, YANG J, et al. Giant negative thermopower enabled by bidirectionally anchored Cctions in multifunctional polymers[J]. ACS Applied Materials & Interfaces, 2023, 15(20): 24483-24493.
[62] LIU L, ZHANG D, BAI P, et al. Strong tough thermogalvanic hydrogel thermocell with extraordinarily high thermoelectric performance[J]. Advanced Materials, 2023, 35(32): 2300696.
[63] HE Y, ZHANG Q, CHENG H, et al. Role of ions in hydrogels with an ionic seebeck coefficient of 52.9 mV K–1[J]. The Journal of Physical Chemistry Letters, 2022, 13(20): 4621-4627.
[64] GAO W, LEI Z, CHEN W, et al. Hierarchically anisotropic networks to decouple mechanical and ionic properties for high-performance quasi-solid thermocells[J]. ACS Nano, 2022, 16(5): 8347-8357.
[65] AKBAR Z A, MALIK Y T, KIM D H, et al. Self-healable and stretchable ionic-liquid￾based thermoelectric composites with high ionic seebeck coefficient[J]. Small, 2022, 18(17): 2106937.
[66] LIU S, YANG Y, CHEN S, et al. High p- and n-type thermopowers in stretchable self￾healing ionogels[J]. Nano Energy, 2022, 100: 107542.
[67] ZHAO D, MARTINELLI A, WILLFAHRT A, et al. Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles[J]. Nature Communications, 2019, 10(1): 1093.
[68] LIU S, YANG Y, HUANG H, et al. Giant and bidirectionally tunable thermopower in nonaqueous ionogels enabled by selective ion doping[J]. Science Advances, 2022, 8(1): eabj3019.
[69] FANG Y, CHENG H, HE H, et al. Stretchable and Transparent Ionogels with High Thermoelectric Properties[J]. Advanced Functional Materials, 2020, 30(51): 2004699.
[70] ZHOU R, JIN Y, ZENG W, et al. Liquid-free ion-conducting elastomer with environmental stability for soft sensing and thermoelectric generating[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 39120-39131.
[71] ZHANG Y, DAI Y, XIA F, et al. Gelatin/polyacrylamide ionic conductive hydrogel with skin temperature-triggered adhesion for human motion sensing and body heat harvesting[J]. Nano Energy, 2022, 104: 107977.
[72] KIM D H, AKBAR Z A, MALIK Y T, et al. Self-healable polymer complex with a giant ionic thermoelectric effect[J]. Nature Communications, 2023, 14(1): 3246.
[73] LI Z, XU Y, WU L, et al. Enabling giant thermopower by heterostructure engineering of hydrated vanadium pentoxide for zinc ion thermal charging cells[J]. Nature Communications, 2023, 14(1): 6816.
[74] ABRAHAM T J, MACFARLANE D R, BAUGHMAN R H, et al. Towards ionic liquid-based thermoelectrochemical cells for the harvesting of thermal energy[J]. Electrochimica Acta, 2013, 113: 87-93.
[75] WANG H, ZHAO D, KHAN Z U, et al. Ionic thermoelectric figure of merit for charging of supercapacitors[J]. Advanced Electronic Materials, 2017, 3(4): 1700013.
[76] SONG D, CHI C, AN M, 等. Ionic Seebeck coefficient and figure of merit in ionic thermoelectric materials[J]. Cell Reports Physical Science, 2022: 101018.
[77] LI Y, LI Q, ZHANG X, et al. 3D Hierarchical electrodes boosting ultrahigh power output for gelatin-KCl-FeCN4−/3− ionic thermoelectric cells[J]. Advanced Energy Materials, 2022, 12(14): 2103666.
[78] LEE S W, YANG Y, LEE H W, et al. An electrochemical system for efficiently harvesting low-grade heat energy[J]. Nature Communications, 2014, 5(1): 3942.
[79] QUICKENDEN T I, VERNON C F. Thermogalvanic conversion of heat to electricity[J]. Solar Energy, 1986, 36(1): 63-72.
[80] YU B, DUAN J, CONG H, et al. Thermosensitive crystallization–boosted liquid thermocells for low-grade heat harvesting[J]. Science, 2020, 370(6514): 342-346.
[81] KIM T, LEE J S, LEE G, et al. High thermopower of ferri/ferrocyanide redox couple in organic-water solutions[J]. Nano Energy, 2017, 31: 160-167.
[82] IWAMI R, YAMADA T, KIMIZUKA N. Increased seebeck coefficient of [Fe(CN)6]4−/3− thermocell based on the selective electrostatic interactions with cationic micelles[J]. Chemistry Letters, 2020, 49(10): 1197-1200.
[83] DUAN J, FENG G, YU B, et al. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest[J]. Nature Communications, 2018, 9(1): 5146.
[84] KIM K, HWANG S, LEE H. Unravelling ionic speciation and hydration structure of Fe(III/II) redox couples for thermoelectrochemical cells[J]. Electrochimica Acta, 2020, 335: 135651.
[85] BUCKINGHAM M A, MARKEN F, ALDOUS L. The thermoelectrochemistry of the aqueous iron(II)/iron(III) redox couple: significance of the anion and pH in thermogalvanic thermal-to-electrical energy conversion[J]. Sustainable Energy & Fuels, 2018, 2(12): 2717-2726.
[86] ABRAHAM T J, MACFARLANE D R, PRINGLE J M. High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting[J]. Energy & Environmental Science, 2013, 6(9): 2639-2645.
[87] KOERVER R, MACFARLANE D R, PRINGLE J M. Evaluation of electrochemical methods for determination of the Seebeck coefficient of redox electrolytes[J]. Electrochimica Acta, 2015, 184: 186-192.
[88] ZHOU H, YAMADA T, KIMIZUKA N. Supramolecular thermo-electrochemical cells: enhanced thermoelectric performance by host–guest complexation and salt-induced crystallization[J]. Journal of the American Chemical Society, 2016, 138(33): 10502 -10507.
[89] MUA Y, QUICKENDEN T I. Power conversion efficiency, electrode separation, and overpotential in the Ferricyanide/Ferrocyanide thermogalvanic cell[J]. Journal of The Electrochemical Society, 1996, 143(8): 2558.
[90] ROMANO M S, LI N, ANTIOHOS D, et al. Carbon nanotube - reduced graphene oxide composites for thermal energy harvesting applications[J]. Advanced Materials, 2013, 25(45): 6602-6606.
[91] IM H, KIM T, SONG H, et al. High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes[J]. Nature Communications, 2016, 7(1): 10600.
[92] LI G, DONG D, HONG G, et al. High-efficiency cryo-thermocells assembled with anisotropic holey graphene aerogel electrodes and a eutectic redox electrolyte[J]. Advanced Materials, 2019, 31(25): 1901403.
[93] BUCKINGHAM M A, LAWS K, LI H, et al. Thermogalvanic cells demonstrate inherent physiochemical limitations in redox-active electrolytes at water-in-salt concentrations[J]. Cell Reports Physical Science, 2021, 2(8): 100510.
[94] ABRAHAM T J, MACFARLANE D R, PRINGLE J M. Seebeck coefficients in ionic liquids –prospects for thermo-electrochemical cells[J]. Chemical Communications, 2011, 47(22): 6260-6262.
[95] HASAN S W, SAID S M, SABRI M F M, et al. High thermal gradient in thermo￾electrochemical cells by insertion of a poly(Vinylidene Fluoride) membrane[J]. Scientific Reports, 2016, 6(1): 29328.
[96] LI Y, LI Q, ZHANG X, et al. Realizing record-high output power in flexible gelatin/GTA-KCl-FeCN4−/3− ionic thermoelectric cells enabled by extending the working temperature range[J]. Energy & Environmental Science, 2022, 15(12): 5379 -5390.
[97] GAO W, LEI Z, ZHANG C, et al. Stretchable and freeze‐tolerant organohydrogel thermocells with enhanced thermoelectric performance continually working at subzero temperatures[J]. Advanced Functional Materials, 2021, 31(43): 2104071.
[98] ANTARIKSA N F, YAMADA T, KIMIZUKA N. High seebeck coefficient in middle -temperature thermocell with deep eutectic solvent[J]. Scientific Reports, 2021, 11(1): 11929.
[99] PENG P, LI Z, XIE D, et al. Aqueous eutectic hydrogel electrolytes enable flexible thermocells with a wide operating temperature range[J]. Journal of Materials Chemistry A, 2023: 10.1039.D2TA09385E.
[100] LAZAR M A, AL-MASRI D, MACFARLANE D R, et al. Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid–solvent mixtures[J]. Physical Chemistry Chemical Physics, 2016, 18(3): 1404-1410.
[101] 中 国 气 象 局 . 中 国 气 象 局 - 天 气 预 报 [EB/OL]. (2024-04-16)
[2024-04-16]. https://weather.cma.cn/.
[102] HEINZE J. Cyclic voltammetry—“Electrochemical spectroscopy”. New analytical methods (25)[J]. Angewandte Chemie International Edition in English, 1984, 23(11): 831-847.
[103] VOJNOVIĆ M V, ̆SEPA D B. Effect of electrode materials on the kinetics of electron exchange reactions[J]. The Journal of Chemical Physics, 1969, 51(12): 5344 -5351.
[104] ALZAHRANI H A H, BUCKINGHAM M A, MARKEN F, et al. Success and failure in the incorporation of gold nanoparticles inside ferri/ferrocyanide thermogalvanic cells[J]. Electrochemistry Communications, 2019, 102: 41-45.
[105] PAPAKONSTANTINOU P, KERN R, IRVINE J, et al. Fundamental electrochemical properties of carbon nanotube electrodes[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2005, 13(sup1): 275-285.
[106] PACIOS M, DEL VALLE M, BARTROLI J, et al. Electrochemical behavior of rigid carbon nanotube composite electrodes[J]. Journal of Electroanalytical Chemistry, 2008, 619-620: 117-124.
[107] PARK S, YOO J. Electrochemical impedance spectroscopy for better electrochemical measurements[J]. Analytical Chemistry, 2003, 75(21): 455 A-461 A.
[108] MATSUMOTO M, SAITO S, OHMINE I. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing[J]. Nature, 2002, 416(6879): 409-413.
[109] EMAMIAN S, LU T, KRUSE H, et al. Exploring nature and predicting strength of hydrogen bonds: A correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory[J]. Journal of Computational Chemistry, 2019, 40(32): 2868-2881.
[110] QIU M, SUN P, HAN K, et al. Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at −80°C[J]. Nature Communications, 2023, 14(1): 601.
[111] GAO Y, QIN Z, GUAN L, et al. Organoaqueous calcium chloride electrolytes for capacitive charge storage in carbon nanotubes at sub-zero-temperatures[J]. Chemical Communications, 2015, 51(54): 10819-10822.
[112] SANGEETHA T, NAGANANDHINI S P, SHANMUGAM R, et al. FTIR spectral signatures of formamide + propionic/acetic acid solutions[J]. Journal of Solution Chemistry, 2022, 51(2): 167-189.
[113] STANGRET J, KAMIEŃSKA-PIOTROWICZ E, LASKOWSKA K. FT-IR studies of molecular interactions in formamide–methanol mixtures[J]. Vibrational Spectroscopy, 2007, 44(2): 324-330.
[114] CHAKRABARTI M H, ROBERTS E P L. Analysis of mixtures of ferrocyanide and ferricyanide using UV-Visible spectroscopy for characterisation of a novel Redox Flow Battery[J]. Journal of the Chemical Society of Pakistan, 2008, 30(6): 817 -823.
[115] MALIK Y T, AKBAR Z A, SEO J Y, et al. Self-healable organic–inorganic hybrid thermoelectric materials with excellent ionic thermoelectric properties[J]. Advanced Energy Materials, 2022, 12(6): 2103070.
[116] HE X, CHENG H, YUE S, et al. Quasi-solid state nanoparticle/(ionic liquid) gels with significantly high ionic thermoelectric properties[J]. Journal of Materials Chemistry A, 2020, 8(21): 10813-10821.
[117] JEONG M, NOH J, ISLAM M Z, et al. Embedding aligned graphene oxides in polyelectrolytes to facilitate thermo-diffusion of protons for high ionic thermoelectric figure-of-merit[J]. Advanced Functional Materials, 2021, 31(29): 2011016.
[118] SALAZAR P F, KUMAR S, COLA B A. Design and optimization of thermo￾electrochemical cells[J]. Journal of Applied Electrochemistry, 2014, 44(2): 325 -336.
[119] GUNAWAN A, LI H, LIN C H, et al. The amplifying effect of natural convection on power generation of thermogalvanic cells[J]. International Journal of Heat and Mass Transfer, 2014, 78: 423-434.
[120] LIU Y, ZHANG S, ZHOU Y, et al. Advanced wearable thermocells for body heat harvesting[J]. Advanced Energy Materials, 2020, 10(48): 2002539.
[121] DUAN J, YU B, LIU K, et al. P-N conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting[J]. Nano Energy, 2019, 57: 473 -479.

所在学位评定分委会
物理学
国内图书分类号
TB34
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778924
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
王帅华. FeCN3-/4-溶液基离子热电器件的电极界面效应和离子输运研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132079-王帅华-材料科学与工程(7048KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王帅华]的文章
百度学术
百度学术中相似的文章
[王帅华]的文章
必应学术
必应学术中相似的文章
[王帅华]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。