[1] POPE S B. Turbulent flows[M]. Cambridge university press, 2000.
[2] MOIN P, MAHESH K. Direct numerical simulation: a tool in turbulence research[J]. Annual review of fluid mechanics, 1998, 30(1): 539578.
[3] SAGAUT P. Large eddy simulation for incompressible flows: an introduction[M]. Springer Science & Business Media, 2005.
[4] 张兆顺, 崔桂香, 许春晓. 湍流理论与模拟[M]. 清华大学出版社有限公司, 2005.
[5] KANEDA Y, ISHIHARA T. High-resolution direct numerical simulation of turbulence[J]. Journal of Turbulence, 2006(7): N20.
[6] LESIEUR M, METAIS O. New trends in large-eddy simulations of turbulence[J]. Annual review of fluid mechanics, 1996, 28(1): 4582.
[7] ALFONSI G. Reynolds-averaged Navier–Stokes equations for turbulence modeling[J]. Applied Mechanics Reviews, 2009, 62(4): 040802.
[8] CHEN H C, PATEL V C, JU S. Solutions of Reynolds-averaged Navier-Stokes equations for three-dimensional incompressible flows[J]. Journal of Computational Physics, 1990, 88(2): 305336.
[9] KURZ M, BECK A. A machine learning framework for LES closure terms[A]. 2020.
[10] BECK A, FLAD D, MUNZ C D. Deep neural networks for data-driven LES closure models[J]. Journal of Computational Physics, 2019, 398: 108910.
[11] DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual review of fluid mechanics, 2019, 51: 357377.
[12] MAULIK R, SAN O, RASHEED A, et al. Data-driven deconvolution for large eddy simulations of Kraichnan turbulence[J]. Physics of Fluids, 2018, 30(12): 125109.
[13] LI Z, PENG W, YUAN Z, et al. Fourier neural operator approach to large eddy simulation of three-dimensional turbulence[J]. Theoretical and Applied Mechanics Letters, 2022, 12(6): 100389.
[14] BRUNTON S L, NOACK B R, KOUMOUTSAKOS P. Machine learning for fluid mechanics [J]. Annual review of fluid mechanics, 2020, 52: 477508.
[15] LIU B, TANG J, HUANG H, et al. Deep learning methods for superresolution reconstruction of turbulent flows[J]. Physics of Fluids, 2020, 32(2): 025105.
[16] VIGNON C, RABAULT J, VINUESA R. Recent advances in applying deep reinforcement learning for flow control: Perspectives and future directions[J]. Physics of Fluids, 2023, 35(3): 031301.
[17] ZUO K, YE Z, ZHANG W, et al. Fast aerodynamics prediction of laminar airfoils based on deep attention network[J]. Physics of Fluids, 2023, 35(3): 037127.
[18] YUAN Z, WANG Y, XIE C, et al. Dynamic iterative approximate deconvolution models for largeeddy simulation of turbulence[J]. Physics of Fluids, 2021, 33(8): 085125.
[19] WANG Y, YUAN Z, XIE C, et al. Artificial neural networkbased spatial gradient models for largeeddy simulation of turbulence[J]. AIP Advances, 2021, 11(5): 055216.
[20] WANG Z, LUO K, LI D, et al. Investigations of datadriven closure for subgridscale stress in large-eddy simulation[J]. Physics of Fluids, 2018, 30(12): 125101.
[21] SARGHINI F, DE FELICE G, SANTINI S. Neural networks based subgrid scale modeling in large eddy simulations[J]. Computers & fluids, 2003, 32(1): 97108.
[22] LING J, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155166.
[23] LIANG S, WEI A, XUEJUN L, et al. On developing datadriven turbulence model for DG solution of RANS[J]. Chinese Journal of Aeronautics, 2019, 32(8): 18691884.
[24] HUIJING J P, DWIGHT R P, SCHMELZER M. Datadriven RANS closures for threedimensional flows around bluff bodies[J]. Computers & Fluids, 2021, 225: 104997.
[25] CAI S, MAO Z, WANG Z, et al. Physicsinformed neural networks (PINNs) for fluid mechanics: A review[J]. Acta Mechanica Sinica, 2021, 37(12): 17271738.
[26] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physicsinformed neural networks: Adeep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational physics, 2019, 378: 686707.
[27] LI Z, KOVACHKI N, AZIZZADENESHELI K, et al. Fourier neural operator for parametric partial differential equations[A]. 2020.
[28] YUAN Z, XIE C, WANG J. Deconvolutional artificial neural network models for large eddy simulation of turbulence[J]. Physics of Fluids, 2020, 32(11): 115106.
[29] XIE C, YUAN Z, WANG J. Artificial neural networkbased nonlinear algebraic models for large eddy simulation of turbulence[J]. Physics of Fluids, 2020, 32(11): 115101.
[30] YANG X, ZAFAR S, WANG J X, et al. Predictive largeeddysimulation wall modeling via physicsinformed neural networks[J]. Physical Review Fluids, 2019, 4(3): 034602.
[31] ZHOU Z, HE G, WANG S, et al. Subgridscale model for largeeddy simulation of isotropic turbulent flows using an artificial neural network[J]. Computers & Fluids, 2019, 195: 104319.
[32] PARK J, CHOI H. Toward neuralnetworkbased large eddy simulation: Application to turbulent channel flow[J]. Journal of Fluid Mechanics, 2021, 914: A16.
[33] XIE C, WANG J, LI H, et al. A modified optimal LES model for highly compressible isotropic turbulence[J]. Physics of Fluids, 2018, 30(6): 065108.
[34] XIE C, LI K, MA C, et al. Modeling subgridscale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network[J]. Physical Review Fluids, 2019, 4 (10): 104605.
[35] XIE C, WANG J, LI H, et al. Spatial artificial neural network model for subgridscale stress and heat flux of compressible turbulence[J]. Theoretical and Applied Mechanics Letters, 2020, 10(1): 2732.
[36] GAMAHARA M, HATTORI Y. Searching for turbulence models by artificial neural network [J]. Physical Review Fluids, 2017, 2(5): 054604.
[37] WANG J X, WU J, LING J, et al. A comprehensive physicsinformed machine learning framework for predictive turbulence modeling[A]. 2017.
[38] IMPAGNATIELLO M, BOLLA M, KESKINEN K, et al. Systematic assessment of datadriven approaches for wall heat transfer modelling for LES in IC engines using DNS data[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122109.
[39] KOCHKOV D, SMITH J A, ALIEVA A, et al. Machine learning–accelerated computational fluid dynamics[J]. Proceedings of the National Academy of Sciences, 2021, 118(21): e2101784118.
[40] MOHAN A, DANIEL D, CHERTKOV M, et al. Compressed convolutional LSTM: An efficient deep learning framework to model high fidelity 3D turbulence[A]. 2019.
[41] JOVANOVIĆ M R. From bypass transition to flow control and datadriven turbulence modeling: an input–output viewpoint[J]. Annual Review of Fluid Mechanics, 2021, 53: 311345.
[42] TOMPSON J, SCHLACHTER K, SPRECHMANN P, et al. Accelerating eulerian fluid simulation with convolutional networks[C]//International Conference on Machine Learning. PMLR, 2017: 34243433.
[43] HAN R, WANG Y, ZHANG Y, et al. A novel spatialtemporal prediction method for unsteady wake flows based on hybrid deep neural network[J]. Physics of Fluids, 2019, 31(12): 127101.
[44] GUAN Y, CHATTOPADHYAY A, SUBEL A, et al. Stable a posteriori LES of 2D turbulence using convolutional neural networks: Backscattering analysis and generalization to higher Re via transfer learning[J]. Journal of Computational Physics, 2022, 458: 111090.
[45] MOHAN A T, TRETIAK D, CHERTKOV M, et al. Spatiotemporal deep learning models of 3D turbulence with physics informed diagnostics[J]. Journal of Turbulence, 2020, 21(910): 484524.
[46] REN J, WANG H, CHEN G, et al. Predictive models for flame evolution using machine learning: A priori assessment in turbulent flames without and with mean shear[J]. Physics of Fluids, 2021, 33(5): 055113.
[47] NAKAMURA T, FUKAMI K, HASEGAWA K, et al. Convolutional neural network and long shortterm memory based reduced order surrogate for minimal turbulent channel flow[J]. Physics of Fluids, 2021, 33(2): 025116.
[48] WANG R, KASHINATH K, MUSTAFA M, et al. Towards physicsinformed deep learning for turbulent flow prediction[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020: 14571466.
[49] LANTHALER S, MISHRA S, KARNIADAKIS G E. Error estimates for deeponets: A deep learning framework in infinite dimensions[J]. Transactions of Mathematics and Its Applications, 2022, 6(1): tnac001.
[50] KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physicsinformed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422440.
[51] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics informed deep learning (part i): Datadriven solutions of nonlinear partial differential equations[A]. 2017.
[52] XU H, ZHANG W, WANG Y. Explore missing flow dynamics by physicsinformed deep learning: The parameterized governing systems[J]. Physics of Fluids, 2021, 33(9): 095116.
[53] HAGHIGHAT E, RAISSI M, MOURE A, et al. A physicsinformed deep learning framework for inversion and surrogate modeling in solid mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113741.
[54] JIN X, CAI S, LI H, et al. NSFnets (NavierStokes flow nets): Physicsinformed neural networks for the incompressible NavierStokes equations[J]. Journal of Computational Physics, 2021, 426: 109951.
[55] CHEN Y, HUANG D, ZHANG D, et al. Theoryguided hard constraint projection (HCP): A knowledgebased datadriven scientific machine learning method[J]. Journal of Computational Physics, 2021, 445: 110624.
[56] WU K, XIU D. Datadriven deep learning of partial differential equations in modal space[J]. Journal of Computational Physics, 2020, 408: 109307.
[57] XU H, ZHANG D, ZENG J. Deeplearning of parametric partial differential equations from sparse and noisy data[J]. Physics of Fluids, 2021, 33(3): 037132.
[58] LU L, MENG X, CAI S, et al. A comprehensive and fair comparison of two neural operators (with practical extensions) based on fair data[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 393: 114778.
[59] KOVACHKI N, LI Z, LIU B, et al. Neural operator: Learning maps between function spaces [A]. 2021.
[60] LI Z, KOVACHKI N, AZIZZADENESHELI K, et al. Neural operator: Graph kernel network for partial differential equations[A]. 2020.
[61] LU L, JIN P, KARNIADAKIS G E. Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators[A]. 2019.
[62] LU L, JIN P, PANG G, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature machine intelligence, 2021, 3(3): 218229.
[63] CHEN J, VIQUERAT J, HACHEM E. Unet architectures for fast prediction of incompressible laminar flows[A]. 2019.
[64] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770778.
[65] FANASKOV V, OSELEDETS I. Spectral neural operators[A]. 2022.
[66] TIWARI K, KRISHNAN N, et al. CoNO: Complex Neural Operator for Continuous Dynamical Systems[A]. 2023.
[67] GOSWAMI S, BORA A, YU Y, et al. Physicsinformed deep neural operator networks[M]//Machine Learning in Modeling and Simulation: Methods and Applications. Springer, 2023: 219254.
[68] WEN G, LI Z, AZIZZADENESHELI K, et al. UFNO—An enhanced Fourier neural operatorbased deeplearning model for multiphase flow[J]. Advances in Water Resources, 2022, 163: 104180.
[69] YOU H, ZHANG Q, ROSS C J, et al. Learning deep implicit Fourier neural operators (IFNOs) with applications to heterogeneous material modeling[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 398: 115296.
[70] GUIBAS J, MARDANI M, LI Z, et al. Adaptive fourier neural operators: Efficient token mixers for transformers[A]. 2021.
[71] KURTH T, SUBRAMANIAN S, HARRINGTON P, et al. Fourcastnet: Accelerating global highresolution weather forecasting using adaptive fourier neural operators[C]//Proceedings of the Platform for Advanced Scientific Computing Conference. 2023: 111.
[72] ZHANG K, ZUO Y, ZHAO H, et al. Fourier neural operator for solving subsurface oil/water twophase flow partial differential equation[J]. Spe Journal, 2022, 27(03): 18151830.
[73] PENG W, YUAN Z, WANG J. Attentionenhanced neural network models for turbulence simulation[J]. Physics of Fluids, 2022, 34(2): 025111.
[74] LI Z, HUANG D Z, LIU B, et al. Fourier neural operator with learned deformations for pdes on general geometries[A]. 2022.
[75] JIANG Z, ZHU M, LI D, et al. FourierMIONet: Fourierenhanced multipleinput neural operators for multiphase modeling of geological carbon sequestration[A]. 2023.
[76] TRAN A, MATHEWS A, XIE L, et al. Factorized fourier neural operators[A]. 2021.
[77] RENN P I, WANG C, LALE S, et al. Forecasting subcritical cylinder wakes with Fourier Neural Operators[A]. 2023.
[78] LI Z, ZHENG H, KOVACHKI N, et al. Physicsinformed neural operator for learning partial differential equations[A]. 2021.
[79] HAO Z, WANG Z, SU H, et al. Gnot: A general neural operator transformer for operator learning[C]//International Conference on Machine Learning. PMLR, 2023: 1255612569.
[80] BENITEZ J A L, FURUYA T, FAUCHER F, et al. Finetuning NeuralOperator architectures for training and generalization[A]. 2023.
[81] CHOUBINEH A, CHEN J, WOOD D A, et al. Fourier neural operator for fluid flow in smallshape 2D simulated porous media dataset[J]. Algorithms, 2023, 16(1): 24.
[82] MOMENIFAR M, DIAO E, TAROKH V, et al. Dimension reduced turbulent flow data from deep vector quantisers[J]. Journal of Turbulence, 2022, 23(45): 232264.
[83] ISHIHARA T, GOTOH T, KANEDA Y. Study of high–Reynolds number isotropic turbulence by direct numerical simulation[J]. Annual Review of Fluid Mechanics, 2009, 41: 165180.
[84] WANG J, WAN M, CHEN S, et al. Effect of flow topology on the kinetic energy flux in compressible isotropic turbulence[J]. Journal of Fluid Mechanics, 2020, 883: A11.
[85] WANG J, SHI Y, WANG L P, et al. Effect of compressibility on the smallscale structures in isotropic turbulence[J]. Journal of Fluid Mechanics, 2012, 713: 588631.
[86] WANG Y, YUAN Z, WANG X, et al. Constantcoefficient spatial gradient models for the subgrid scale closure in largeeddy simulation of turbulence[J]. Physics of Fluids, 2022, 34(9): 095108.
[87] MENEVEAU C, KATZ J. Scaleinvariance and turbulence models for largeeddy simulation [J]. Annual Review of Fluid Mechanics, 2000, 32(1): 132.
[88] MOSER R D, HAERING S W, YALLA G R. Statistical properties of subgridscale turbulence models[J]. Annual Review of Fluid Mechanics, 2021, 53: 255286.
[89] GERMANO M, PIOMELLI U, MOIN P, et al. A dynamic subgridscale eddy viscosity model [J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(7): 17601765.
[90] LILLY D K. A proposed modification of the Germano subgridscale closure method[J]. Physics of Fluids A: Fluid Dynamics, 1992, 4(3): 633635.
[91] LIU S, MENEVEAU C, KATZ J. On the properties of similarity subgridscale models as deduced from measurements in a turbulent jet[J]. Journal of Fluid Mechanics, 1994, 275: 83119.
[92] SHI Y, XIAO Z, CHEN S. Constrained subgridscale stress model for large eddy simulation[J]. Physics of Fluids, 2008, 20(1): 011701.
[93] CLARK R A, FERZIGER J H, REYNOLDS W C. Evaluation of subgridscale models using an accurately simulated turbulent flow[J]. Journal of fluid mechanics, 1979, 91(1): 116.
[94] SMAGORINSKY J. General circulation experiments with the primitive equations: I. The basic experiment[J]. Monthly weather review, 1963, 91(3): 99164.
[95] LILLY D K. The representation of smallscale turbulence in numerical simulation experiments [J]. IBM Form, 1967: 195210.
[96] CHANG N, YUAN Z, WANG J. The effect of subfilter scale dynamics in large eddy simulation of turbulence[J]. Physics of Fluids, 2022, 34(9): 095104.
[97] CHANG N, YUAN Z, WANG Y, et al. The effect of filter anisotropy on the large eddy simulation of turbulence[J]. Physics of Fluids, 2023, 35(3): 035134.
[98] GARNIER E, ADAMS N, SAGAUT P. Large eddy simulation for compressible flows[M]. Springer Science & Business Media, 2009.
[99] BARDINA J, FERZIGER J, REYNOLDS W. Improved subgridscale models for largeeddy simulation[C]//13th fluid and plasmadynamics conference. 1980: 1357.
[100] ZANG T A, DAHLBURG R, DAHLBURG J. Direct and largeeddy simulations of threedimensional compressible Navier–Stokes turbulence[J]. Physics of Fluids A: Fluid Dynamics, 1992, 4(1): 127140.
[101] VREMAN B, GEURTS B, KUERTEN H. Largeeddy simulation of the turbulent mixing layer [J]. Journal of fluid mechanics, 1997, 339: 357390.
[102] XIE C, WANG J, LI H, et al. An approximate secondorder closure model for largeeddy simulation of compressible isotropic turbulence[J]. Communications in Computational Physics, 2020, 27(3): 775808.
[103] BEAUZAMY B. Introduction to Banach spaces and their geometry[M]. Elsevier, 2011.
[104] VAPNIK V N. An overview of statistical learning theory[J]. IEEE transactions on neural networks, 1999, 10(5): 988999.
[105] CHEN S, DOOLEN G D, KRAICHNAN R H, et al. On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(2): 458463.
[106] PATTERSON JR G, ORSZAG S A. Spectral calculations of isotropic turbulence: Efficient removal of aliasing interactions[J]. Physics of Fluids, 1971, 14(11): 25382541.
[107] KINGMA D P, BA J. Adam: A method for stochastic optimization[A]. 2014.
[108] KOVACHKI N, LANTHALER S, MISHRA S. On universal approximation and error bounds for Fourier neural operators[J]. The Journal of Machine Learning Research, 2021, 22(1): 13237 13312.
[109] YOU H, YU Y, D’ELIA M, et al. Nonlocal kernel network (nkn): a stable and resolutionindependent deep neural network[J]. Journal of Computational Physics, 2022, 469: 111536.
[110] EL GHAOUI L, GU F, TRAVACCA B, et al. Implicit deep learning[J]. SIAM Journal on Mathematics of Data Science, 2021, 3(3): 930958.
[111] WINSTON E, KOLTER J Z. Monotone operator equilibrium networks[J]. Advances in neural information processing systems, 2020, 33: 1071810728.
[112] BAI S, KOLTUN V, KOLTER J Z. Multiscale deep equilibrium models[J]. Advances in Neural Information Processing Systems, 2020, 33: 52385250.
[113] RONNEBERGER O, FISCHER P, BROX T. Unet: Convolutional networks for biomedical image segmentation[C]//Medical image computing and computerassisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 59, 2015, proceedings, part III 18. Springer, 2015: 234241.
[114] XIE C, WANG J, WEINAN E. Modeling subgridscale forces by spatial artificial neural networks in large eddy simulation of turbulence[J]. Physical Review Fluids, 2020, 5(5): 054606.
[115] HUSSAINI M Y, ZANG T A. Spectral methods in fluid dynamics[J]. Annual review of fluid mechanics, 1987, 19(1): 339367.
[116] PEYRET R. Spectral methods for incompressible viscous flow: volume 148[M]. Springer, 2002.
[117] LI Z, PENG W, YUAN Z, et al. Longterm predictions of turbulence by implicit UNet enhanced Fourier neural operator[J]. Physics of Fluids, 2023, 35(7): 075145.
[118] HENDRYCKS D, GIMPEL K. Gaussian error linear units (gelus)[A]. 2016.
[119] KLEISSL J, KUMAR V, MENEVEAU C, et al. Numerical study of dynamic Smagorinsky models in largeeddy simulation of the atmospheric boundary layer: Validation in stable and unstable conditions[J]. Water resources research, 2006, 42(6).
[120] WANG X, WANG J, CHEN S. Compressibility effects on statistics and coherent structures of compressible turbulent mixing layers[J]. Journal of Fluid Mechanics, 2022, 947: A38.
[121] SHARAN N, MATHEOU G, DIMOTAKIS P E. Turbulent shearlayer mixing: initial conditions, and directnumerical and largeeddy simulations[J]. Journal of Fluid Mechanics, 2019, 877: 3581.
[122] YUAN Z, WANG Y, WANG X, et al. Adjointbased variational optimal mixed models for largeeddy simulation of turbulence[J]. Physics of Fluids, 2023, 35(7): 075105.
[123] ROGERS M M, MOSER R D. Direct simulation of a selfsimilar turbulent mixing layer[J]. Physics of Fluids, 1994, 6(2): 903923.
[124] HUNT J C, WRAY A A, MOIN P. Eddies, streams, and convergence zones in turbulent flows[J]. Studying turbulence using numerical simulation databases, 2. Proceedings of the 1988 summer program, 1988.
[125] DUBIEF Y, DELCAYRE F. On coherentvortex identification in turbulence[J]. Journal of turbulence, 2000, 1(1): 011.
[126] ZHAN J M, LI Y T, WAI W H O, et al. Comparison between the Q criterion and Rortex in the application of an instream structure[J]. Physics of Fluids, 2019, 31(12): 121701.
修改评论