中文版 | English
题名

基于傅里叶神经算子的三维湍流大涡模拟研究

其他题名
FOURIER NEURAL OPERATORBASED MODEL FOR LARGEEDDY SIMULATION OF THREEDIMENSIONAL TURBULENCE
姓名
姓名拼音
LI Zhijie
学号
12132404
学位类型
硕士
学位专业
080103 流体力学
学科门类/专业学位类别
08 工学
导师
王建春
导师单位
力学与航空航天工程系
论文答辩日期
2024-05-14
论文提交日期
2024-07-04
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

大多数神经网络主要专注于学习有限维欧几里德空间之间的映射关系,在特定控制方程下表现优异。然而,一旦参数或初始、边界条件发生变动,它们的泛化能力往往大受影响。最近,傅里叶神经算子(FNO)模型受到了广泛关注。 FNO模型具备学习无限维函数空间之间映射关系的能力,通过数据驱动的方式学习到整个偏微分方程(PDEs)家族的演化规律,因此展现出更强大的泛化能力。尽管FNO 模型在一维和二维 PDEs 求解中取得了显著成果,但在三维 PDEs 问题的研究上仍显不足。因此,准确、稳定且高效地模拟三维湍流中的非线性相互作用具有重要意义。
(1)本文首次尝试将 FNO 模型应用于三维湍流大涡模拟研究。利用高分辨率直接数值模拟(DNS)生成的湍流数据,经滤波处理后得到低分辨率滤波速度场数据,用于模型的训练和测试。在训练过程中,模型以前几个时间节点的滤波速度场作为输入,以预测下一时间节点的滤波速度场。在后验分析中,与传统亚格子模型如动态 Smagorinsky 模型(DSM)和动态混合模型(DMM)相比, FNO 模型展现出了在预测速度谱、涡量、速度增量的概率密度函数(PDFs)等统计量以及瞬时空间结构方面的优越性。此外, FNO 模型还大幅提升了计算效率,显著降低了计算成本。经过低泰勒雷诺数流场数据训练的模型,无需任何调整或重新训练,便能直接应用于更高泰勒雷诺数湍流的精准预测,显示出其出色的泛化能力。
(2)尽管 FNO 模型在短期预测中展现出较高的精度,但在长时间预测湍流时,误差累积效应逐渐显现,预测的稳定性仍有待提高。因此,我们进一步提出了隐式 U-Net 增强的傅里叶神经算子(IU-FNO),用于稳定、高效地预测湍流的长期动力学演化过程。 IU-FNO 模型采用隐式循环傅里叶层来扩展网络深度,并融入 U-Net 网络以准确预测小尺度流场结构。为了全面评估各模型的性能,我们在稳态均匀各向同性湍流、自由剪切湍流混合层以及衰减湍流中,对基于 FNO 的改进模型以及传统亚格子模型进行了系统的测试。后验分析结果显示,我们提出的IU-FNO 模型在预测湍流的速度谱、速度增量 PDFs、速度结构函数等统计量以及流场的瞬时空间结构方面比传统亚格子模型和其他基于 FNO 的改进模型都更准确。更重要的是, IU-FNO 模型展现出了长期稳定且精准的预测能力,这是其他 FNO 改进模型所未能达到的。与原始 FNO 模型相比, IU­FNO 不仅将网络参数量降低了约 75%,计算效率也远高于传统亚格子模型。此外, IU-FNO 模型对高泰勒雷诺数的泛化能力更强,并能准确地预测衰减湍流中未见过的流动状态。因此,IU-FNO模型为使用数据驱动的方法来研究复杂湍流的长期动力学问题提供了一个重要的参考。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] POPE S B. Turbulent flows[M]. Cambridge university press, 2000.
[2] MOIN P, MAHESH K. Direct numerical simulation: a tool in turbulence research[J]. Annual review of fluid mechanics, 1998, 30(1): 539­578.
[3] SAGAUT P. Large eddy simulation for incompressible flows: an introduction[M]. Springer Science & Business Media, 2005.
[4] 张兆顺, 崔桂香, 许春晓. 湍流理论与模拟[M]. 清华大学出版社有限公司, 2005.
[5] KANEDA Y, ISHIHARA T. High­-resolution direct numerical simulation of turbulence[J]. Journal of Turbulence, 2006(7): N20.
[6] LESIEUR M, METAIS O. New trends in large-­eddy simulations of turbulence[J]. Annual review of fluid mechanics, 1996, 28(1): 45­82.
[7] ALFONSI G. Reynolds-averaged Navier–Stokes equations for turbulence modeling[J]. Applied Mechanics Reviews, 2009, 62(4): 040802.
[8] CHEN H C, PATEL V C, JU S. Solutions of Reynolds-­averaged Navier-­Stokes equations for three-­dimensional incompressible flows[J]. Journal of Computational Physics, 1990, 88(2): 305­336.
[9] KURZ M, BECK A. A machine learning framework for LES closure terms[A]. 2020.
[10] BECK A, FLAD D, MUNZ C D. Deep neural networks for data-driven LES closure models[J]. Journal of Computational Physics, 2019, 398: 108910.
[11] DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual review of fluid mechanics, 2019, 51: 357­377.
[12] MAULIK R, SAN O, RASHEED A, et al. Data-driven deconvolution for large eddy simulations of Kraichnan turbulence[J]. Physics of Fluids, 2018, 30(12): 125109.
[13] LI Z, PENG W, YUAN Z, et al. Fourier neural operator approach to large eddy simulation of three-dimensional turbulence[J]. Theoretical and Applied Mechanics Letters, 2022, 12(6): 100389.
[14] BRUNTON S L, NOACK B R, KOUMOUTSAKOS P. Machine learning for fluid mechanics [J]. Annual review of fluid mechanics, 2020, 52: 477­508.
[15] LIU B, TANG J, HUANG H, et al. Deep learning methods for super­resolution reconstruction of turbulent flows[J]. Physics of Fluids, 2020, 32(2): 025105.
[16] VIGNON C, RABAULT J, VINUESA R. Recent advances in applying deep reinforcement learning for flow control: Perspectives and future directions[J]. Physics of Fluids, 2023, 35(3): 031301.
[17] ZUO K, YE Z, ZHANG W, et al. Fast aerodynamics prediction of laminar airfoils based on deep attention network[J]. Physics of Fluids, 2023, 35(3): 037127.
[18] YUAN Z, WANG Y, XIE C, et al. Dynamic iterative approximate deconvolution models for large­eddy simulation of turbulence[J]. Physics of Fluids, 2021, 33(8): 085125.
[19] WANG Y, YUAN Z, XIE C, et al. Artificial neural network­based spatial gradient models for large­eddy simulation of turbulence[J]. AIP Advances, 2021, 11(5): 055216.
[20] WANG Z, LUO K, LI D, et al. Investigations of data­driven closure for subgrid­scale stress in large-­eddy simulation[J]. Physics of Fluids, 2018, 30(12): 125101.
[21] SARGHINI F, DE FELICE G, SANTINI S. Neural networks based subgrid scale modeling in large eddy simulations[J]. Computers & fluids, 2003, 32(1): 97­108.
[22] LING J, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155­166.
[23] LIANG S, WEI A, XUEJUN L, et al. On developing data­driven turbulence model for DG solution of RANS[J]. Chinese Journal of Aeronautics, 2019, 32(8): 1869­1884.
[24] HUIJING J P, DWIGHT R P, SCHMELZER M. Data­driven RANS closures for threedimensional flows around bluff bodies[J]. Computers & Fluids, 2021, 225: 104997.
[25] CAI S, MAO Z, WANG Z, et al. Physics­informed neural networks (PINNs) for fluid mechanics: A review[J]. Acta Mechanica Sinica, 2021, 37(12): 1727­1738.
[26] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics­informed neural networks: Adeep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational physics, 2019, 378: 686­707.
[27] LI Z, KOVACHKI N, AZIZZADENESHELI K, et al. Fourier neural operator for parametric partial differential equations[A]. 2020.
[28] YUAN Z, XIE C, WANG J. Deconvolutional artificial neural network models for large eddy simulation of turbulence[J]. Physics of Fluids, 2020, 32(11): 115106.
[29] XIE C, YUAN Z, WANG J. Artificial neural network­based nonlinear algebraic models for large eddy simulation of turbulence[J]. Physics of Fluids, 2020, 32(11): 115101.
[30] YANG X, ZAFAR S, WANG J X, et al. Predictive large­eddy­simulation wall modeling via physics­informed neural networks[J]. Physical Review Fluids, 2019, 4(3): 034602.
[31] ZHOU Z, HE G, WANG S, et al. Subgrid­scale model for large­eddy simulation of isotropic turbulent flows using an artificial neural network[J]. Computers & Fluids, 2019, 195: 104319.
[32] PARK J, CHOI H. Toward neural­network­based large eddy simulation: Application to turbulent channel flow[J]. Journal of Fluid Mechanics, 2021, 914: A16.
[33] XIE C, WANG J, LI H, et al. A modified optimal LES model for highly compressible isotropic turbulence[J]. Physics of Fluids, 2018, 30(6): 065108.
[34] XIE C, LI K, MA C, et al. Modeling subgrid­scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network[J]. Physical Review Fluids, 2019, 4 (10): 104605.
[35] XIE C, WANG J, LI H, et al. Spatial artificial neural network model for subgrid­scale stress and heat flux of compressible turbulence[J]. Theoretical and Applied Mechanics Letters, 2020, 10(1): 27­32.
[36] GAMAHARA M, HATTORI Y. Searching for turbulence models by artificial neural network [J]. Physical Review Fluids, 2017, 2(5): 054604.
[37] WANG J X, WU J, LING J, et al. A comprehensive physics­informed machine learning framework for predictive turbulence modeling[A]. 2017.
[38] IMPAGNATIELLO M, BOLLA M, KESKINEN K, et al. Systematic assessment of data­driven approaches for wall heat transfer modelling for LES in IC engines using DNS data[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122109.
[39] KOCHKOV D, SMITH J A, ALIEVA A, et al. Machine learning–accelerated computational fluid dynamics[J]. Proceedings of the National Academy of Sciences, 2021, 118(21): e2101784118.
[40] MOHAN A, DANIEL D, CHERTKOV M, et al. Compressed convolutional LSTM: An efficient deep learning framework to model high fidelity 3D turbulence[A]. 2019.
[41] JOVANOVIĆ M R. From bypass transition to flow control and data­driven turbulence modeling: an input–output viewpoint[J]. Annual Review of Fluid Mechanics, 2021, 53: 311­345.
[42] TOMPSON J, SCHLACHTER K, SPRECHMANN P, et al. Accelerating eulerian fluid simulation with convolutional networks[C]//International Conference on Machine Learning. PMLR, 2017: 3424­3433.
[43] HAN R, WANG Y, ZHANG Y, et al. A novel spatial­temporal prediction method for unsteady wake flows based on hybrid deep neural network[J]. Physics of Fluids, 2019, 31(12): 127101.
[44] GUAN Y, CHATTOPADHYAY A, SUBEL A, et al. Stable a posteriori LES of 2D turbulence using convolutional neural networks: Backscattering analysis and generalization to higher Re via transfer learning[J]. Journal of Computational Physics, 2022, 458: 111090.
[45] MOHAN A T, TRETIAK D, CHERTKOV M, et al. Spatio­temporal deep learning models of 3D turbulence with physics informed diagnostics[J]. Journal of Turbulence, 2020, 21(9­10): 484­524.
[46] REN J, WANG H, CHEN G, et al. Predictive models for flame evolution using machine learning: A priori assessment in turbulent flames without and with mean shear[J]. Physics of Fluids, 2021, 33(5): 055113.
[47] NAKAMURA T, FUKAMI K, HASEGAWA K, et al. Convolutional neural network and long short­term memory based reduced order surrogate for minimal turbulent channel flow[J]. Physics of Fluids, 2021, 33(2): 025116.
[48] WANG R, KASHINATH K, MUSTAFA M, et al. Towards physics­informed deep learning for turbulent flow prediction[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020: 1457­1466.
[49] LANTHALER S, MISHRA S, KARNIADAKIS G E. Error estimates for deeponets: A deep learning framework in infinite dimensions[J]. Transactions of Mathematics and Its Applications, 2022, 6(1): tnac001.
[50] KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics­informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422­440.
[51] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics informed deep learning (part i): Data­driven solutions of nonlinear partial differential equations[A]. 2017.
[52] XU H, ZHANG W, WANG Y. Explore missing flow dynamics by physics­informed deep learning: The parameterized governing systems[J]. Physics of Fluids, 2021, 33(9): 095116.
[53] HAGHIGHAT E, RAISSI M, MOURE A, et al. A physics­informed deep learning framework for inversion and surrogate modeling in solid mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113741.
[54] JIN X, CAI S, LI H, et al. NSFnets (Navier­Stokes flow nets): Physics­informed neural networks for the incompressible Navier­Stokes equations[J]. Journal of Computational Physics, 2021, 426: 109951.
[55] CHEN Y, HUANG D, ZHANG D, et al. Theory­guided hard constraint projection (HCP): A knowledge­based data­driven scientific machine learning method[J]. Journal of Computational Physics, 2021, 445: 110624.
[56] WU K, XIU D. Data­driven deep learning of partial differential equations in modal space[J]. Journal of Computational Physics, 2020, 408: 109307.
[57] XU H, ZHANG D, ZENG J. Deep­learning of parametric partial differential equations from sparse and noisy data[J]. Physics of Fluids, 2021, 33(3): 037132.
[58] LU L, MENG X, CAI S, et al. A comprehensive and fair comparison of two neural operators (with practical extensions) based on fair data[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 393: 114778.
[59] KOVACHKI N, LI Z, LIU B, et al. Neural operator: Learning maps between function spaces [A]. 2021.
[60] LI Z, KOVACHKI N, AZIZZADENESHELI K, et al. Neural operator: Graph kernel network for partial differential equations[A]. 2020.
[61] LU L, JIN P, KARNIADAKIS G E. Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators[A]. 2019.
[62] LU L, JIN P, PANG G, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature machine intelligence, 2021, 3(3): 218­229.
[63] CHEN J, VIQUERAT J, HACHEM E. U­net architectures for fast prediction of incompressible laminar flows[A]. 2019.
[64] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770­778.
[65] FANASKOV V, OSELEDETS I. Spectral neural operators[A]. 2022.
[66] TIWARI K, KRISHNAN N, et al. CoNO: Complex Neural Operator for Continuous Dynamical Systems[A]. 2023.
[67] GOSWAMI S, BORA A, YU Y, et al. Physics­informed deep neural operator networks[M]//Machine Learning in Modeling and Simulation: Methods and Applications. Springer, 2023: 219­254.
[68] WEN G, LI Z, AZIZZADENESHELI K, et al. U­FNO—An enhanced Fourier neural operatorbased deep­learning model for multiphase flow[J]. Advances in Water Resources, 2022, 163: 104180.
[69] YOU H, ZHANG Q, ROSS C J, et al. Learning deep implicit Fourier neural operators (IFNOs) with applications to heterogeneous material modeling[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 398: 115296.
[70] GUIBAS J, MARDANI M, LI Z, et al. Adaptive fourier neural operators: Efficient token mixers for transformers[A]. 2021.
[71] KURTH T, SUBRAMANIAN S, HARRINGTON P, et al. Fourcastnet: Accelerating global high­resolution weather forecasting using adaptive fourier neural operators[C]//Proceedings of the Platform for Advanced Scientific Computing Conference. 2023: 1­11.
[72] ZHANG K, ZUO Y, ZHAO H, et al. Fourier neural operator for solving subsurface oil/water two­phase flow partial differential equation[J]. Spe Journal, 2022, 27(03): 1815­1830.
[73] PENG W, YUAN Z, WANG J. Attention­enhanced neural network models for turbulence simulation[J]. Physics of Fluids, 2022, 34(2): 025111.
[74] LI Z, HUANG D Z, LIU B, et al. Fourier neural operator with learned deformations for pdes on general geometries[A]. 2022.
[75] JIANG Z, ZHU M, LI D, et al. Fourier­MIONet: Fourier­enhanced multiple­input neural operators for multiphase modeling of geological carbon sequestration[A]. 2023.
[76] TRAN A, MATHEWS A, XIE L, et al. Factorized fourier neural operators[A]. 2021.
[77] RENN P I, WANG C, LALE S, et al. Forecasting subcritical cylinder wakes with Fourier Neural Operators[A]. 2023.
[78] LI Z, ZHENG H, KOVACHKI N, et al. Physics­informed neural operator for learning partial differential equations[A]. 2021.
[79] HAO Z, WANG Z, SU H, et al. Gnot: A general neural operator transformer for operator learning[C]//International Conference on Machine Learning. PMLR, 2023: 12556­12569.
[80] BENITEZ J A L, FURUYA T, FAUCHER F, et al. Fine­tuning Neural­Operator architectures for training and generalization[A]. 2023.
[81] CHOUBINEH A, CHEN J, WOOD D A, et al. Fourier neural operator for fluid flow in smallshape 2D simulated porous media dataset[J]. Algorithms, 2023, 16(1): 24.
[82] MOMENIFAR M, DIAO E, TAROKH V, et al. Dimension reduced turbulent flow data from deep vector quantisers[J]. Journal of Turbulence, 2022, 23(4­5): 232­264.
[83] ISHIHARA T, GOTOH T, KANEDA Y. Study of high–Reynolds number isotropic turbulence by direct numerical simulation[J]. Annual Review of Fluid Mechanics, 2009, 41: 165­180.
[84] WANG J, WAN M, CHEN S, et al. Effect of flow topology on the kinetic energy flux in compressible isotropic turbulence[J]. Journal of Fluid Mechanics, 2020, 883: A11.
[85] WANG J, SHI Y, WANG L P, et al. Effect of compressibility on the small­scale structures in isotropic turbulence[J]. Journal of Fluid Mechanics, 2012, 713: 588­631.
[86] WANG Y, YUAN Z, WANG X, et al. Constant­coefficient spatial gradient models for the subgrid scale closure in large­eddy simulation of turbulence[J]. Physics of Fluids, 2022, 34(9): 095108.
[87] MENEVEAU C, KATZ J. Scale­invariance and turbulence models for large­eddy simulation [J]. Annual Review of Fluid Mechanics, 2000, 32(1): 1­32.
[88] MOSER R D, HAERING S W, YALLA G R. Statistical properties of subgrid­scale turbulence models[J]. Annual Review of Fluid Mechanics, 2021, 53: 255­286.
[89] GERMANO M, PIOMELLI U, MOIN P, et al. A dynamic subgrid­scale eddy viscosity model [J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(7): 1760­1765.
[90] LILLY D K. A proposed modification of the Germano subgrid­scale closure method[J]. Physics of Fluids A: Fluid Dynamics, 1992, 4(3): 633­635.
[91] LIU S, MENEVEAU C, KATZ J. On the properties of similarity subgrid­scale models as deduced from measurements in a turbulent jet[J]. Journal of Fluid Mechanics, 1994, 275: 83­119.
[92] SHI Y, XIAO Z, CHEN S. Constrained subgrid­scale stress model for large eddy simulation[J]. Physics of Fluids, 2008, 20(1): 011701.
[93] CLARK R A, FERZIGER J H, REYNOLDS W C. Evaluation of subgrid­scale models using an accurately simulated turbulent flow[J]. Journal of fluid mechanics, 1979, 91(1): 1­16.
[94] SMAGORINSKY J. General circulation experiments with the primitive equations: I. The basic experiment[J]. Monthly weather review, 1963, 91(3): 99­164.
[95] LILLY D K. The representation of small­scale turbulence in numerical simulation experiments [J]. IBM Form, 1967: 195­210.
[96] CHANG N, YUAN Z, WANG J. The effect of sub­filter scale dynamics in large eddy simulation of turbulence[J]. Physics of Fluids, 2022, 34(9): 095104.
[97] CHANG N, YUAN Z, WANG Y, et al. The effect of filter anisotropy on the large eddy simulation of turbulence[J]. Physics of Fluids, 2023, 35(3): 035134.
[98] GARNIER E, ADAMS N, SAGAUT P. Large eddy simulation for compressible flows[M]. Springer Science & Business Media, 2009.
[99] BARDINA J, FERZIGER J, REYNOLDS W. Improved subgrid­scale models for large­eddy simulation[C]//13th fluid and plasmadynamics conference. 1980: 1357.
[100] ZANG T A, DAHLBURG R, DAHLBURG J. Direct and large­eddy simulations of threedimensional compressible Navier–Stokes turbulence[J]. Physics of Fluids A: Fluid Dynamics, 1992, 4(1): 127­140.
[101] VREMAN B, GEURTS B, KUERTEN H. Large­eddy simulation of the turbulent mixing layer [J]. Journal of fluid mechanics, 1997, 339: 357­390.
[102] XIE C, WANG J, LI H, et al. An approximate second­order closure model for large­eddy simulation of compressible isotropic turbulence[J]. Communications in Computational Physics, 2020, 27(3): 775­808.
[103] BEAUZAMY B. Introduction to Banach spaces and their geometry[M]. Elsevier, 2011.
[104] VAPNIK V N. An overview of statistical learning theory[J]. IEEE transactions on neural networks, 1999, 10(5): 988­999.
[105] CHEN S, DOOLEN G D, KRAICHNAN R H, et al. On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(2): 458­463.
[106] PATTERSON JR G, ORSZAG S A. Spectral calculations of isotropic turbulence: Efficient removal of aliasing interactions[J]. Physics of Fluids, 1971, 14(11): 2538­2541.
[107] KINGMA D P, BA J. Adam: A method for stochastic optimization[A]. 2014.
[108] KOVACHKI N, LANTHALER S, MISHRA S. On universal approximation and error bounds for Fourier neural operators[J]. The Journal of Machine Learning Research, 2021, 22(1): 13237­ 13312.
[109] YOU H, YU Y, D’ELIA M, et al. Nonlocal kernel network (nkn): a stable and resolutionindependent deep neural network[J]. Journal of Computational Physics, 2022, 469: 111536.
[110] EL GHAOUI L, GU F, TRAVACCA B, et al. Implicit deep learning[J]. SIAM Journal on Mathematics of Data Science, 2021, 3(3): 930­958.
[111] WINSTON E, KOLTER J Z. Monotone operator equilibrium networks[J]. Advances in neural information processing systems, 2020, 33: 10718­10728.
[112] BAI S, KOLTUN V, KOLTER J Z. Multiscale deep equilibrium models[J]. Advances in Neural Information Processing Systems, 2020, 33: 5238­5250.
[113] RONNEBERGER O, FISCHER P, BROX T. U­net: Convolutional networks for biomedical image segmentation[C]//Medical image computing and computer­assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5­9, 2015, proceedings, part III 18. Springer, 2015: 234­241.
[114] XIE C, WANG J, WEINAN E. Modeling subgrid­scale forces by spatial artificial neural networks in large eddy simulation of turbulence[J]. Physical Review Fluids, 2020, 5(5): 054606.
[115] HUSSAINI M Y, ZANG T A. Spectral methods in fluid dynamics[J]. Annual review of fluid mechanics, 1987, 19(1): 339­367.
[116] PEYRET R. Spectral methods for incompressible viscous flow: volume 148[M]. Springer, 2002.
[117] LI Z, PENG W, YUAN Z, et al. Long­term predictions of turbulence by implicit U­Net enhanced Fourier neural operator[J]. Physics of Fluids, 2023, 35(7): 075145.
[118] HENDRYCKS D, GIMPEL K. Gaussian error linear units (gelus)[A]. 2016.
[119] KLEISSL J, KUMAR V, MENEVEAU C, et al. Numerical study of dynamic Smagorinsky models in large­eddy simulation of the atmospheric boundary layer: Validation in stable and unstable conditions[J]. Water resources research, 2006, 42(6).
[120] WANG X, WANG J, CHEN S. Compressibility effects on statistics and coherent structures of compressible turbulent mixing layers[J]. Journal of Fluid Mechanics, 2022, 947: A38.
[121] SHARAN N, MATHEOU G, DIMOTAKIS P E. Turbulent shear­layer mixing: initial conditions, and direct­numerical and large­eddy simulations[J]. Journal of Fluid Mechanics, 2019, 877: 35­81.
[122] YUAN Z, WANG Y, WANG X, et al. Adjoint­based variational optimal mixed models for large­eddy simulation of turbulence[J]. Physics of Fluids, 2023, 35(7): 075105.
[123] ROGERS M M, MOSER R D. Direct simulation of a self­similar turbulent mixing layer[J]. Physics of Fluids, 1994, 6(2): 903­923.
[124] HUNT J C, WRAY A A, MOIN P. Eddies, streams, and convergence zones in turbulent flows[J]. Studying turbulence using numerical simulation databases, 2. Proceedings of the 1988 summer program, 1988.
[125] DUBIEF Y, DELCAYRE F. On coherent­vortex identification in turbulence[J]. Journal of turbulence, 2000, 1(1): 011.
[126] ZHAN J M, LI Y T, WAI W H O, et al. Comparison between the Q criterion and Rortex in the application of an in­stream structure[J]. Physics of Fluids, 2019, 31(12): 121701.

所在学位评定分委会
力学
国内图书分类号
O357.5
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778926
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
李志杰. 基于傅里叶神经算子的三维湍流大涡模拟研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132404-李志杰-力学与航空航天(29443KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李志杰]的文章
百度学术
百度学术中相似的文章
[李志杰]的文章
必应学术
必应学术中相似的文章
[李志杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。