[1] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
[2] SCHIERMEIER Q, TOLLEFSON J, SCULLY T, et al. Energy alternatives: Electricity without carbon[J]. Nature, 2008, 454(7206): 816-823.
[3] FORMAN C, MURITALA I K, PARDEMANN R, et al. Estimating the global waste heat potential[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1568 -1579.
[4] DISALVO F J. Thermoelectric cooling and power generation[J]. Science, 1999, 285(5428): 703-706.
[5] SUN S, LI M, SHI X, et al. Advances in ionic thermoelectrics: from materials to devices[J]. Advanced Energy Materials, 2023, 13(9): 2203692.
[6] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2): 105-114.
[7] ZHAO D, WÜRGER A, CRISPIN X. Ionic thermoelectric materials and devices[J]. Journal of Energy Chemistry, 2021, 61: 88-103.
[8] DUAN J, YU B, HUANG L, et al. Liquid-state thermocells: Opportunities and challenges for low-grade heat harvesting[J]. Joule, 2021, 5(4): 768-779.
[9] POUDEL B, HAO Q, MA Y, et al. High-Thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science, 2008, 320(5876): 634-638.
[10] VENKATASUBRAMANIAN R, SIIVOLA E, COLPITTS T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature, 2001, 413(6856): 597-602.
[11] SUN T, ZHOU B, ZHENG Q, et al. Stretchable fabric generates electric power from woven thermoelectric fibers[J]. Nature Communications, 2020, 11(1): 572.
[12] QUICKENDEN T I, MUA Y. A Review of power generation in aqueous thermogalvanic Cells[J]. Journal of The Electrochemical Society, 1995, 142(11): 3985.
[13] LI M, HONG M, DARGUSCH M, et al. High-efficiency thermocells driven by thermoelectrochemical processes[J]. Trends in Chemistry, 2021, 3(7): 561-574.
[14] MASSETTI M, JIAO F, FERGUSON A J, et al. Unconventional thermoelectric materials for energy harvesting and sensing applications[J]. Chemical Reviews, 2021, 121(20): 12465-12547.
[15] LIU Y, WANG H, SHERRELL P C, et al. Potentially wearable thermo-electrochemical cells for body heat harvesting: from mechanism, materials, strategies to applications[J]. Advanced Science, 2021, 8(13): 2100669.
[16] ROMANO M S, RAZAL J M, ANTIOHOS D, et al. Nano-Carbon electrodes for thermal energy harvesting[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(1): 1-14.
[17] CHI C, AN M, QI X, et al. Selectively tuning ionic thermopower in all-solid-state flexible polymer composites for thermal sensing[J]. Nature Communications, 2022, 13(1): 221.
[18] LIU W, QIAN X, HAN C G, et al. Ionic thermoelectric materials for near ambient temperature energy harvesting[J]. Applied Physics Letters, 2021, 118(2): 020501.
[19] BOUTY E. Phénomènes thermo-électriques et électro-thermiques au contact d’un métal et d’un liquide[J]. Journal de Physique Théorique et Appliquée, 1880, 9(1): 229 -241.
[20] HOWARD R E, LIDIARD A B. Thermoelectric power of ionic crystals[J]. Discussions of the Faraday Society, 1957, 23(0): 113-121.
[21] HOWARD R E, LIDLARD A B. Thermoelectric power of ionic conducting crystats[J]. Philosophical Magazine, 1957, 2(24): 1462-1467.
[22] SENDEROFF S, BRETZ R I. Ionic transport entropy in nonisothermal molten silver chloride eells[J]. Journal of the Electrochemical Society, 1962, 109(1): 56.
[23] K CORNWELL. The thermoelectric potential of molten salt thermocells[J]. Journal of Physics D: Applied Physics, 1972, 5(7): 1199-1211.
[24] TROLLE U, KVIST A. The thermoelectric power of the molten chlorides, bromides and iodides of lead, tin and zinc with reversible molten metal electrodes[J]. Zeitschrift für Naturforschung A, 1969, 24(3): 469-470.
[25] ZHAO D, WANG H, KHAN Z U, et al. Ionic thermoelectric supercapacitors[J/OL]. Energy & Environmental Science, 2016, 9(4): 1450-1457.
[26] HAN C G, QIAN X, LI Q, et al. Giant thermopower of ionic gelatin near room temperature[J/OL]. Science, 2020, 368(6495): 1091-1098.
[27] YANG B, PORTALE G. Ionic thermoelectric materials for waste heat harvesting[J]. Colloid and Polymer Science, 2021, 299(3): 465-479.
[28] WU X, GAO N, JIA H, et al. Thermoelectric converters based on ionic conductors[J]. Chemistry – An Asian Journal, 2021, 16(2): 129-141.
[29] DEBETHUNE A J, LICHT T S, SWENDEMAN N. The temperature coefficients of electrode potentials: the isothermal and thermal coefficients—the standard ionic entropy of electrochemical transport of the hydrogen ion[J]. Journal of The Electrochemical Society, 1959, 106(7): 616.
[30] BORN M. Volumen und hydratationswärme der Ionen[J]. Zeitschrift für Physik, 1920, 1(1): 45-48.
[31] SAHAMI S, WEAVER M J. Entropic and enthalpic contributions to the solvent dependence of the thermodynamics of transition-metal redox couples: Part II. Couples containing ammine and ethylenediamine ligands[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 122: 171-181.
[32] HU R, COLA B A, HARAM N, et al. Harvesting waste thermal energy using a carbonnanotube-based thermo-electrochemical Cell[J]. Nano Letters, 2010, 10(3): 838-846.
[33] KIM J H, LEE J H, PALEM R R, et al. Iron (II/III) perchlorate electrolytes for electrochemically harvesting low-grade thermal energy[J]. Scientific Reports, 2019, 9(1): 8706.
[34] WU G, XUE Y, WANG L, et al. Flexible gel-state thermoelectrochemical materials with excellent mechanical and thermoelectric performances based on incorporating Sn2+/Sn4+ electrolyte into polymer/carbon nanotube composites[J]. Journal of Materials Chemistry A, 2018, 6(8): 3376-3380.
[35] YU B, XIAO H, ZENG Y, et al. Cost-effective n-type thermocells enabled by thermosensitive crystallizations and 3D multi-structured electrodes[J]. Nano Energy, 2022, 93: 106795.
[36] ZHANG L, KIM T, LI N, et al. High power density electrochemical thermocells for inexpensively harvesting low‐grade thermal energy[J]. Advanced Materials, 2017, 29(12): 1605652.
[37] WANG H, ZHUANG X, XIE W, et al. Thermosensitive-CsI3-crystal-driven highpower I−/I3−thermocells[J/OL]. Cell Reports Physical Science, 2022, 3(3): 100737.
[38] YANG P, LIU K, CHEN Q, et al. Wearable thermocells based on gel electrolytes for the utilization of body heat[J]. Angewandte Chemie International Edition, 2016, 55(39): 12050-12053.
[39] LEI Z, GAO W, ZHU W, et al. Anti‐fatigue and highly conductive thermocells for continuous electricity generation[J]. Advanced Functional Materials, 2022, 32(25): 2201021.
[40] JIN L, GREENE G W, MACFARLANE D R, et al. Redox-active quasi-solid-state electrolytes for thermal energy harvesting[J]. ACS Energy Letters, 2016, 1(4): 654-658.
[41] WU J, BLACK J J, ALDOUS L. Thermoelectrochemistry using conventional and novel gelled electrolytes in heat-to-current thermocells[J]. Electrochimica Acta, 2017, 225: 482-492.
[42] HAN C G, ZHU Y B, YANG L J, et al. Remarkable high-temperature ionic thermoelectric performance induced by graphene in gels thermocells[J]. Energy & Environmental Science, 2023
[2024-01-04].
[43] LEI Z, GAO W, WU P. Double-network thermocells with extraordinary toughness and boosted power density for continuous heat harvesting[J]. Joule, 2021, 5(8): 2211 -2222.
[44] ZHANG D, MAO Y, YE F, et al. Stretchable thermogalvanic hydrogel thermocell with record-high specific output power density enabled by ion-induced crystallization[J]. Energy & Environmental Science, 2022, 15(7): 2974-2982.
[45] PENG P, ZHOU J, LIANG L, et al. Regulating thermogalvanic effect and mechanical robustness via redox ions for flexible quasi-solid-state thermocells[J]. Nano-Micro Letters, 2022, 14(1): 81.
[46] ZHANG D, FANG Y, LIU L, et al. Boosting thermoelectric performance of thermogalvanic hydrogels by structure engineering induced by liquid nitrogen quenching[J]. Advanced Energy Materials, n/a(n/a): 2303358.
[47] BUCKINGHAM M A, STOFFEL F, ZHANG S, et al. Nanostructuring electrode surfaces and hydrogels for enhanced thermocapacitance[J]. ACS Applied Nano Materials, 2022, 5(1): 438-445.
[48] WANG Y, ZHANG Y, XIN X, et al. In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production[J]. Science, 2023, 381(6655): 291-296.
[49] ONSAGER L. Reciprocal relations in irreversible processes. I.[J]. Physical Review, 1931, 37(4): 405-426.
[50] CALLEN H B. The application of Onsager’s reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects[J]. Physical Review, 1948, 73(11): 1349-1358.
[51] QIAN X, LIU T H, YANG R. Confinement effect on thermopower of electrolytes[J]. Materials Today Physics, 2022, 23: 100627.
[52] DELAHAY P, VIJH A K. Advances in electrochemistry and electrochemical engineering[J]. Journal of The Electrochemical Society, 1970, 117(10): 367C.
[53] DE GROOT S R. Sur la thermodynamique de quelques processus irréversibles. II. Diffusion thermique et phénomènes connexes[J]. Journal de Physique et le Radium, 1947, 8(7): 193-200.
[54] EASTMAN E D. Thermodynamics of non-isothermal systems[J]. Journal of the American Chemical Society, 1926, 48(6): 1482-1493.
[55] CHENG H, HE X, FAN Z, et al. Flexible quasi-solid state ionogels with remarkable seebeck coefficient and high thermoelectric properties[J]. Advanced Energy Materials, 2019, 9(32): 1901085.
[56] LI Q, HAN C G, WANG S, et al. Anionic entanglement-induced giant thermopower in ionic thermoelectric material Gelatin-CF3SO3K–CH3SO3K[J/OL]. eScience, 2023: 100169.
[57] LI Q, YU D, WANG S, et al. High Thermopower of agarose‐based ionic thermoelectric gel through micellization effect eecoupling the cation/anion thermodiffusion[J]. Advanced Functional Materials, 2023: 2305835.
[58] LI T, ZHANG X, LACEY S D, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting[J]. Nature Materials, 2019, 18(6): 608-613.
[59] WU Z, WANG B, LI J, et al. Advanced bacterial cellulose ionic conductors with gigantic thermopower for low-grade heat harvesting[J]. Nano Letters, 2022, 22(20): 8152-8160.
[60] LIAO M, BANERJEE D, HALLBERG T, et al. Cellulose-based radiative cooling and solar heating powers ionic thermoelectrics[J]. Advanced Science, 2023, 10(8): 2206510.
[61] CHEN B, ZHANG X, YANG J, et al. Giant negative thermopower enabled by bidirectionally anchored Cctions in multifunctional polymers[J]. ACS Applied Materials & Interfaces, 2023, 15(20): 24483-24493.
[62] LIU L, ZHANG D, BAI P, et al. Strong tough thermogalvanic hydrogel thermocell with extraordinarily high thermoelectric performance[J]. Advanced Materials, 2023, 35(32): 2300696.
[63] HE Y, ZHANG Q, CHENG H, et al. Role of ions in hydrogels with an ionic seebeck coefficient of 52.9 mV K–1[J]. The Journal of Physical Chemistry Letters, 2022, 13(20): 4621-4627.
[64] GAO W, LEI Z, CHEN W, et al. Hierarchically anisotropic networks to decouple mechanical and ionic properties for high-performance quasi-solid thermocells[J]. ACS Nano, 2022, 16(5): 8347-8357.
[65] AKBAR Z A, MALIK Y T, KIM D H, et al. Self-healable and stretchable ionic-liquidbased thermoelectric composites with high ionic seebeck coefficient[J]. Small, 2022, 18(17): 2106937.
[66] LIU S, YANG Y, CHEN S, et al. High p- and n-type thermopowers in stretchable selfhealing ionogels[J]. Nano Energy, 2022, 100: 107542.
[67] ZHAO D, MARTINELLI A, WILLFAHRT A, et al. Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles[J]. Nature Communications, 2019, 10(1): 1093.
[68] LIU S, YANG Y, HUANG H, et al. Giant and bidirectionally tunable thermopower in nonaqueous ionogels enabled by selective ion doping[J]. Science Advances, 2022, 8(1): eabj3019.
[69] FANG Y, CHENG H, HE H, et al. Stretchable and Transparent Ionogels with High Thermoelectric Properties[J]. Advanced Functional Materials, 2020, 30(51): 2004699.
[70] ZHOU R, JIN Y, ZENG W, et al. Liquid-free ion-conducting elastomer with environmental stability for soft sensing and thermoelectric generating[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 39120-39131.
[71] ZHANG Y, DAI Y, XIA F, et al. Gelatin/polyacrylamide ionic conductive hydrogel with skin temperature-triggered adhesion for human motion sensing and body heat harvesting[J]. Nano Energy, 2022, 104: 107977.
[72] KIM D H, AKBAR Z A, MALIK Y T, et al. Self-healable polymer complex with a giant ionic thermoelectric effect[J]. Nature Communications, 2023, 14(1): 3246.
[73] LI Z, XU Y, WU L, et al. Enabling giant thermopower by heterostructure engineering of hydrated vanadium pentoxide for zinc ion thermal charging cells[J]. Nature Communications, 2023, 14(1): 6816.
[74] ABRAHAM T J, MACFARLANE D R, BAUGHMAN R H, et al. Towards ionic liquid-based thermoelectrochemical cells for the harvesting of thermal energy[J]. Electrochimica Acta, 2013, 113: 87-93.
[75] WANG H, ZHAO D, KHAN Z U, et al. Ionic thermoelectric figure of merit for charging of supercapacitors[J]. Advanced Electronic Materials, 2017, 3(4): 1700013.
[76] SONG D, CHI C, AN M, 等. Ionic Seebeck coefficient and figure of merit in ionic thermoelectric materials[J]. Cell Reports Physical Science, 2022: 101018.
[77] LI Y, LI Q, ZHANG X, et al. 3D Hierarchical electrodes boosting ultrahigh power output for gelatin-KCl-FeCN4−/3− ionic thermoelectric cells[J]. Advanced Energy Materials, 2022, 12(14): 2103666.
[78] LEE S W, YANG Y, LEE H W, et al. An electrochemical system for efficiently harvesting low-grade heat energy[J]. Nature Communications, 2014, 5(1): 3942.
[79] QUICKENDEN T I, VERNON C F. Thermogalvanic conversion of heat to electricity[J]. Solar Energy, 1986, 36(1): 63-72.
[80] YU B, DUAN J, CONG H, et al. Thermosensitive crystallization–boosted liquid thermocells for low-grade heat harvesting[J]. Science, 2020, 370(6514): 342-346.
[81] KIM T, LEE J S, LEE G, et al. High thermopower of ferri/ferrocyanide redox couple in organic-water solutions[J]. Nano Energy, 2017, 31: 160-167.
[82] IWAMI R, YAMADA T, KIMIZUKA N. Increased seebeck coefficient of [Fe(CN)6]4−/3− thermocell based on the selective electrostatic interactions with cationic micelles[J]. Chemistry Letters, 2020, 49(10): 1197-1200.
[83] DUAN J, FENG G, YU B, et al. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest[J]. Nature Communications, 2018, 9(1): 5146.
[84] KIM K, HWANG S, LEE H. Unravelling ionic speciation and hydration structure of Fe(III/II) redox couples for thermoelectrochemical cells[J]. Electrochimica Acta, 2020, 335: 135651.
[85] BUCKINGHAM M A, MARKEN F, ALDOUS L. The thermoelectrochemistry of the aqueous iron(II)/iron(III) redox couple: significance of the anion and pH in thermogalvanic thermal-to-electrical energy conversion[J]. Sustainable Energy & Fuels, 2018, 2(12): 2717-2726.
[86] ABRAHAM T J, MACFARLANE D R, PRINGLE J M. High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting[J]. Energy & Environmental Science, 2013, 6(9): 2639-2645.
[87] KOERVER R, MACFARLANE D R, PRINGLE J M. Evaluation of electrochemical methods for determination of the Seebeck coefficient of redox electrolytes[J]. Electrochimica Acta, 2015, 184: 186-192.
[88] ZHOU H, YAMADA T, KIMIZUKA N. Supramolecular thermo-electrochemical cells: enhanced thermoelectric performance by host–guest complexation and salt-induced crystallization[J]. Journal of the American Chemical Society, 2016, 138(33): 10502 -10507.
[89] MUA Y, QUICKENDEN T I. Power conversion efficiency, electrode separation, and overpotential in the Ferricyanide/Ferrocyanide thermogalvanic cell[J]. Journal of The Electrochemical Society, 1996, 143(8): 2558.
[90] ROMANO M S, LI N, ANTIOHOS D, et al. Carbon nanotube - reduced graphene oxide composites for thermal energy harvesting applications[J]. Advanced Materials, 2013, 25(45): 6602-6606.
[91] IM H, KIM T, SONG H, et al. High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes[J]. Nature Communications, 2016, 7(1): 10600.
[92] LI G, DONG D, HONG G, et al. High-efficiency cryo-thermocells assembled with anisotropic holey graphene aerogel electrodes and a eutectic redox electrolyte[J]. Advanced Materials, 2019, 31(25): 1901403.
[93] BUCKINGHAM M A, LAWS K, LI H, et al. Thermogalvanic cells demonstrate inherent physiochemical limitations in redox-active electrolytes at water-in-salt concentrations[J]. Cell Reports Physical Science, 2021, 2(8): 100510.
[94] ABRAHAM T J, MACFARLANE D R, PRINGLE J M. Seebeck coefficients in ionic liquids –prospects for thermo-electrochemical cells[J]. Chemical Communications, 2011, 47(22): 6260-6262.
[95] HASAN S W, SAID S M, SABRI M F M, et al. High thermal gradient in thermoelectrochemical cells by insertion of a poly(Vinylidene Fluoride) membrane[J]. Scientific Reports, 2016, 6(1): 29328.
[96] LI Y, LI Q, ZHANG X, et al. Realizing record-high output power in flexible gelatin/GTA-KCl-FeCN4−/3− ionic thermoelectric cells enabled by extending the working temperature range[J]. Energy & Environmental Science, 2022, 15(12): 5379 -5390.
[97] GAO W, LEI Z, ZHANG C, et al. Stretchable and freeze‐tolerant organohydrogel thermocells with enhanced thermoelectric performance continually working at subzero temperatures[J]. Advanced Functional Materials, 2021, 31(43): 2104071.
[98] ANTARIKSA N F, YAMADA T, KIMIZUKA N. High seebeck coefficient in middle -temperature thermocell with deep eutectic solvent[J]. Scientific Reports, 2021, 11(1): 11929.
[99] PENG P, LI Z, XIE D, et al. Aqueous eutectic hydrogel electrolytes enable flexible thermocells with a wide operating temperature range[J]. Journal of Materials Chemistry A, 2023: 10.1039.D2TA09385E.
[100] LAZAR M A, AL-MASRI D, MACFARLANE D R, et al. Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid–solvent mixtures[J]. Physical Chemistry Chemical Physics, 2016, 18(3): 1404-1410.
[101] 中 国 气 象 局 . 中 国 气 象 局 - 天 气 预 报 [EB/OL]. (2024-04-16)
[2024-04-16]. https://weather.cma.cn/.
[102] HEINZE J. Cyclic voltammetry—“Electrochemical spectroscopy”. New analytical methods (25)[J]. Angewandte Chemie International Edition in English, 1984, 23(11): 831-847.
[103] VOJNOVIĆ M V, ̆SEPA D B. Effect of electrode materials on the kinetics of electron exchange reactions[J]. The Journal of Chemical Physics, 1969, 51(12): 5344 -5351.
[104] ALZAHRANI H A H, BUCKINGHAM M A, MARKEN F, et al. Success and failure in the incorporation of gold nanoparticles inside ferri/ferrocyanide thermogalvanic cells[J]. Electrochemistry Communications, 2019, 102: 41-45.
[105] PAPAKONSTANTINOU P, KERN R, IRVINE J, et al. Fundamental electrochemical properties of carbon nanotube electrodes[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2005, 13(sup1): 275-285.
[106] PACIOS M, DEL VALLE M, BARTROLI J, et al. Electrochemical behavior of rigid carbon nanotube composite electrodes[J]. Journal of Electroanalytical Chemistry, 2008, 619-620: 117-124.
[107] PARK S, YOO J. Electrochemical impedance spectroscopy for better electrochemical measurements[J]. Analytical Chemistry, 2003, 75(21): 455 A-461 A.
[108] MATSUMOTO M, SAITO S, OHMINE I. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing[J]. Nature, 2002, 416(6879): 409-413.
[109] EMAMIAN S, LU T, KRUSE H, et al. Exploring nature and predicting strength of hydrogen bonds: A correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory[J]. Journal of Computational Chemistry, 2019, 40(32): 2868-2881.
[110] QIU M, SUN P, HAN K, et al. Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at −80°C[J]. Nature Communications, 2023, 14(1): 601.
[111] GAO Y, QIN Z, GUAN L, et al. Organoaqueous calcium chloride electrolytes for capacitive charge storage in carbon nanotubes at sub-zero-temperatures[J]. Chemical Communications, 2015, 51(54): 10819-10822.
[112] SANGEETHA T, NAGANANDHINI S P, SHANMUGAM R, et al. FTIR spectral signatures of formamide + propionic/acetic acid solutions[J]. Journal of Solution Chemistry, 2022, 51(2): 167-189.
[113] STANGRET J, KAMIEŃSKA-PIOTROWICZ E, LASKOWSKA K. FT-IR studies of molecular interactions in formamide–methanol mixtures[J]. Vibrational Spectroscopy, 2007, 44(2): 324-330.
[114] CHAKRABARTI M H, ROBERTS E P L. Analysis of mixtures of ferrocyanide and ferricyanide using UV-Visible spectroscopy for characterisation of a novel Redox Flow Battery[J]. Journal of the Chemical Society of Pakistan, 2008, 30(6): 817 -823.
[115] MALIK Y T, AKBAR Z A, SEO J Y, et al. Self-healable organic–inorganic hybrid thermoelectric materials with excellent ionic thermoelectric properties[J]. Advanced Energy Materials, 2022, 12(6): 2103070.
[116] HE X, CHENG H, YUE S, et al. Quasi-solid state nanoparticle/(ionic liquid) gels with significantly high ionic thermoelectric properties[J]. Journal of Materials Chemistry A, 2020, 8(21): 10813-10821.
[117] JEONG M, NOH J, ISLAM M Z, et al. Embedding aligned graphene oxides in polyelectrolytes to facilitate thermo-diffusion of protons for high ionic thermoelectric figure-of-merit[J]. Advanced Functional Materials, 2021, 31(29): 2011016.
[118] SALAZAR P F, KUMAR S, COLA B A. Design and optimization of thermoelectrochemical cells[J]. Journal of Applied Electrochemistry, 2014, 44(2): 325 -336.
[119] GUNAWAN A, LI H, LIN C H, et al. The amplifying effect of natural convection on power generation of thermogalvanic cells[J]. International Journal of Heat and Mass Transfer, 2014, 78: 423-434.
[120] LIU Y, ZHANG S, ZHOU Y, et al. Advanced wearable thermocells for body heat harvesting[J]. Advanced Energy Materials, 2020, 10(48): 2002539.
[121] DUAN J, YU B, LIU K, et al. P-N conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting[J]. Nano Energy, 2019, 57: 473 -479.
修改评论